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Abstract. Let X be a closed Riemann surface of genus greater than one. Hurwitz showed
that an automorphism of X is completely determined by the induced automorphism on H; (X, Z).
We study this theorem in the context of H'(X,Z) and we prove the following as a generalization.
Let )?, X1, X3 be closed Riemann surfaces of genera greater than one and let f;: X - X; (i=1,2)
be non-constant holomorphic maps. Assume that there exist a;, b; € H'(X;,Z) (i = 1, 2) so that
[fx, @i Abi=1(i=1,2)and that f{ a1 = f3az and f{ b1 = f3 bs in HY(X,Z). Then there exists
a conformal map h: X; — X, which satisfies fo = ho fi.

1. Introduction

Hurwitz [4] showed that if an automorphism of a closed Riemann surface of
genus greater than one induces the identity on the first homology group then the
automorphism is the identity. Martens [6] observed this theorem in the context
of Jacobian varieites and generalized it for holomorphic maps of closed Riemann
surfaces.

Theorem 1. (Martens) Let X, X;, Xo be closed Riemann surfaces of genera

> 1 and let f;: X — X; (i = 1,2) be non-constant holomorphic maps. Assume
that there exists a homomorphism H of the first homology groups from Hy(X,Z)
onto Hy(X,Z) which commutes with the induced homomorpisms fi.: Hy(X,Z) —
H{(X;,Z) (i = 1,2), ie. fo. = H o f1.. Then there exists a unique (modulo a
translation in genus 1) holomorphic map h: X; — Xo with fo = ho f.

Other generalizations of Hurwitz’ theorem are due to Accola [1] and Gilman
[3]. They studied automorphisms of Riemann surfaces and proved several theorems
concerning rigidity of automorphisms in terms of homology groups. One of their
results interesting is the following which firstly proved by Accola and later Gilman
proved a theorem which includes it as a corollary.

Theorem 2. (Accola) Let X be a closed Riemann surface of genus greater than
one. Let T be an automorphism of X. Suppose that there exist four independent
cycles X1, X2, X3, X4 S0 that x1 - x3 = 1, x2 - xa = 1, otherwise x; - x; = 0 and that
T(xi) = x; fori=1,2,3,4. Then T is the identity.

Martens [7] proposed some problems in the theory of closed Riemann surfaces
and one topic was about their results. He wrote that it would be interesting to try
and interpret their results in the context of Jacobian varieties. In this paper, we will
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generalize Theorem 1 and 2 for holomorphic maps of closed Riemann surfaces. We
will interpret these theorems in terms of H'(X,Z) (the dual space for H,(X,Z), that
is to say we will study in the context of dual Jacobian varieties rather than Jacobian
varieties). We will show

Theorem 3. Let X , X1, Xo be closed Riemann surfaces of genera greater than

one and let f;: X — X; (1 =1, 2) be non-constant holomorphic maps. Assume that
there exist a;, b; € H'(X;,Z) (i = 1,2) so that [[, a; Ab; =1 (i = 1,2) and that

fray = fjay and fiby = f3by in HY(X,Z). Then there exists a conformal map
h: X1 — X, which satisfies fo = ho f.

The method of the proof is to construct Riemann surfaces which reflect the
properties of given two cohomology classes.
2. Preliminaries

In the following, all of the Riemann surfaces are closed and of gerera greater
than one. Let X be a Riemann surface of genus g. Any basis for Hy(X,Z) (say

{x1,---,X2¢}), with intersection matrix (that is a matrix whose (k, j)-entry is given
by the intersection number yy - x;) J = _OE g , will be called a canonical

homology basis, where E is the g x ¢ identity matrix. For a canonical homology
basis {x1, -, X2¢}, there is a unique dual basis {ay, ..., ag,} for H'(X,Z), namely

(ar, X;5) :/ ap =90, (J,k=1,...,29).
X;
Furthermore, the matrix whose (k, j)-entry is given by [[, ax A a; is of the form J
above. Conversely, taking a basis {a1, ..., as,} for H'(X,Z) which satisfies that the
matrix whose (k, j)-entry is given by [[, aj A a; is of the form J, a homology basis
dual to {ai,...,as} must be a canonical homology basis (for the details, see, e.g.,
[2, Ch. 3]).

