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Abstract. We establish necessary conditions for domains Ω ⊂ Rn which admit the pointwise
(p, β)-Hardy inequality

|u(x)| ≤ CdΩ(x)1−β/pM2dΩ(x),q

(|∇u|dΩ
β/p

)
(x), u ∈ C∞0 (Ω),

where 1 < q < p, dΩ(x) = dist(x, ∂Ω), and MR,q is a maximal operator. In particular, the
complement of such a domain must have, even locally, Hausdorff dimension strictly greater than
n− p + β.

1. Introduction

In this paper, we consider pointwise (p, β)-Hardy inequalities for functions u ∈
C∞

0 (Ω). That is, for given 1 < p < ∞ and β ∈ R we ask for some exponent 1 < q < p
and a constant C > 0 such that the inequality

(1) |u(x)| ≤ CdΩ(x)1−β
p

(
sup

r<2dΩ(x)

∫

B(x,r)

|∇u(y)|qdΩ(y)β q
p dy

)1/q

holds at x ∈ Ω. Here we denote dΩ(x) = dist(x, ∂Ω). Such weighted inequalities
were introduced in [5] following the considerations in the unweighted case β = 0,
conducted by Hajłasz [2] and Kinnunen and Martio [4]. It is easy to see, using the
boundedness of maximal operators, that if the pointwise (p, β)-Hardy inequality (1)
holds for a function u ∈ C∞

0 (Ω) at every x ∈ Ω with constants 1 < q < p and C1 > 0,
then u satisfies the usual (weighted) (p, β)-Hardy inequality

∫

Ω

|u(x)|p dΩ(x)β−p dx ≤ C

∫

Ω

|∇u(x)|p dΩ(x)β dx

with a constant C = C(C1, n, p, q) > 0. See [5] and references therein for more results
and the origins of these Hardy inequalities.

If Ω  Rn is a domain and (1) holds for all u ∈ C∞
0 (Ω) at every x ∈ Ω, with

same constants 1 < q < p and CΩ > 0, we say that Ω admits the pointwise (p, β)-
Hardy inequality. In [5], sufficient conditions for a domain to admit the pointwise
(p, β)-Hardy inequality were given. These were closely related to the (local) Haus-
dorff dimension of the boundary (or the complement) of Ω. We mention, for example,
that each simply connected planar John domain admits the pointwise (p, β)-Hardy
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inequality whenever 1 < p < ∞ and β < p− 1, and a von Koch -type snowflake do-
main Ω ⊂ R2 admits the pointwise (p, β)-Hardy inequality if (and only if) 1 < p < ∞
and β < p− 2 + dim(∂Ω).

The main purpose of this paper is to show that size estimates of the above type
are indeed necessary for weighted pointwise Hardy inequalities; the unweighted case
has been considered in [6]. Our main result can be stated as follows:

Theorem 1.1. Suppose that a domain Ω ⊂ Rn admits the pointwise (p, β)-
Hardy inequality. Then there exist a constant C > 0 and an exponent λ > n− p + β
such that

(2) H λ
∞

(
B(w, r) ∩ Ωc

) ≥ Crλ

holds for every w ∈ Ωc and all r > 0.

Here H λ
∞(A) is the λ-dimensional Hausdorff content of the set A ⊂ Rn, see

Section 2. It is immediate that if (2) holds for some w and r, then the Hausdorff
dimension of B(w, r) ∩ Ωc is at least λ. Moreover, if β < p − 1 (so that p − β > 1)
and (2) holds for all w ∈ Ωc and all r > 0, then it is well-known that Ωc satisfies
a uniform capacity density condition: Ωc is uniformly (p − β)-fat (see e.g. [7] or [4]
for the definition). Notice also that the fact that we must have β < p in pointwise
Hardy inequalities is implicit in Theorem 1.1, since (2) can not hold in Rn for any
λ > n. Hence, for a fixed 1 < p < ∞, the relevant values of β in pointwise Hardy
inequalities lie between p− n and p, as every proper subdomain Ω ( Rn admits the
pointwise (p, β)-Hardy inequality when β < p− n (cf. [5]).

