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Abstract. Suppose that φ = u − v, where u and v are subharmonic in the plane, with u
nonconstant. Suppose also that limr→∞(log (B(r, u) + B(r, v)) / log r ≤ λ, for some λ satisfying
0 < λ < 1/2, and that the deficiency δ of φ satisfies 0 ≤ 1 − δ < cos πλ. Given σ satisfying
λ < σ < 1/2 and 0 ≤ 1− δ < cosπσ, we have

A(r, φ)/B(r, φ) > κ = κ(σ, δ) :=
cos πσ − (1− δ)

1− (1− δ) cos πσ

for all r in a set of upper logarithmic density at least 1 − λ/σ. Here A(r, φ) = inf |z|=r φ(z) and
B(r, φ) = sup|z|=r φ(z).

1. Introduction

This note concerns δ-subharmonic functions φ and the relationship between
A(r, φ) and B(r, φ), where

A(r, φ) = inf
|z|=r

φ(z), B(r, φ) = sup
|z|=r

φ(z).

If φ = u − v, where u and v are subharmonic in the plane, the deficiency of φ is
defined to be δ := 1 − limr→∞ N(r, v)/T (r, φ), where T (r, φ) = N(r, φ+) + N(r, v).
Here

N(r, v) =
1

2π

∫ 2π

0

v(reiθ) dθ − v(0),

and N(r, u) and N(r, φ+) are defined similarly. Let µ(E, u) be the Riesz measure
of u for any Borel set E, and define µ∗(t, u) := µ({z : |z| ≤ t}, u), with a similar
definition for v. We will prove:

Theorem 1. Suppose that u and v are subharmonic in the plane, with u non-
constant, and that, for some λ satisfying 0 < λ < 1/2,

(1) lim
r→∞

log (B(r, u) + B(r, v))

log r
≤ λ.

Let φ = u − v and suppose that the deficiency δ of φ satisfies 0 ≤ 1 − δ < cos πλ.
Given σ satisfying λ < σ < 1/2 and 0 ≤ 1− δ < cos πσ, we have

(2)
A(r, φ)

B(r, φ)
> κ = κ(σ, δ) :=

cos πσ − (1− δ)

1− (1− δ) cos πσ

for all r in a set of upper logarithmic density at least 1− λ/σ.
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The upper (or lower) logarithmic density of a set S ⊆ (0,∞) is the upper (or
lower) limit as r → ∞ of (log r)−1

∫
S∩(1,r)

t−1 dt. It is known that (2) holds in a set
of lower logarithmic density at least 1 − λ/σ if the lower limit in (1) is replaced by
the upper limit [4, Theorem 1.1].

We remark that if v ≡ 0 in Theorem 1 (implying δ = 1), then the result was
obtained by Barry [1] as an extension of the classical cos πλ theorem for subharmonic
functions. (In fact his result holds for 0 < λ < 1.) Original estimates in Barry’s paper
involve ∫ ∞

0

A(t, u)− cos πσB(t, u)

tσ+1
dt.

Progressing from these estimates to estimates of the integrand naturally introduces
exceptional sets. Hayman [6] subsequently constructed a subharmonic function u0 of
order λ, 0 < λ < 1, such that, for given σ with λ < σ < 1,

(3)
A(r, u0)

B(r, u0)
≤ cos πσ

for all r in a set with upper (and lower) logarithmic density equal to λ/σ. This
established that the size of the exceptional set in Barry’s result is sharp. Similarly,
by setting φ(z) = u0(z) − (1 − δ)u0(−z), we see that (2) also fails on E and so the
size of the exceptional set is sharp in Theorem 1 as well.

These examples raise the question as to whether we can find classes of functions
with no exceptional sets. In the proof of Theorem 2, we will show that the structure
of our exceptional set in Theorem 1 is directly related to the behaviour of the Riesz
measures of u and v. It will follow that if, for all large values of t, µ∗(t, u) and µ∗(t, v)
are continuous functions of t of the form

(4) µ∗(t, u) = ε1(t)t
λ, µ∗(t, v) = ε2(t)t

λ,

where εi(t) ↓ 0 as t →∞ for i = 1, 2, then there exists a positive number R such that
(2) holds for all r > R. Effectively then, there is no exceptional set. As far as we are
aware, this is the first time such an observation has been made about a general class
of functions.

