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Abstract. Let X be a closed Riemann surface of genus greater than one. Hurwitz showed
that an automorphism of X is completely determined by the induced automorphism on H1(X,Z).
We study this theorem in the context of H1(X,Z) and we prove the following as a generalization.
Let X̃, X1, X2 be closed Riemann surfaces of genera greater than one and let fi : X̃ → Xi (i = 1, 2)
be non-constant holomorphic maps. Assume that there exist ai, bi ∈ H1(Xi,Z) (i = 1, 2) so that∫∫

Xi
ai ∧ bi = 1 (i = 1, 2) and that f∗1 a1 = f∗2 a2 and f∗1 b1 = f∗2 b2 in H1(X̃,Z). Then there exists

a conformal map h : X1 → X2 which satisfies f2 = h ◦ f1.

1. Introduction

Hurwitz [4] showed that if an automorphism of a closed Riemann surface of
genus greater than one induces the identity on the first homology group then the
automorphism is the identity. Martens [6] observed this theorem in the context
of Jacobian varieites and generalized it for holomorphic maps of closed Riemann
surfaces.

Theorem 1. (Martens) Let X̃, X1, X2 be closed Riemann surfaces of genera
≥ 1 and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume
that there exists a homomorphism H of the first homology groups from H1(X1,Z)

onto H1(X2,Z) which commutes with the induced homomorpisms fi∗ : H1(X̃,Z) →
H1(Xi,Z) (i = 1, 2), i.e. f2∗ = H ◦ f1∗. Then there exists a unique (modulo a
translation in genus 1) holomorphic map h : X1 → X2 with f2 = h ◦ f1.

Other generalizations of Hurwitz’ theorem are due to Accola [1] and Gilman
[3]. They studied automorphisms of Riemann surfaces and proved several theorems
concerning rigidity of automorphisms in terms of homology groups. One of their
results interesting is the following which firstly proved by Accola and later Gilman
proved a theorem which includes it as a corollary.

Theorem 2. (Accola) Let X be a closed Riemann surface of genus greater than
one. Let T be an automorphism of X. Suppose that there exist four independent
cycles χ1, χ2, χ3, χ4 so that χ1 · χ3 = 1, χ2 · χ4 = 1, otherwise χi · χj = 0 and that
T (χi) = χi for i = 1, 2, 3, 4. Then T is the identity.

Martens [7] proposed some problems in the theory of closed Riemann surfaces
and one topic was about their results. He wrote that it would be interesting to try
and interpret their results in the context of Jacobian varieties. In this paper, we will
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generalize Theorem 1 and 2 for holomorphic maps of closed Riemann surfaces. We
will interpret these theorems in terms of H1(X,Z) (the dual space for H1(X,Z), that
is to say we will study in the context of dual Jacobian varieties rather than Jacobian
varieties). We will show

Theorem 3. Let X̃, X1, X2 be closed Riemann surfaces of genera greater than
one and let fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume that
there exist ai, bi ∈ H1(Xi,Z) (i = 1, 2) so that

∫∫
Xi

ai ∧ bi = 1 (i = 1, 2) and that
f ∗1 a1 = f ∗2 a2 and f ∗1 b1 = f ∗2 b2 in H1(X̃,Z). Then there exists a conformal map
h : X1 → X2 which satisfies f2 = h ◦ f1.

The method of the proof is to construct Riemann surfaces which reflect the
properties of given two cohomology classes.

2. Preliminaries

In the following, all of the Riemann surfaces are closed and of gerera greater
than one. Let X be a Riemann surface of genus g. Any basis for H1(X,Z) (say
{χ1, . . . , χ2g}), with intersection matrix (that is a matrix whose (k, j)-entry is given

by the intersection number χk · χj) J =

(
0 E
−E 0

)
, will be called a canonical

homology basis, where E is the g × g identity matrix. For a canonical homology
basis {χ1, . . . , χ2g}, there is a unique dual basis {a1, . . . , a2g} for H1(X,Z), namely

〈ak, χj〉 =

∫

χj

ak = δjk (j, k = 1, . . . , 2g).