Interestingly, if the pointwise (p, β)-Hardy inequality holds in a domain Ω ⊂ Rn,
we not only obtain the conclusion of Theorem 1.1—a uniform density condition for
the complement of Ω—but also a stronger density condition where the complement
of Ω is considered only as “seen” from within the points inside the domain. To this
end, we let D(x) denote the x-component of B(x, 2dΩ(x))∩Ω for points x ∈ Ω. Then,
if Ω admits the pointwise (p, β)-Hardy inequality, there exists some λ > n − p + β
and a constant C > 0 such that

(3) H λ
∞

(
∂D(x) ∩ ∂Ω

) ≥ CdΩ(x)λ

for every x ∈ Ω; see Theorem 3.1. This complements the results in [5] on sufficient
conditions for pointwise Hardy inequalities. We refer to estimates of the type (3) as
inner boundary density conditions.

In order to obtain the above results in the case β < 0 we need a measure theoretic
result which is given in Lemma 4.1, and could also be of independent interest. The
claim is, roughly, that a uniform Minkowski-type density for some λ0 > 0 implies
uniform λ-Hausdorff content densities for every λ < λ0. See Section 2 for definitions
and Lemma 4.1 for the precise statement.

This paper is organized as follows. In Section 2, we introduce the notation and
terminology used in the rest of the paper and also record some preliminary results.
Then, in Section 3, we prove our main results, and in fact give some more quantitative
formulations of the necessary conditions for pointwise Hardy inequalities. Finally,
Section 4 is devoted to the statement and the proof of Lemma 4.1 mentioned above.
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2. Preliminaries

Our notation is pretty standard. The open ball with center x ∈ Rn and radius
r > 0 is denoted B(x, r), and the corresponding closed ball is B(x, r). If B = B(x, r)
is a ball and L > 0, we denote LB = B(x, Lr). When A ⊂ Rn, |A| is the n-
dimensional Lebesgue measure of A, ∂A is the boundary of A, and the complement
of A is Ac = Rn \A. If 0 < |A| < ∞ and f ∈ L1(A), we denote

∫
A
f dx = 1

|A|
∫

A
f dx.

Also, χ
A
: Rn → {0, 1} is the characteristic function of A. The Euclidean distance

between two points, or a point and a set, is denoted d(·, ·). When Ω  Rn is a domain,
i.e. an open and connected set, and x ∈ Ω, we also use notation dΩ(x) = d(x, ∂Ω).
In the rest of the paper we always assume that Ω  Rn, so that ∂Ω 6= ∅. The
support of a function u : Ω → R, spt(u), is the closure of the set where u is non-zero.
We let C > 0 denote various positive constants which may vary from expression to
expression.

The λ-Hausdorff content of a set A ⊂ Rn is defined by

H λ
∞(A) = inf

{ ∞∑
i=1

rλ
i : A ⊂

∞⋃
i=1

B(zi, ri), zi ∈ A

}
,

and the Hausdorff dimension of A ⊂ Rn is then

dimH (A) = inf
{
λ > 0 : H λ

∞(A) = 0
}
.

As it turns out, we need a similar notion for the case where all the covering balls
are required to be of the same radius. Notice that in the following our terminology
differs a bit from the standard one. When A ⊂ Rn and r > 0, we denote

M λ
r (A) = inf

{
Nrλ : E ⊂

N⋃
i=1

B(zi, r), zi ∈ A

}
.

Using this notation, we define, in analog with the λ-Hausdorff content, the λ-Minkowski
content of A ⊂ Rn by

M λ
∞(A) = inf

r>0
M λ

r (A).

The corresponding dimension, the usual lower Minkowski dimension, is given by

dimM (A) = inf
{
λ > 0 : M λ

∞(A) = 0
}
.

For the record, we recall that the upper Minkowski dimension of A ⊂ Rn is

dimM (A) = inf
{
λ > 0 : lim sup

r→0
M λ

r (A) = 0
}
.

Note that always dimH (A) ≤ dimM (A) ≤ dimM (A), and that both of these inequal-
ities can be strict; cf. [8, Ch. 5].

