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Abstract. It is shown that for any given increasing function ϕ : [0, 1) → (0,∞) there exists
a meromorphic function fϕ of bounded Nevanlinna characteristic such that its spherical derivative
f#

ϕ (z) = |f ′ϕ(z)|/(1 + |fϕ(z)|2) satisfies lim sup|z|→1− f#
ϕ (z)/ϕ(|z|) = ∞. Such a function is con-

structed by using Blaschke products and the desired property is proved by normal family arguments.
This study is inspired by results on non-normal Dirichlet and Blaschke quotients due to Yamashita.

1. Introduction and results

The class N of normal functions consists of those meromorphic functions f in
the unit disc D := {z : |z| < 1} for which the family {f ◦ τ}, where τ is a Möbius
transformation of D, is normal in the sense of Montel (i.e. ∞ is a permitted limit).
Lehto and Virtanen [4] showed that a meromorphic function f is normal if and only
if its spherical derivative f#(z) := |f ′(z)|/(1 + |f(z)|2) satisfies

sup
z∈D

f#(z)(1− |z|2) < ∞.

The Nevanlinna class N consists of those meromorphic functions f in D for which
the Nevanlinna characteristic T (r, f) remains bounded as r → 1−. It is well known
that every such function can be represented as a quotient of two bounded analytic
functions, and therefore the zeros and poles of functions in N are neatly characterized
by the Blaschke condition [2]. For a given sequence {zn}∞n=1 of points in D for which∑∞

n=1(1−|zn|2) converges (with the convention zn/|zn| = 1 for zn = 0), the Blaschke
product associated with the sequence {zn}∞n=1 is defined as

B(z) :=
∞∏

n=1

|zn|
zn

zn − z

1− znz
.

Lehto and Virtanen [4] showed that every f ∈ N satisfies

T (r, f) = O

(
log

1

1− r

)
, r → 1−,
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so that the order of growth of any normal function is zero. In contrast to this,
Yamashita [7] constructed non-normal functions in the Nevanlinna class via Dirichlet
and Blaschke quotients. The purpose of this note is to show that for any given
increasing function ϕ : [0, 1) → (0,∞) there is a function fϕ in the Nevanlinna class
such that its spherical derivative f#

ϕ (z) exceeds the growth of ϕ(|z|) as |z| → 1−.

Theorem 1. Let ϕ : [0, 1) → (0,∞) be an increasing function. Then there exists
a function fϕ in the Nevanlinna class N such that

(1) lim sup
|z|→1−

f#
ϕ (z)

ϕ(|z|) = ∞.

Theorem 1 is proved by constructing Blaschke products B1 and B2 with real
positive zeros {zn}∞n=1 and {wn}∞n=1 such that the distance between zn and wn tends
to zero sufficiently fast depending on the given function ϕ. The faster the ϕ(r)
grows as r → 1−, the faster the points zn and wn must approach to each other when
n →∞. The property (1) for the quotient fϕ := B1/B2 is then established by normal
family arguments. The density of zeros is not essential for the construction, so B1

and B2 can be chosen such that their zero-sequences {zn}∞n=1 and {wn}∞n=1 are both
separated. In fact, it is shown that B1 and B2 can be chosen such that they both
belong to the Möbius invariant Qp-space for all p > 0. For 0 < p < ∞, the Qp-space
[6] consists of those analytic functions f in D for which

‖f‖2
Qp

:= sup
a∈D

∫

D

|f ′(z)|2
(

log

∣∣∣∣
1− az

a− z

∣∣∣∣
)p

dA(z) < ∞.

Since the zeros of B1 and B2 are real and positive, the functions fi(z) := (1−z)2Bi(z),
i = 1, 2, satisfy supz∈D |f ′i(z)| ≤ C for some positive constant C. Therefore f1 and
f2 both belong to the classical Besov space Bp for all 1 < p < ∞. Recall that the
Besov space Bp consists of those analytic functions f in D for which∫

D

|f ′(z)|p(1− |z|2)p−2 dA(z) < ∞.

This observation for p = 2 shows that there are Dirichlet quotients which are not
just non-normal as Yamashita [7] showed, but whose spherical derivatives exceed the
pregiven increasing function ϕ in growth. In particular, for any α > 1, there are
non-α-normal Dirichlet and Blaschke quotients.

The rest of this note is devoted to the proof of Theorem 1.

2. Proof of Theorem 1

The first step in the proof is the following lemma.

Lemma 2. Let ϕ : [0, 1) → (0,∞) be an increasing function. Then there exists
an increasing twice differentiable function Φ: (0, 1) → (0,∞) such that 1/Φ is convex
and limr→1− ϕ(r)/Φ(r) = 0.

Proof. Let ϕ : [0, 1) → (0,∞) be increasing. Consider the functions

ψ(r) :=
1

ϕ(r)
, ψ1(r) := r

∫ 1

r

ψ(s)

s2
ds and ψ2(r) := r

∫ 1

r

ψ1(s)

s2
ds,

and define Φ := 1/ψ2. Then ψ′1(r) ≤ −ψ(r), ψ′2(r) ≤ −ψ1(r) and ψ′′2(r) = −ψ′1(r)/r.
Therefore Φ: (0, 1) → (0,∞) is increasing and twice differentiable such that 1/Φ is
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convex. Moreover,

ϕ(r)

Φ(r)
=

ψ2(r)

ψ1(r)

ψ1(r)

ψ(r)
=

r

ψ1(r)

∫ 1

r

ψ1(s)

s2
ds

r

ψ(r)

∫ 1

r

ψ(s)

s2
ds

≤
(

r

∫ 1

r

ds

s2

)2

= (1− r)2 → 0, r → 1−,

as desired. ¤
By Lemma 2 we may assume that ϕ : [0, 1) → (0,∞) is differentiable and increas-

ing such that 1/ϕ is convex. Without loss of generality, we may also assume that
limr→1− ϕ(r)(1− r) = ∞. For such a ϕ, let N ϕ denote the set of those meromorphic
functions f in D for which

f#(z) = O(ϕ(|z|)), |z| → 1−.