Furthermore, the matrix whose (k, j)-entry is given by
∫∫

X
ak ∧ aj is of the form J

above. Conversely, taking a basis {a1, . . . , a2g} for H1(X,Z) which satisfies that the
matrix whose (k, j)-entry is given by

∫∫
X

ak ∧ aj is of the form J , a homology basis
dual to {a1, . . . , a2g} must be a canonical homology basis (for the details, see, e.g.,
[2, Ch. 3]).

Let {χ′1, . . . , χ′2γ} be a canonical homology basis for H1(Y,Z) and let {a′1, . . . , a′2γ}
be its dual basis for H1(Y,Z). Let f : X → Y be a holomorphic map. Then f induces
a homomorphism f∗ : H1(X,Z) → H1(Y,Z). Let M = (mkj) ∈ M(2γ, 2g;Z), where
f∗(χj) =

∑2γ
k=1 mkjχ

′
k. (We denote by M(m,n;Z) the set of m × n matrices with

integral coefficients.) We will call M the matrix representation of f∗ or f with respect
to the canonical homology bases. There is another interpretation of M . Denote by
f ∗a′k the pull back of a′k by f . Considering an equality

〈f ∗a′k, χj〉 = 〈a′k, f∗(χj)〉,
we may write f ∗a′k =

∑2g
j=1 mkjaj. Thus the induced map f ∗ : H1(Y,R) → H1(X,R)

is represented by the transpose tM with respect to the dual bases and it implies
that f ∗ maps H1(Y,Z) into H1(X,Z). Thus we may re-write Theorem 1 in terms of
H1(X,Z) as

Theorem 1’. Let X̃, X1, X2 be closed Riemann surfaces of genera ≥ 1 and let
fi : X̃ → Xi (i = 1, 2) be non-constant holomorphic maps. Assume that there exists
a homomorphism H ′ : H1(X2,Z) → H1(X1,Z) which commutes with the induced
homomorpisms f ∗i : H1(Xi,Z) → H1(X̃,Z) (i = 1, 2), i.e. f ∗2 = f ∗1 ◦H ′. Then there
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exists a unique (modulo a translation in genus 1) holomorphic map h : X1 → X2 with
f2 = h ◦ f1.

Let χ1, χ2, χ3, χ4 and T be as in Theorem 2. Then choosing χ5, . . . , χ2g properly
and renumbering χ2, χ3 and χ4 as χg+1, χ2 and χg+2, respectively, we get a canonical
homology basis χ1, . . . , χ2g. Let a1, . . . , a2g ∈ H1(X,Z) be the dual basis. Denote by
L the matrix representation of the T ∈ Aut(X) with respect to the basis χ1, . . . , χ2g.
We denote by ek the g-tuple column vector whose k-th entry is 1 and others are 0, as
usual. Then the j-th column of L is ej for j = 1, 2, g+1, g+2. Since L is symplectic,

writing L =

(
A B
C D

)
in g × g blocks, we have L−1 =

(
tD −tB
−tC tA

)
. Hence the

j-th row of L−1 is tej for j = 1, 2, g + 1, g + 2 and this means that T−1∗aj = aj for
j = 1, 2, g + 1, g + 2 (equivalently T ∗aj = aj for j = 1, 2, g + 1, g + 2) since tL−1

is the matrix representation of T−1∗ with respect to a1, . . . , a2g. Conversely, suppose
that a1, a2, a3, a4 ∈ H1(X,Z) satisfy

∫∫
X

a1 ∧ a3 = 1,
∫∫

X
a2 ∧ a4 = 1, otherwise∫∫

X
ai ∧ aj = 0. Suppose that T ∈ Aut(X) satisfies T ∗ai = ai for i = 1, 2, 3, 4.