Let us extend the notation D(x), used in the Introduction, in the following way:
When x ∈ Ω and L ≥ 1, we let DL(x) denote the x-component of the open set
B(x, LdΩ(x)) ∩ Ω; thus always B(x, dΩ(x)) ⊂ DL(x) ⊂ B(x, LdΩ(x)). This notation
is used e.g. in the following lemma, which is similar to a part of the main result
from [6]. Here the result is reformulated for Minkowski contents instead of Hausdorff
contents. The proof, which we omit here, is however almost identical to the proof in
[6] up to the obvious modifications.
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Lemma 2.1. Let Ω ⊂ Rn be a domain and assume that there exists a constant
C0 > 0 such that, for some L > 1 and some 0 ≤ λ ≤ n,

M λ
∞

(
∂DL(x) ∩ ∂Ω

) ≥ C0dΩ(x)λ

for every x ∈ Ω. Then there exists a constant C = C(C0, L, n, λ) > 0 such that

M λ
∞

(
B(w, r) ∩ Ωc

) ≥ Crλ

for every w ∈ Ωc and all r > 0.

Actually, by the assumption λ ≤ n, we may choose the constant C in Lemma 2.1
to be independent of λ.

To simplify the notation of pointwise Hardy inequalities we recall the definitions
of maximal functions. The classical restricted Hardy–Littlewood maximal function
of f ∈ L1

loc(R
n) is defined by

MRf(x) = sup
0<r<R

∫

B(x,r)

|f(y)| dy ,

where 0 < R ≤ ∞ may depend on x. The well-known maximal theorem of Hardy,
Littlewood and Wiener (see e.g. [9]) states that if 1 < p < ∞, we have ||MRf ||p ≤
C(n, p)||f ||p for all 0 < R ≤ ∞.

When 1 < q < ∞, we define MR,qf =
(
MR|f |q

)1/q. With the help of maximal
functions the pointwise (p, β)-Hardy inequality (1), for a function u ∈ C∞

0 (Ω), now
reads

(4) |u(x)| ≤ CdΩ(x)1−β
p M2dΩ(x),q

(|∇u|dΩ
β/p

)
(x),

where 1 < q < p.
Let us now begin the considerations on necessary conditions for these pointwise

Hardy inequalities. The next lemma records the fact that (4) makes sense only if
β < p.

Lemma 2.2. Let 1 < p < ∞ and let x0 ∈ Ω. If β ∈ R is such that the pointwise
(p, β)-Hardy inequality (4) holds at x0 with constants 1 < q < p and C0 > 0 for all
u ∈ C∞

0 (Ω), then β < p.

Proof. To prove the lemma, it is enough to show that the pointwise (p, p)-Hardy
inequality fails at x0 ∈ Ω, since then, by [5], the pointwise (p, β)-Hardy inequality
can not hold for any β ≥ p.

Pointwise Hardy inequalities are local, so we may assume that Ω is a bounded
domain; if this is not the case, we may instead consider Ω ∩B(0, R) for some R > 0
large enough. Denote Aj =

{
x ∈ Ω : 2−j ≤ dΩ(x) < 2−j+1

}
for j ∈ N, and define

uj(x) = min
{
1, 2j max{0, dΩ(x)− 2−j}},

so that uj is a Lipschitz function with a compact support in Ω, and, moreover,
|∇uj(x)| ≤ 2j for a.e. x ∈ Aj, and elsewhere |∇uj(x)| = 0. Also, for j large enough,
uj(x0) = 1. Since Ω is bounded, it is clear that |Aj| → 0 as j → ∞. Thus the
right-hand side of the pointwise (p, p)-Hardy inequality for uj at x0, with j ∈ N so
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large that 2−j < dΩ(x0)/2, could be estimated as follows:

dΩ(x)1− p
p

(
sup

r<2dΩ(x)

∫

B(x,r)

|∇uj(y)|qdΩ(y)p q
p dy

)1/q

≤ CdΩ(x0)
−n/q

(∫

Aj

|∇uj(y)|qdΩ(y)q dy

)1/q

≤ CdΩ(x0)
−n/q

(|Aj| 2jq 2−jq
)1/q ≤ CdΩ(x0)

−n/q|Aj|1/q j→∞−−−→ 0.

But uj(x0) = 1 for large j, so the pointwise (p, p)-Hardy inequality fails to hold for
the functions uj with a uniform constant. Using standard approximation, and the
fact that functions uj are constant in a neighborhood of x0, it is now easy to find
smooth test functions for which the pointwise (p, p)-Hardy inequality does not hold
with a uniform constant either. ¤

On the other hand, if n ≥ 2, 1 < p < ∞ and β < p are given, there exists, by the
results in [5], a domain Ω ⊂ Rn which admits the pointwise (p, β)-Hardy inequality.
Hence the conclusion of Lemma 2.2 is in this sense the best possible. For instance,
in the plane one can choose such a domain Ω to be a snowflake-type domain with
dimH (∂Ω) > 2− p + β.