We will suppose that u and v are modified so as to be harmonic in |z| < 1, which
does not affect the generality of our results. If u has order less than one, then [5,
p. 311]

u(z) = u(0) +

∫

|ζ|<∞
log |1− z/ζ| dµ(ζ, u)

and, with

u∗(z) := u(0) +

∫ ∞

0

log |1 + z/t| dµ∗(t, u),

we have

(5) u∗(−r) ≤ A(r, u) ≤ B(r, u) ≤ u∗(r), 0 ≤ r < ∞.

Theorem 1 is a consequence of the following result, which adapts a technique of
Beurling [2, p. 762] to situations in which something is known about lower rather
than upper growth.
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Theorem 2. Suppose that 0 < ν < 1, that u is a nonconstant subharmonic
function in the plane and that

(6) lim
r→∞

B(r, u)/rν = 0.

(i) There are sequences εn ↓ 0 and Rn ↑ ∞ such that

(7) B(8Rn, u) < εnR
ν
n, N(4Rn, u) < εnRν

n and µ∗(4Rn, u) < εnR
ν
n

for all n.
(ii) Given C ≥ 1 and n ∈ N, define

(8) Un(z) = Un(z, ν) := u(0)+

∫ 4Rn

0

log |1+ z/t| dµ∗(t, u)+8CεnRν
n log |1+ z/(4Rn)|.

For any α satisfying

(9) α ≥ αn := 5Cν−1εn,

let

(10) aα,n := max{N(r, u)− αrν : r ∈ [0, Rn]},
and let rα,n be any point in [0, Rn] at which

(11) aα,n = N(rα,n, u)− αrν
α,n.

Then aα,n ≥ 0,

(12) A(rα,n, u) > Un(−rα,n) > πν(cot πν)N(rα,n, u) + (1− πν cot πν)aα,n

and

(13) B(rα,n, u) < Un(rα,n) < πν(csc πν)N(rα,n, u) + (1− πν csc πν)aα,n.

Further, for any α0 > 0, the part of the set

(14) T = T (α0) :=
∞⋃

n=1

{rα,n : α0 ≥ α ≥ 5εn/ν}

contained in [1,∞) has infinite logarithmic measure. If u has lower order λ, where
0 ≤ λ < ν, then T has upper logarithmic density at least 1 − λ/ν. It is always
possible to choose α0 in such a way that aα,n →∞ as rα,n →∞ in T .

The following theorem is a lower order analogue of Theorem 3 in [3]. The constant
(cos πλ− k)/(1− k cos πλ) is sharp; see the remark following Theorem 3 in [3].

Theorem 3. Suppose that u and v are subharmonic in the plane, with u non-
constant, and that, for some λ satisfying 0 < λ < 1/2,

lim
r→∞

B(r, u) + B(r, v)

rλ
= 0

and
N(r, v) ≤ kN(r, u) + O(1) as r →∞,

for some k such that 0 ≤ k ≤ cos πλ. Let φ(z) = u(z) − v(z). Then, with rα,n as
defined in (11),

(15) A(rα,n, φ) ≥ cos πλ− k

1− k cos πλ
B(rα,n, φ) + brα,n ,

where brα,n →∞ as rα,n →∞.
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2. Proof of Theorem 2

Concerning the sequences εn and Rn, choose εn arbitrarily, with εn ↓ 0, and Rn

such that B(8R1, u) ≥ −u(0), N(R1, u) > 0, Rn ↑ ∞, and B(8Rn, u) < 1
2
εnR

ν
n log 2

for all n, which is possible from (6) and the fact that u is conconstant (so that
B(r, u) → ∞ and N(r, u) → ∞ as r → ∞). The first part of (7) is satisfied and,
from Jensen’s theorem,

N(4Rn, u) ≤ N(8Rn, u) ≤ −u(0) + B(8Rn, u) ≤ 2B(8Rn, u),

so the second part is satisfied also. For the third part,

µ∗(4Rn, u) log 2 ≤
∫ 8Rn

4Rn

µ∗(t, u) dt/t ≤ N(8Rn, u).