Then taking the dual and a little modification of the argument above leads us to the
conclusion that there exist χ1, χ2, χ3, χ4 ∈ H1(X,Z) so that χ1 ·χ3 = 1, χ2 ·χ4 = 1,
otherwise χi · χj = 0 and that T (χi) = χi for i = 1, 2, 3, 4.

From this observation, we have Theorem 2 in terms of H1(X,Z) as

Theorem 2’. Let X be a closed Riemann surface of genus greater than one. Let
T be an automorphism of X. Suppose that there exist a1, a2, a3, a4 ∈ H1(X,Z) so
that

∫∫
X

a1∧a3 = 1,
∫∫

X
a2∧a4 = 1, otherwise

∫∫
X

ai∧aj = 0 and that T ∈ Aut(X)
satisfies T ∗ai = ai for i = 1, 2, 3, 4. Then T is the identity.

In Theorem 3, if X̃ = X1 = X2, then the conformal map h is just f2 ◦ f−1
1

which may not be the identity. Thus Theorem 3 does not contain Theorem 2 strictly.
However, in holomorphic mapping cases (i.e. if X̃ 6= X1), it is natural to identify
f1 : X̃ → X1 with f2 : X̃ → X2 if they are isomorphic, i.e. there exists a conformal
map h : X1 → X2 which satisfies f2 = h ◦ f1. Indeed, if we observe the function
fields K̃, K1 and K2 of X̃, X1 and X2, respectively, non-constant holomorphic maps
fi : X̃ → Xi induce injective homomorphisms Fi : Ki → K̃ (i = 1, 2) and they
determine the same subfield of K̃ if and only if f1 and f2 are isomorphic. Thus
Theorem 3 can be viewed as a generalization of Theorem 2 for holomorphic maps.
If the homomorphism H ′ in the hypotheses of Theorem 1’ is an isomorphism, then
f1 and f2 are isomorphic. The hypotheses of Theorem 3 is weaker than those of
Theorem 1’ (= Theorem 1) in this case.

3. Lemmata

Let a be a differential 1-form given by a = f dx + g dy using a local coordinate
z = x + yi. The conjugation operator ∗ is defined by

∗a = −g dx + f dy.

Recall that for each cohomology class, we can choose a harmonic differential 1-form
as a representative. If a is harmonic, then a + i ∗a is a holomorphic differential and
conversely every holomorphic differential can be written in the form a + i ∗a where
a is some harmonic differential. Thus choosing a harmonic representative a, we can
create a holomorphic differential a+ i ∗a from each cohomology class. Now we define
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a relation for points on X. We denote by Up a neighborhood of a point p. For
a holomorphic differential α and a coordinated neighborhood (Up, z), we denote by
αp(z)dz the expression for α in terms of the local coordinate.

Definition 1. Let a, b ∈ H1(X,Z) so that
∫∫

X
a ∧ b = 1. Let p, q ∈ X. We

denote by α and β the holomorphic differentials created from a and b, respectively.
We say that p is (a, b)-equivalent to q and write p ∼ab q if the following two conditions
are satisfied.

(I) ( ∫ q

p
a∫ q

p
b

)
≡ 0 (mod.Z)

(II) There are coordinated neighborhoods (Up, z) and (Uq, ζ) for p and q, re-
spectively, and there exists a conformal map g : Up → Uq such that αq(ζ) dζ =
αq(g(z))g′(z) dz = αp(z) dz and βq(ζ) dζ = βq(g(z))g′(z) dz = βp(z) dz hold.