3. Main results

In this section we give the precise formulations and proofs of our main results.
The key point here is that the pointwise (p, β)-Hardy inequality in Ω ⊂ Rn implies
that ∂Ω satisfies an inner density condition for some exponent λ > n− p + β (Theo-
rem 3.1). The density of the complement of Ω (Theorem 1.1) is then obtained as a
consequence of the boundary density, as explained at the end of this section.

Theorem 3.1. Suppose that a domain Ω ⊂ Rn admits the pointwise (p, β)-
Hardy inequality. Then there exist an exponent λ > n−p+β and a constant C > 0,
both depending only on n and the data associated with the pointwise (p, β)-Hardy
inequality, such that

(5) H λ
∞

(
∂D2(x) ∩ ∂Ω

) ≥ CdΩ(x)λ

for every x ∈ Ω. In particular,

dimH (∂D2(x) ∩ ∂Ω) > n− p + β

for every x ∈ Ω.

The proof of Theorem 3.1 is somewhat different depending whether β ≥ 0 or
β < 0. In the the former case the theorem follows from the next quantitative lemma.
The estimate (6) below is an improvement on the results in [6] even in the unweighted
case.

Lemma 3.2. Let 1 < p < ∞ and β ≥ 0, and let x0 ∈ Ω. Suppose that the
pointwise (p, β)-Hardy inequality (4) holds at x0 for all u ∈ C∞

0 (Ω) with constants
1 < q < p and C0 > 0. Then there exists a constant C = C(C0, n, p, β) > 0 such that

(6) H λ
∞

(
∂D3(x0) ∩ ∂Ω

) ≥ CdΩ(x0)
λ,

where λ = n− q + q
p
β > n− p + β.
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Proof. By Lemma 2.2 we must have β < p. Using this fact it is easy to see that
p− β > q − q

p
β, and thus λ = n− q + q

p
β > n− p + β.

Then let x0 ∈ Ω be as in the assumptions of the lemma. Denote E = ∂D3(x0) ∩
∂Ω, R0 = dΩ(x0), and let {Bi}N

i=1, where Bi = B(wi, ri) with wi ∈ E and ri > 0, be
a covering of E; we may assume that the covering is finite by the compactness of E.

It is now enough to show that there exists a constant C > 0, independent of the
particular covering, such that

(7)
N∑

i=1

ri
λ ≥ CR0

λ.

But if ri ≥ R0/4 for some 1 ≤ i ≤ N , then (7) holds e.g. with the constant C = 4−n,
and the claim follows.

We may hence assume that ri < R0/4 for all 1 ≤ i ≤ N . Now, let us define a
function ϕ : Rn → R by

ϕ(x) = min
1≤i≤N

{
1, r−1

i d(x, 2Bi)
}

and let ψ ∈ C∞
0 (B(x0, 3R0)) be such that 0 ≤ ψ ≤ 1 and ψ(x) = 1 for all x ∈

B(x0, 2R0). Then u = ψ ϕχ
D3(x0)

is a Lipschitz function with a compact support in
Ω. Since ri < R0/4 for all 1 ≤ i ≤ N , we have that

(8) d(x0, 3Bi) > R0/4

for all 1 ≤ i ≤ N , and thus u(x0) = 1 by the definition of u.
Using standard approximation we can find smooth test functions vj ∈ C∞

0 (Ω)
such that vj(x0) = u(x0) = 1 for all j ∈ N and, by the facts that the Lipschitz
function u is constant in B(x0, R0/4) and has a compact support,

lim sup
j→∞

M2dΩ(x),q

(|∇vj|dΩ
β/p

)
(x0) ≤ 2M2dΩ(x),q

(|∇u|dΩ
β/p

)
(x0).

It follows that the pointwise (p, β)-Hardy inequality (4) also holds for u at x0, with
a constant depending only on C0.