Let {x},-- -, X5,} be a canonical homology basis for H(Y,Z) and let {a}, ..., aj, }
be its dual basis for H(Y,Z). Let f: X — Y be a holomorphic map. Then f induces
a homomorphism f.: H1(X,Z) — H(Y,Z). Let M = (my;) € M(2v,2¢;Z), where
f(xj) = 2?:1 mi; X (We denote by M(m,n;Z) the set of m x n matrices with
integral coefficients.) We will call M the matrix representation of f, or f with respect
to the canonical homology bases. There is another interpretation of M. Denote by
f*a, the pull back of aj by f. Considering an equality

(f*ak x5) = {ak: £ (X5)),
we may write f*aj, = 232‘9:1 my;a;. Thus the induced map f*: H'(Y,R) — H'(X,R)
is represented by the transpose ‘M with respect to the dual bases and it implies
that f* maps H*(Y,Z) into H'(X,Z). Thus we may re-write Theorem 1 in terms of
HY(X,Z) as
Theorem 1°. Let X , X1, Xy be closed Riemann surfaces of genera > 1 and let

fi: X — X, (i =1,2) be non-constant holomorphic maps. Assume that there exists
a homomorphism H': H'(X,,Z) — H'(Xy,Z) which commutes with the induced

homomorpisms ff: H(X;,Z) — HY(X,Z) (i =1,2), i.e. f; = ff o H'. Then there
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exists a unique (modulo a translation in genus 1) holomorphic map h: X; — X, with
fa=ho fi.

Let x1, X2, X3, X4 and T' be as in Theorem 2. Then choosing xs, . .., x24 properly
and renumbering x2, x3 and x4 as Xg+1, X2 and X442, respectively, we get a canonical
homology basis X1, ..., X2, Let a1, ..., asy € H(X,Z) be the dual basis. Denote by
L the matrix representation of the 7' € Aut(X) with respect to the basis x1, ..., X2,
We denote by e the g-tuple column vector whose k-th entry is 1 and others are 0, as
usual. Then the j-th column of Lis e; for j =1, 2, g+1, g+2. Since L is symplectic,

. A B . 1 tD —'B
writing L = ( C D ) in g X g blocks, we have L™ = ( _to tg
j-throw of L' is te; for j =1, 2, g+ 1, g + 2 and this means that 7~ "*a; = a; for
j=1,2,9+1, g+ 2 (equivalently T*a; = a; for j = 1,2, g+ 1, g + 2) since ‘L™!
is the matrix representation of 7~ with respect to ay, ..., as,. Conversely, suppose
that a1, ag, as, ay € H'(X,Z) satisfy [[, a1 Aag = 1, [[as A ag = 1, otherwise
[[xai N a; = 0. Suppose that T" € Aut(X) satisfies T*a; = a; for i = 1,2,3,4.
Then taking the dual and a little modification of the argument above leads us to the
conclusion that there exist x1, X2, X3, X4 € H1(X,Z) so that x1-x3 =1, x2- x4 = 1,
otherwise x; - x; = 0 and that T'(x;) = x; for i = 1,2,3, 4.

From this observation, we have Theorem 2 in terms of H'(X,Z) as

) . Hence the

Theorem 2’. Let X be a closed Riemann surface of genus greater than one. Let
T be an automorphism of X. Suppose that there exist ay, as, as, ay € H'(X,Z) so
that [[, a1 Nag =1, [[; asNas =1, otherwise [[, a;Aa; =0 and that T € Aut(X)
satisfies T*a; = a; for i = 1,2,3,4. Then T is the identity.