It is easy to see that (a, b)-equivalence defines a equivalent relation. We want
to show that the quotient X/ ∼ab is a Riemann surface. In order to simplify the
situation, we first remove a finite number of points from X/ ∼ab and show that the
punctured quotient is a Riemann surface. We subsequently fill in the removed points
and show that we obtain a compact Riemann surface conformally equivalent to the
original surface X. Put

φ = α/β

where α and β are holomorphic differentials created from a and from b, respectively.
Then φ is a non-constant meromorphic function on X. To see φ is non-constant,
we will recall some basic facts about period matrices of Riemann surfaces (cf. [2,
Ch. 3]). Let {χ1, . . . , χ2g} be a canonical homology basis on a Riemann surface X
and {a1, . . . , a2g} be the dual basis for H1(X,Z). We denote by

G = (λkj), k, j = 1, 2, . . . , 2g,

the matrix representation of the conjugation operator ∗ with respect to the basis
{a1, . . . , a2g}. Thus

∗ak =

2g∑
j=1

λkjaj, k = 1, 2, . . . , 2g.

If we write

G =

(
λ1 λ2

λ3 λ4

)

in g × g blocks, we have

(1) λ4 = −tλ1, λ2 = tλ2, λ3 = tλ3, λ2 > 0, −λ3 > 0.

Then there exists a unique basis {ω1, ω2, . . . , ωg} for the space of holomorphic dif-
ferentials on X such that the period matrix (

∫
χk

ωj) is of the form (E, Π) where E
is the g × g identity matrix. Furthermore, Π must be of the form

(2) Π = (−λ3)
−1 tλ1 + i(−λ3)

−1.
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Without loss of generality, we may assume that a = a1 and b = ag+1. If φ = α/β =
(a1 + i ∗a1)/(ag+1 + i ∗ag+1) is constant then every λj is of the form




cj 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗




because of equations (1). Then from the equation (2), Π must be of the form



π11 0 · · · 0
0 ∗ · · · ∗
...

... . . . ...
0 ∗ · · · ∗


 .

But this contradicts a theorem of Martens (cf. [5]) which states that if (E, Π) is
a period matrix with respect to a canonical homology basis on a closed Riemann
surface of genus g > 1 then Π is not of the form

Π =

(
A 0
0 D

)

where A is an n× n matrix, 0 < n < g. We have established the following.

Lemma 1. Let a, b ∈ H1(X,Z) so that
∫∫

X
a ∧ b = 1. Put

φ = α/β

where α and β are holomorphic differentials created from a and from b, respectively.
Then φ is a non-constant meromorphic function on X.

Let B be the set of inverse images of all the branch points on Ĉ via φ. Set

S = X ′/ ∼ab

where X ′ = X −B.

Lemma 2. The quotient S is a Hausdorff space.

Proof. Let
π : X ′ → S

be the projection. We induce the quotient topology on S. Then it is easy to see that
the projection π is an open mapping. Suppose that there exists two points p′, q′ ∈ S
such that for any neighborhoods U ′

p′ and U ′
q′ of p′ and q′, respectively, U ′

p′ ∩ U ′
q′ 6= ∅

holds. We will show it implies that p′ = q′ in the following. Let p ∈ π−1(p′) and
q ∈ π−1(q′). We take sequences of neighborhoods

Up1 ⊃ Up2 ⊃ · · · ⊃ Upj . . .

with
∞⋂

j=1

Upj = {p}

and
Uq1 ⊃ Uq2 ⊃ · · · ⊃ Uqj . . .
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with ∞⋂
j=1

Uqj = {q}.

Since π is an open mapping, π(Upj) and π(Uqj) are neighborhoods of p′ and q′,
respectively. By the assumption, there exist points rpj ∈ Upj and rqj ∈ Uqj such that

π(rpj) = π(rqj) ∈ π(Upj) ∩ π(Uqj)

for each j. Then by the condition (I) of Definition 1,
( ∫ rqj

rpj
a∫ rqj

rpj
b

)
≡ 0 (mod.Z)

for all j. Taking the limit, we see that

(3)

( ∫ q

p
a∫ q

p
b

)
≡ 0 (mod.Z)

holds.
By the condition (II) of Definition 1, π(rpj) = π(rqj) implies that φ(rpj) =