We shall now show, with the help of (4) for u, that the estimate (7) holds. First,
denote Ai = 3Bi \ 2Bi. Then

spt(|∇u|) ∩B(x0, 2R0) ⊂
N⋃

i=1

Ai

and, in fact,

(9) |∇u(y)|q ≤
N∑

i=1

r−q
i χ

Ai
(y)

for a.e. y ∈ B(x0, 2R0). But if χ
Ai

(y) 6= 0 for some 1 ≤ i ≤ N , we must have that
dΩ(y) ≤ 3ri, and hence, by the assumption β ≥ 0, we obtain from (9) that

(10) |∇u(y)|qdΩ(y)β q
p ≤ C

N∑
i=1

r
−q+β q

p

i χ
Ai

(y)

for a.e. y ∈ B(x0, 2R0) with C = 3β.
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Then observe that since spt(|∇u|) ∩ B(x0, 2R0) ⊂
⋃N

i=1 3Bi, it follows from (8)
that we must have r > 1

4
R0 in order to obtain something positive when estimating

the maximal function of |∇u|qdΩ
β q

p at x0. Thus the pointwise (p, β)-Hardy inequality
and (10) imply that (recall λ = n− q + β q

p
)

1 = |u(x0)|q ≤ C0
qR0

q− q
p
βM2R0

(|∇u|qdΩ
β q

p
)
(x0)

≤ CR0
q− q

p
β sup

1
4
R0≤r≤2R0

(
r−n

∫

B(x0,r)

|∇u(y)|qdΩ(y)β q
p dy

)

≤ CR0
q− q

p
β−n

∫

B(x0,2R0)

|∇u(y)|qdΩ(y)β q
p dy

≤ CR0
−λ

N∑
i=1

|Ai| r
−q+β q

p

i ≤ CR0
−λ

N∑
i=1

ri
λ.

(11)

Since q < p, it is easy to see that we may choose the constant C in (11) so that
C = C(C0, n, p, β) > 0. This proves that the estimate (6) holds at x0 with the
exponent λ. ¤

Remark. It is obvious from the proof that we may replace D3(x0) in the lemma
by any DL(x0), where L > 2.

In the case β < 0 we obtain first, as in Lemma 3.2, the following a priori weaker
result for Minkowski contents. To prove Theorem 3.1, we then use Lemma 4.1, which
is postponed until the next section, to pass from Minkowski contents to Hausdorff
contents.

Lemma 3.3. Let 1 < p < ∞ and β < 0, and let x0 ∈ Ω. Suppose that the
pointwise (p, β)-Hardy inequality (4) holds at x0 for all u ∈ C∞

0 (Ω) with constants
1 < q < p and C0 > 0. Then there exists a constant C = C(C0, n, p, β) > 0 such that

M λ
∞

(
∂D3(x0) ∩ ∂Ω

) ≥ CdΩ(x0)
λ

where λ = n− q + q
p
β > n− p + β.

Proof. First, it is now obvious that λ > n − p + β since β < 0. We proceed as
in the proof of Lemma 3.2, but now we cover the set E = ∂D3(x0) ∩ ∂Ω by balls
Bi = B(wi, r), all of the same radius r > 0 and with center points wi ∈ E for
1 ≤ i ≤ N . We may again assume that r < dΩ(x0)/4. After defining the function u
as in the proof of Lemma 3.2 we obtain that

|∇u(y)|q ≤
N∑

i=1

r−qχ
Ai

(y)

for a.e. y ∈ B(x0, 2dΩ(x)). But now, if |∇u(y)| 6= 0, we have by the definition of u
that dΩ(y) ≥ r. Since β < 0, it follows that

(12) |∇u(y)|qdΩ(y)β q
p ≤ C

N∑
i=1

r−q+β q
p χ

Ai
(y)

for a.e. y ∈ B(x0, 2dΩ(x)); recall that Ai = 3Bi \ 2Bi. Hence, using the pointwise
(p, β)-Hardy inequality and (12) just as in the proof of Lemma 3.2, we conclude that
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1 = |u(x0)|q ≤ C0
qdΩ(x0)

q− q
p
βM2dΩ(x0)

(|∇u|qdΩ
β q

p
)
(x0) ≤ · · · ≤ CdΩ(x0)

−λ
N∑

i=1

rλ,

where C = C(C0, n, p, β) > 0 is independent of r > 0 and the particular covering.
This yields the desired Minkowski content estimate. ¤