In Theorem 3, if X =X, = X,, then the conformal map h is just f, o f;*
which may not be the identity. Thus Theorem 3 does not contain Theorem 2 strictly.
However, in holomorphic mapping cases (i.e. if X # X3), it is natural to identify
fi: X - X, with fy: X - Xy if they are isomorphic, i.e. there exists a conformal
map h 3 X — Xo WhiC}i satisfies fo = h o f;. Indeed, if we observe the function
fields K, K7 and K3 of X, X; and Xy, respectively, non-constant holomorphic maps
fi: X — X, induce injective homomorphisms F;: K; — K (i = 1,2) and they
determine the same subfield of K if and only if f; and fy are isomorphic. Thus
Theorem 3 can be viewed as a generalization of Theorem 2 for holomorphic maps.
If the homomorphism H’ in the hypotheses of Theorem 1’ is an isomorphism, then
f1 and f5 are isomorphic. The hypotheses of Theorem 3 is weaker than those of
Theorem 1’ (= Theorem 1) in this case.

3. Lemmata

Let a be a differential 1-form given by a = f dx + g dy using a local coordinate
z = x + yi. The conjugation operator * is defined by

*a=—gdr+ fdy.

Recall that for each cohomology class, we can choose a harmonic differential 1-form
as a representative. If a is harmonic, then a + 7 *a is a holomorphic differential and
conversely every holomorphic differential can be written in the form a + ¢ *a where
a is some harmonic differential. Thus choosing a harmonic representative a, we can
create a holomorphic differential a + ¢ *a from each cohomology class. Now we define
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a relation for points on X. We denote by U, a neighborhood of a point p. For
a holomorphic differential a and a coordinated neighborhood (U, z), we denote by
a,(z)dz the expression for « in terms of the local coordinate.

Definition 1. Let a, b € H'(X,Z) so that [[,aAb=1. Let p,q € X. We
denote by o and 3 the holomorphic differentials created from a and b, respectively.
We say that p is (a, b)-equivalent to ¢ and write p ~; ¢ if the following two conditions
are satisfied.

(1) [Ta
( qub > =0 (mod.Z)

(II) There are coordinated neighborhoods (U,, z) and (U,,() for p and ¢, re-
spectively, and there exists a conformal map ¢: U, — U, such that o,(¢)d( =
a,(9(2))g' (2) dz = ay(2) dz and 5,(C) d¢ = B4(9(2))9'(2) dz = B,(z) dz hold.

It is easy to see that (a,b)-equivalence defines a equivalent relation. We want
to show that the quotient X/ ~, is a Riemann surface. In order to simplify the
situation, we first remove a finite number of points from X/ ~,, and show that the
punctured quotient is a Riemann surface. We subsequently fill in the removed points
and show that we obtain a compact Riemann surface conformally equivalent to the
original surface X. Put

¢=a/f

where a and 3 are holomorphic differentials created from a and from b, respectively.
Then ¢ is a non-constant meromorphic function on X. To see ¢ is non-constant,
we will recall some basic facts about period matrices of Riemann surfaces (cf. |2,
Ch. 3]). Let {x1,...,x2¢} be a canonical homology basis on a Riemann surface X
and {ai,...,as,} be the dual basis for H'(X,Z). We denote by

G=N\), k,j=1,2,...,2g,

the matrix representation of the conjugation operator x with respect to the basis
{a1,...,a,}. Thus

“ay = i)‘kjaj’ k=1,2,...,2g.
j=1
If we write
o (%)
in g x g blocks, we have
(1) M=, d= D, A3="A3, X>0, —X3>0.
Then there exists a unique basis {wy, wa, ...,w,} for the space of holomorphic dif-

ferentials on X such that the period matrix ( ka w;) is of the form (£, II) where E
is the g x g identity matrix. Furthermore, II must be of the form

(2) IT=(=X3) A +i(=Xsg) 7t



Hurwitz’ theorem and a genararization for holomorphic maps of closed Riemann surfaces 395

Without loss of generality, we may assume that ¢ = a; and b = ag41. If ¢ = /8 =
(a1 +i*a1)/(ag+1 +i*ag41) is constant then every A; is of the form

;i 0 - 0
0 * --- %
0 * --- =x

because of equations (1). Then from the equation (2), II must be of the form

71 0 -+ 0
0 * --- =%
0 *x -+ =%

But this contradicts a theorem of Martens (cf. [5]) which states that if (£, II) is
a period matrix with respect to a canonical homology basis on a closed Riemann
surface of genus g > 1 then II is not of the form

(4 9)

where A is an n x n matrix, 0 < n < g. We have established the following.
Lemma 1. Let a, b€ H'(X,Z) so that [[, aANb=1. Put

¢=alp

where o and 3 are holomorphic differentials created from a and from b, respectively.
Then ¢ is a non-constant meromorphic function on X.