φ(rqj) ∈ Ĉ where φ = α/β. Taking the limit again, we have φ(p) = φ(q). Recalling
the definition of X ′, we see that φ is locally conformal. Thus we can take small
coordinated neighborhoods (Up, z̃) and (Uq, ζ̃) of p and q, respectively, such that
φ(Up) = φ(Uq) and

ψ = φ|Uq

−1 ◦ φ|Up : Up → Uq

is a conformal map. On the other hand, for each point rpj in the Up, there exist
coordinated open neighborhoods (Urpj

, z) and (Urqj
, ζ) in the Up and Uq, respectively,

and there exists a conformal map

gj : Urpj
→ Urqj

such that

αrqj
(gj(z))g′j(z) dz = αrpj

(z) dz, βrqj
(gj(z))g′j(z) dz = βrpj

(z) dz

hold for the condition (II) of Definition 1. Then by the definition of ψ, ψ|Urpj
= gj

holds. It implies that

αq(ψ(z̃))ψ′(z̃) dz̃ = αp(z̃) dz̃, βq(ψ(z̃))ψ′(z̃) dz̃ = βp(z̃) dz̃

hold on Urpj
⊂ Up. By the theorem of identity, this also holds on Up. Combining

this with (3) above, we see π(p) = π(q) holds and it implies that S is a Hausdorff
space. ¤

Lemma 3. The Hausdorff space S admits a Riemann surface structure such that
the projection π : X ′ → S is holomorphic.

Proof. By the condition (II) of Definition 1, there exists a map σ : S → Ĉ which
satisfies φ = σ ◦ π. Since σ is a locally homeomorphism, it induces an complex
structure on S via the complex structure on Ĉ. Now σ : S → Ĉ is holomorphic and
thus the projection π : X ′ → S is holomorphic since φ = σ ◦ π. ¤

Recall that X ′ = X − B where B is a finite set and that a holomorphic map
maps a punctured disk to a punctured disk. Thus we can extend the projection π
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to X → S holomorphically where S is the compactification of S. We denote the
extended projection by the same symbol π.

Lemma 4. The compactification S is conformally equivalent to X.

Proof. We want to prove that there exist projections of a and of b on S, but first
we will show that for the holomorphic differentials α and β created from a and b,
respectively, there are holomorphic differentials α′ and β′ on S such that π∗α′ = α and
π∗β′ = β. By the construction of S, it is easy to see that there are such projections
α′ and β′ on S. Let p ∈ B. Without loss of generality, we may suppose that π
is written as w = zn (n ∈ N) using local coordinates around p and π(p) where p
and π(p) are corresponding to z = 0 and w = 0, respectively. Except w = 0, the
projection α′(w) dw is defined, that is α′(π(z)) dw/dz = α(z) holds. Define

W (z) =

∫ z

0

α(z) dz

in a sufficiently small neighborhood of p. Take an arbitrary point w and put

{z1, z2, . . . , zn} = π−1(w).

Then

W (zj) =

∫ zj

0

α(z) dz = lim
z0→0

∫ zj

z0

α(z) dz = lim
w0→0

∫ w

w0

α′(w) dw (j = 1, 2, . . . , n)

where w0 = π(z0). This implies that

W (z1) = W (z2) = · · · = W (zn)

and thus the zero order of W at z = 0 is ≥ n. Therefore the zero order of α(z) =
dW (z)/dz is ≥ n − 1 and α′(π(z)) = α(z)(dw/dz)−1 is bounded around z = 0. It
implies that z = 0 is a removable singularity and we get the holomorphic differential
α′ on S such that π∗α′ = α. By the same consideration as above for β, we get the
projection β′ on S.

Recall that α = a+i ∗a and β = b+i ∗b where a and b are harmonic representative.
Since α′ is holomorphic, α′ and α′ are harmonic and so is

a′ =
α′ + α′

2
.