Proof of Theorem 3.1. Let us first remark that if

(13) H λ
∞

(
∂DL(x) ∩ ∂Ω

) ≥ C0dΩ(x)λ,

where L > 1, holds for every x ∈ Ω, and if L′ > 1, then (13), but with L replaced
by L′, holds for every x ∈ Ω as well, with a constant C = C(C0, L, L′) > 0. This is
trivial if L′ ≥ L. On the other hand, if L′ < L and x0 ∈ Ω, take w ∈ ∂Ω such that
d(x0, w) = dΩ(x0), and choose x = x0 + L−L′

L−1
(w − x0). Then DL(x) ⊂ DL′(x0), and

the claim follows with simple calculations.
In particular, if β ≥ 0, and Ω ⊂ Rn admits the pointwise (p, β)-Hardy inequality,

it follows from Lemma 3.2 that there exists an exponent λ > n − p + β such that
(13), with L = 3, holds for every x ∈ Ω. Hence also the estimate (5) (i.e. (13) with
L = 2) holds for every x ∈ Ω with this same exponent λ and a constant depending
only on n and the given data.

In the case β < 0, the pointwise (p, β)-Hardy inequality implies, by Lemma 3.3
and Lemma 2.1, that there exists C1 = C1(C0, n, p, β) > 0 such that

(14) M λ0
∞

(
B(w, r) ∩ Ωc

) ≥ C1r
λ0

for every w ∈ Ωc and r > 0, where λ0 = n− q + q
p
β. Now choose

ε = λ0 − (n− p + β) = p− q − β + β q
p

> 0

and take λ satisfying λ0− ε/2 < λ < λ0. Using Lemma 4.1 we obtain from (14) that

(15) H λ
∞

(
B(w, r) ∩ Ωc

) ≥ C2 rλ

for every w ∈ Ωc and all r > 0, where C2 = C2(C1, n, p, q, β) > 0. In particular, it
follows from (15) that Ωc is uniformly (p−β−ε/2)-fat (cf. for example [6] and notice
that p− β − ε/2 > 1 by the choice of ε). Hence, by the results in [2], Ω admits the
pointwise (p− β − ε/2, 0)-Hardy inequality. But now we are back in the case β ≥ 0,
and by the first part of the proof we conclude that the inner boundary density (5)
holds for every x ∈ Ω with the exponent λ = n− p + β + ε/2 and a constant C > 0,
both depending only on n and the associated data. ¤

Regarding Theorem 1.1, the case β < 0 was already proved as a part of the proof
of Theorem 3.1, see equation (15). For β ≥ 0, Theorem 1.1 follows from Theorem
3.1 and the fact that Lemma 2.1 also holds when M λ

∞ is replaced by H λ
∞; this is in

fact the original result from [6].

4. From Minkowski to Hausdorff

Here we explain how to obtain uniform density conditions for Hausdorff contents if
one already has such a condition for some λ0-Minkowski content. For our purposes it
is sufficient to acquire Hausdorff content estimates for all exponents λ < λ0 , as is the
case in the next lemma. Nevertheless, it would be interesting to know if it is possible
to extend this result also to include the end-point exponent λ0. We remark that a
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λ-Hausdorff content density condition trivially implies a similar density condition for
the λ-Minkowski content.

Lemma 4.1. Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ0 ≤ n
and C0 > 0 such that

(16) M λ0
∞

(
B(w, r) ∩ E

) ≥ C0 rλ0

for every w ∈ E and all r > 0. Then, for every 0 < λ < λ0, there exists a constant
C = C(C0, λ0, λ, n) > 0 such that

(17) H λ
∞

(
B(w, r) ∩ E

) ≥ C rλ

for every w ∈ E and all r > 0.

Proof. The essential idea of the proof is similar to the proof of [3, Thm. 4.1].
Namely, we construct, using (16) repeatedly, a Cantor-type subset which is then
shown to satisfy the λ-Hausdorff density condition (17).