Let B be the set of inverse images of all the branch points on C via ¢. Set
S=X"/~aw
where X' = X — B.
Lemma 2. The quotient S is a Hausdorff space.

Proof. Let
7 X' — S
be the projection. We induce the quotient topology on S. Then it is easy to see that
the projection 7 is an open mapping. Suppose that there exists two points p’, ¢ € S
such that for any neighborhoods U}, and U,, of p’ and ¢', respectively, U}, N U,, # 0

holds. We will show it implies that p’ = ¢’ in the following. Let p € 7=!(p') and
q € 7 1(q'). We take sequences of neighborhoods

UplDUpgD"'DUpj...
with

m Upj = {r}

and
Ui DUpD---DUy...
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with

m Uyj = {a}.

Since 7 is an open mapping, 7(U,;) and m(U,;) are neighborhoods of p’ and ¢/,
respectively. By the assumption, there exist points r,; € U,; and ry; € U,; such that

m(rp;) = m(rg;) € m(Up;) N7 (Ug))
for each j. Then by the condition (I) of Definition 1,

( f:’fjjz ) =0 (mod.Z)

Tpj

for all j. Taking the limit, we see that

(1)

(3) "] =0 (mod.Z)
Jy 0

holds.

By the condition (II) of Definition 1, n(r,;) = m(ry;) implies that ¢(r,;) =
o(ry;) € C where ¢ = a/(. Taking the limit again, we have ¢(p) = ¢(q). Recalling
the definition of X', we see that ¢ is locally conformal. Thus we can take small
coordinated neighborhoods (Up, ) and (U,,() of p and ¢, respectively, such that
¢(Up) = ¢(U,) and

Y =¢lu, " 0 olu,: Up — U,
is a conformal map. On the other hand, for each point r,; in the U,, there exist
coordinated open neighborhoods (U,,,, z) and (U,,,() in the U, and Uy, respectively,
and there exists a conformal map

Tpj

— U,

Tqj

such that

ar,; (95(2))95(2) dz = au, (2) dz, [, (9;(2))g5(2) dz = By, () dz
hold for the condition (II) of Definition 1. Then by the definition of ¥, ¥[y, =~ = g;
holds. It implies that

ag(VE)NY(2) dZ = op(2) dZ,  B(Y(2))'(2) dZ = B,(Z) d2
hold on U,,, C U,. By the theorem of identity, this also holds on U,. Combining

this with (3) above, we see m(p) = 7(¢) holds and it implies that S is a Hausdorff
space. [

Lemma 3. The Hausdorff space S admits a Riemann surface structure such that
the projection w: X' — S is holomorphic.

Proof. By the condition (II) of Definition 1, there exists a map o: S — C which
satisfies ¢ = o o 7. Since o is a locally homeomorphism, it induces an complex
structure on S via the complex structure on C. Now o: .S — C is holomorphic and
thus the projection 7: X’ — S is holomorphic since ¢ = o o 7. O

Recall that X’ = X — B where B is a finite set and that a holomorphic map
maps a punctured disk to a punctured disk. Thus we can extend the projection =
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to X — S holomorphically where S is the compactification of S. We denote the
extended projection by the same symbol 7.

Lemma 4. The compactification S is conformally equivalent to X.