Thus we can write
α′ = a′ + i ∗a′

and

a + i ∗a = α = π∗α′ = π∗(a′ + i ∗a′) = π∗(a′) + iπ∗(∗a′) = π∗(a′) + i ∗(π∗(a′)).

The last equality comes from the fact that the conjugation operator ∗ is compatible
with pull-back via a holomorphic map. Comparing the real part, we get

a = π∗(a′).

Similarly, denoting

b′ =
β′ + β′

2
,

we get
b = π∗(b′).
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We see that a′, b′ ∈ H1(S,Z) as the following. Let c′ be a closed curve on S with the
base point p′0. Let p0 ∈ π−1(p′0) and lift the closed curve c′ via π to a curve c with
initial point p0 and denote by p1 the end point of the lift c. Then( ∫

c′ a
′

∫
c′ b

′

)
=

( ∫
c
a∫

c
b

)
≡

( ∫ p1

p0
a∫ p1

p0
b

)
≡ 0 (mod.Z)

for π(p0) = π(p1).
Since a′, b′ ∈ H1(S,Z), using Riemann bilinear relation, we see∫∫

S

a′ ∧ b′ ∈ Z.

Denote by d the degree of the map π. Then

1 =

∫∫

X

a ∧ b = d

∫∫

S

a′ ∧ b′

and d must be 1. Now we see that π : X → S is a conformal map and the proof is
completed. ¤

4. Proof of Theorem 3

Now we will prove Theorem 3 by applying Lemma 4 as follows. The notation
here is the same as in Theorem 3.

We denote by αi and βi the holomorphic differentials created from ai and bi

(i = 1, 2), respectively. Let Bi = f−1
i (B′

i) where B′
i is the set of all the branch points

on Xi of fi (i = 1, 2). We put

X̃ ′ = X̃ − (B1 ∪B2),

and we use the same symbol fi for the restricted map fi|X̃′ (i = 1, 2). Then fi : X̃ ′ →
fi(X̃

′) ⊂ Xi (i = 1, 2) are locally conformal.
Let p, q ∈ X̃ ′ with f1(p) = f1(q). Then( ∫ q

p
f ∗1 a1∫ q

p
f ∗1 b1

)
=

( ∫
c
a1∫

c
b1

)
≡ 0 (mod.Z)

where c is a closed curve on X1 with the base point f1(p) = f1(q). On the other
hand, taking suitable paths of integration,

( ∫ q

p
f ∗1 a1∫ q

p
f ∗1 b1

)
=

( ∫ q

p
f ∗2 a2∫ q

p
f ∗2 b2

)
=




∫ f2(q)

f2(p)
a2

∫ f2(q)

f2(p)
b2


 ,

thus we have 


∫ f2(q)

f2(p)
a2

∫ f2(q)

f2(p)
b2


 ≡ 0 (mod.Z)

and this means f2(p) and f2(q) satisfy the condition (I) of Definition 1 for a2 and b2.
By the assumption of Theorem 3 and the compatibility of the conjugation operator
∗ with pull-back via a holomorphic map, we see that f ∗1 α1 = f ∗2 α2 and f ∗1 β1 = f ∗2 β2

holds. From this and the fact that fi|X̃′ (i = 1, 2) are locally conformal, we see f2(p)
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and f2(q) satisfy the condition (II) of Definition 1 for a2 and b2. Then f2(p) = f2(q)
on X2 by Lemma 4. Thus there exists a holomorphic map

h : f1(X̃
′) → f2(X̃

′)

such that h ◦ f1|X̃′ = f2|X̃′ holds. B1 ∪ B2 = X̃ − X̃ ′ consisits of removable singular
points for h and we can extend h to have h : X1 → X2 such that h ◦ f1 = f2 holds
where we denote the extended map by the same symbol h.

For p, q ∈ X̃ ′ with f2(p) = f2(q), a little modification of above argument leads
us to the conclusion that the inverse map h−1 exists. Thus h : X1 → X2 is conformal
and satisfies h ◦ f1 = f2. ¤
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