The second step in the proof of Theorem 1 is the following characterization of func-
tions in N ϕ in terms of normal families. For analogous results for normal and
α-normal functions, see [4] and [3, 5].

Lemma 3. Let f be a meromorphic function in D, and let ϕ : [0, 1) → (0,∞) be
a differentiable increasing function such that 1/ϕ convex and limr→1− ϕ(r)(1− r) =
∞. Then f ∈ N ϕ if and only if the family {f(zn + z/ϕ(|zn|)) : n ∈ N} is normal
in C for any sequence {zn}∞n=1 of points in D such that limn→∞ |zn| = 1.

Proof. Let first f ∈ N ϕ and let {zn}∞n=1 be a sequence of points in D such that
limn→∞ |zn| = 1. Let z ∈ D(0, r) := {w : |w| ≤ r}, and define φa(z) := a + z/ϕ(|a|)
for a ∈ D. Since f ∈ N ϕ and limr→1− ϕ(r)(1 − r) = ∞, there exists a positive
constant C and an Nr ∈ N such that

(f ◦ φzn)#(z) = f#(φzn(z)) (ϕ(|zn|))−1 ≤ Cϕ(|φzn(z)|) (ϕ(|zn|))−1

for all n ≥ Nr and z ∈ D(0, r). Denote ψ := 1/ϕ so that ψ : (0, 1) → (0,∞) is
differentiable, decreasing and convex by the assumptions. Then

lim
n→∞

sup
|z|≤r

ϕ(|φzn(z)|) (ϕ(|zn|))−1 ≤ lim
n→∞

ψ(|zn|)
ψ(|zn|+ rψ(|zn|))

≤ lim
n→∞

1

1 + ψ′(|zn|)r = 1,

and it follows that (f ◦ φzn)#(z) is uniformly bounded in D(0, r) for all n ≥ Nr.
Therefore Marty’s theorem implies that the family {f ◦ φzn : n ∈ N} is normal in C.

Assume now that {f ◦ φzn} is normal for any sequence {zn}∞n=1 of points in D
such that limn→∞ |zn| = 1. Assume on the contrary to the assertion that f 6∈ N ϕ.
Then there exists a sequence {wn}∞n=1 of points in D such that limn→∞ |wn| = 1 and

f#(wn)

ϕ(|wn|) →∞, n →∞.

By Marty’s theorem there exists a positive constant C such that

f#(wn)

ϕ(|wn|) = (f ◦ φwn)#(0) ≤ C

for all n ∈ N. This is clearly a contradiction, and so f ∈ N ϕ. ¤
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To prove Theorem 1, let the sequences {zn}∞n=1 and {wn}∞n=1 be defined by zn :=
1− 2−n and wn := zn + exp(−ϕ(1− 2−n)). Then

∞∑
n=1

(1− |wn|) ≤
∞∑

n=1

(1− |zn|) =
∞∑

n=1

2−n = 1,

so the Blaschke products B1 and B2 associated with the sequences {zn}∞n=1 and
{wn}∞n=1 converge. Since

lim
n→∞

1− |wn|
1− |wn+1| = 2 > 1 and

1− |zn|
1− |zn+1| = 2 > 1

for all n ∈ N, the sequences {1− |zn|}∞n=1 and {1− |wn|}∞n=1 are not asymptotically
concentrated, and therefore B1 and B2 both belong to

⋂
p>0 Qp by [1, Theorem 1].

Define fi(z) := (1 − z)2Bi(z) for i = 1, 2. Then |f ′i(z)| is uniformly bounded in D
for i = 1, 2, and therefore f1 and f2 both are bounded analytic functions and belong
to

⋂
p>1 Bp. Consider the quotient f := f1/f2 = B1/B2. By Lemma 3 it suffices

to show that the family {f ◦ φzn : n ∈ N} is not normal in a neighborhood of the
origin. Consider the sequence {Zn}∞n=1 defined by Zn := (wn − zn)ϕ(|zn|). Clearly,
|Zn| = exp(−ϕ(1 − 2−n))ϕ(1 − 2−n) → 0, as n → ∞, so, for a given 0 < r < 1,
there exists an Nr ∈ N such that the points Zn belong to D(0, r) for all n ≥ Nr.
Now B1(zn) = 0 for all n ∈ N, and therefore (f ◦ φzn)(0) = f(zn) = 0 for all n ∈ N.
On the other hand, B2(wn) = 0, and therefore (f ◦ φzn)(Zn) = ∞ for all n ∈ N. It
follows that {f ◦ φzn : n ∈ N} is not normal in any neighborhood of the origin, and
thus f 6∈ N ϕ by Lemma 3. Therefore

lim sup
|z|→1−

f#(z)

ϕ(|z|) = ∞,

and we are done.
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