Proof. We want to prove that there exist projections of a and of b on S, but first
we will show that for the holomorphic differentials o and [ created from a and b,
respectively, there are holomorphic differentials o’ and 3’ on S such that 7%’ = a and
7" = 3. By the construction of S, it is easy to see that there are such projections
o and 3 on S. Let p € B. Without loss of generality, we may suppose that w
is written as w = 2" (n € N) using local coordinates around p and 7(p) where p
and m(p) are corresponding to z = 0 and w = 0, respectively. Except w = 0, the
projection o/ (w) dw is defined, that is o/(7w(z)) dw/dz = a(z) holds. Define

W(z) = /OZ a(z)dz

in a sufficiently small neighborhood of p. Take an arbitrary point w and put

{21, 20,..., 20} = 7 H(w).
Then
W(z;) = / a(z)dz = lim0 a(z)dz = limo/ dw)dw (j=1,2,...,n)
0 zZ0— 20 wo— wo

where wg = m(zp). This implies that
W(z) = Wi(z) == W(z)

and thus the zero order of W at z = 0 is > n. Therefore the zero order of a(z) =
dW(z2)/dz is > n — 1 and o/(7(z)) = a(z)(dw/dz)~" is bounded around z = 0. It
implies that z = 0 is a removable singularity and we get the holomorphic differential
o' on S such that 7*a’ = a. By the same consideration as above for 3, we get the
projection 3’ on S.

Recall that o = a+i*a and 3 = b+ *b where a and b are harmonic representative.
Since o/ is holomorphic, o and o/ are harmonic and so is

., o+
a = .
2
Thus we can write
Oé/ — a/ + Z*CL/
and
at+ifa=a=7d=7(d+i"d)=7"(d) +ir*(*d") = 7*(d’) + i * (7" (a")).
The last equality comes from the fact that the conjugation operator * is compatible
with pull-back via a holomorphic map. Comparing the real part, we get
a=7"(a).
Similarly, denoting
§+7
2 Y

v =

we get

b=n*).
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We see that o', b € H'(S,Z) as the following. Let ¢’ be a closed curve on S with the
base point pj. Let py € 77 1(p)) and lift the closed curve ¢ via 7 to a curve ¢ with
initial point py and denote by p; the end point of the lift ¢. Then

<§:’/le ) = ( %Z)E( p;]lZ) =0 (mod.Z)

for m(po) = w(p1).
Since o', b’ € H'(S,Z), using Riemann bilinear relation, we see

//a’/\b'EZ.
S

Denote by d the degree of the map 7. Then

1://a/\b:d//a'/\b'
X S

and d must be 1. Now we see that m: X — S is a conformal map and the proof is
completed. [l

4. Proof of Theorem 3

Now we will prove Theorem 3 by applying Lemma 4 as follows. The notation
here is the same as in Theorem 3.

We denote by «a; and (; the holomorphic differentials created from a; and b;
(i = 1,2), respectively. Let B; = f; '(B!) where B is the set of all the branch points
on X; of f; (1 =1,2). We put

X' =X — (B UB,),

and we use the same symbol f; for the restricted map f;|3 (¢ = 1,2). Then f;: X' —
fi(X') C X; (i = 1,2) are locally conformal.
Let p, ¢ € X’ with fi(p) = fi(q). Then

(Fin )= (15) = e

where ¢ is a closed curve on X; with the base point fi(p) = fi(q). On the other
hand, taking suitable paths of integration,

Flfra\ (e S e
S i S I3 0o ffz(pq))b ’

ff2 (9)

fz(Q)
f2(p) by

and this means fy(p) and fo(q) satisfy the condition (I) of Definition 1 for ay and bs.
By the assumption of Theorem 3 and the compatibility of the conjugation operator
* with pull-back via a holomorphic map, we see that f; oy = f5 ay and f7 81 = f5 o
holds. From this and the fact that f;|s, (i = 1,2) are locally conformal, we see f5(p)

thus we have

0 (mod.Z)
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and fo(q) satisfy the condition (II) of Definition 1 for as and by. Then fo(p) = f2(q)
on X5 by Lemma 4. Thus there exists a holomorphic map

h: fl(X)) — f2(X))
such that ho fi| = fo|z holds. By U By = X — X' consisits of removable singular

points for h and we can extend h to have h: X; — Xy such that ho f; = f5 holds
where we denote the extended map by the same symbol h.

For p, q € X' with fa(p) = fa(q), a little modification of above argument leads
us to the conclusion that the inverse map h~! exists. Thus h: X; — X, is conformal
and satisfies ho f; = fo. I
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