To begin with, we fix 0 < λ < λ0 and then choose K ∈ N so large that

λ <
λ0 log K

log K − log C0 + log 10λ0

(notice that we may assume C0 < 1). We also denote m = 10(K/C0)
1/λ0 , so that

λ < log K/ log m < λ0 . Now let w ∈ E and R > 0, and take B0 = B(w, R). It
suffices to show that (17) holds for this closed ball with a constant independent of
w and R, since then the claim follows easily for all open balls as well. Using the
standard 5r-covering theorem (cf. [9, pp. 9–10]) and the assumption (16), we find
closed balls Bi = B(zi, r1), i = 1, 2, . . . , n0, with zi ∈ E ∩ B0 and r1 = Rm−1, such
that the balls 2Bi are pairwise disjoint, E ∩B0 ⊂

⋃
i 10Bi, and, by (16),

n0(10r1)
λ0 ≥ C0R

λ0 .

By the choices of r1 = Rm−1 and K we see that n0 ≥ K. We then proceed with the
balls Bi for i = 1, . . . , K.

In the next step we find balls Bi1i2 = B(zi1i2 , r2), i1 = 1, 2, . . . , K and i2 =
1, 2, . . . , ni1 , where zi1i2 ∈ E∩Bi1 and r2 = Rm−2, such that, for each i1 = 1, 2, . . . , K,
the balls 2Bi1i2 are pairwise disjoint, E ∩Bi1 ⊂

⋃
i2

10Bi1i2 , and, by (16),

ni1(10r2)
λ0 ≥ C0r1

λ0 .

Again, ni1 ≥ K for every i1 = 1, . . . , K, and we continue with the balls Bi1i2 =
B(zi1i2 , r2), where now i1, i2 = 1, 2, . . . , K. Notice that since 2Bi1 ∩ 2Bj1 = ∅ when-
ever i1 6= j1 , and clearly 2Bi1i2 ⊂ 2Bi1 for every i1, i2 = 1, . . . , K, we have in fact
that all the balls 2Bi1i2 , i1, i2 = 1, . . . , K, are pairwise disjoint.

Continuing in this way recursively, we find in the k:th step of the construction
a collection of closed balls Bi1i2...ik , where ij = 1, . . . , K for j ∈ {1, . . . , k − 1} and
ik = 1, . . . , ni1i2...ik−1

, with center points zi1i2...ik ∈ E ∩ Bi1i2...ik−1
and all of radius

rk = Rm−k, satisfying the following properties: The balls 2Bi1i2...ik are pairwise
disjoint,

E ∩Bi1i2...ik−1
⊂

⋃
ik

10Bi1i2...ik ,

and, by (16),
ni1i2...ik−1

(10rk)
λ0 ≥ C0rk−1

λ0 .
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Since (rk−1/rk)
λ0 = mλ0 , we have, like before, that ni1i2...ik−1

≥ K for all i1i2 . . . ik−1,
where ij = 1, . . . , K for j ∈ {1, . . . , k−1}. We continue with the balls Bi1i2...ik , where
now i1, i2, . . . , ik = 1, 2, . . . , K.

We then define

Ẽ =
∞⋂

k=1

K⋃
i1,...,ik=1

Bi1i2...ik ,

so that Ẽ ⊂ E ∩ B0 is a compact Cantor-type set. Proceeding as in the proof
of Theorem 4.1. in [3] we let µ denote the equally distributed probability measure
on Ẽ (see also [1, pp. 13–14]). In particular, µ(E ∩ Bi1i2...ik) = K−k for every
i1, i2, . . . , ik = 1, 2, . . . , K. Now, if x ∈ Rn and r < R, we choose k ∈ N such
that Rm−k ≤ r < Rm−k+1. Then there exists a constant C1 = C1(n,m) > 0 such
that B(x, r) intersects at most C1 of the balls Bi1i2...ik from the k:th step of the
construction. Thus, by the definition of µ and the choice of k,

(18) µ(B(x, r)) ≤ C1K
−k ≤ C1m

−k log K/ log m ≤ C1(r/R)λ,

where we have used the fact λ < log K/ log m.
Finally, let {B(zi, ri)}i be a covering of E ∩ B(w, R). We may clearly assume

that ri < R for each i. Hence, using the properties of the measure µ, especially (18),
we conclude that

1 = µ
(
B(w, R) ∩ E

) ≤
∑

i

µ(B(zi, ri)) ≤
∑

i

C1

(ri

R

)λ

.

It is then clear that
H λ
∞

(
B(w, R) ∩ E

) ≥ CRλ,

where C = C−1
1 > 0 now depends only on C0, λ0, λ, and n. ¤
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