Notice that, since u is harmonic in |z| < 1, we have N(r, u) = 0 for 0 ≤ r ≤ 1,
and thus R1 > 1.

According to a result of Kjellberg [7, formulas (6), (8) and (18)], (see also [1,
pp. 180–83]), if

u1(z) = u1(z,Rn) := u(0) +

∫

|ζ|<4Rn

log |1− z/ζ| dµ(ζ, u),

then

(16) |u(z)− u1(z)| ≤ |z|R−1
n B(8Rn, u)

for |z| ≤ Rn. Write

u2(z) = u2(z, Rn) := u(0) +

∫ 4Rn

0

log |1 + z/t| dµ∗(t, u),

so that for all r ≥ 0,

(17) u2(−r) ≤ A(r, u1) ≤ B(r, u1) ≤ u2(r),

from (5) (or by direct computation). Since B(8Rn, u) < εnRν
n, we deduce from (16)

and (17) that, for |z| ≤ Rn,

u(z) > u1(z)− |z|R−1
n B(8Rn, u) > u2(−|z|)− εn|z|Rν−1

n

and therefore

(18) A(r, u) > u2(−r)− εnrR
ν−1
n , 0 ≤ r ≤ Rn.

Similarly

(19) B(r, u) < u2(r) + εnrRν−1
n , 0 ≤ r ≤ Rn.

With (8) in view, we have, for 0 ≤ r ≤ Rn,

Un(−r) = u2(−r) + 8CεnRν
n log(1− r/(4Rn))

≤ u2(−r)− 2CεnrR
ν−1
n < A(r, u),

(20)
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from (18), and
Un(r) = u2(r) + 8CεnRν

n log(1 + r/(4Rn))

≥ u2(r) + 2CεnrR
ν−1
n /

(
1 + r/(4Rn)

) ≥ u2(r) + CεnrRν−1
n > B(r, u),

(21)

from (19).
Now,

(22) N(r, Un) = N(r, u2) = N(r, u1) = N(r, u), 0 ≤ r ≤ 4Rn,

since µ∗(r, ·) is the same for each function for 0 ≤ r ≤ 4Rn, and therefore

(23) N(r, Un) ≤ N(4Rn, Un) = N(4Rn, u) < εnRν
n < αnR

ν
n ≤ αnrν

for Rn ≤ r ≤ 4Rn, using (7) and (9). Also, since the third term on the right hand
side of (8) arises from a point mass 8CεnR

ν
n at −4Rn, we have, for r ≥ 4Rn,

N(r, Un) = N(4Rn, Un) +

∫ r

4Rn

µ∗(t, Un)

t
dt

= N(4Rn, u) +
(
µ∗(4Rn, u) + 8CεnRν

n

)
log

(
r/(4Rn)

)

< N(4Rn, u) + 9CεnR
ν
n log

(
r/(4Rn)

)
,

(24)

using (7). The largest value of x−ν log x is (eν)−1, at x = e1/ν , and therefore

Rν
n log

(
r/(4Rn)

)
= 4−νrν (r/(4Rn))−ν log

(
r/(4Rn)

)
< (eν)−1rν .

From this, (7) and (24) we have, for r ≥ 4Rn,

(25) N(r, Un) < (1 + 9C(eν)−1)εnr
ν < (1 + 4Cν−1)εnrν < 5Cν−1εnr

ν ≤ αnrν ,

using (9).
Suppose now that α satisfies (9). From (10) and (11), N(rα,n, u) − αrν

αn
≥

N(0, u) = 0, while from (23) and (25), N(r, Un) − αrν < 0 for Rn ≤ r < ∞. We
deduce that

aα,n = N(rα,n, u)− αrν
α,n = N(rα,n, Un)− αrν

α,n

= max{N(r, Un)− αrν : r ∈ [0,∞)},(26)

using (22). From (26), it follows [2, p. 764] that
Un(−rα,n) > πν(cot πν)N(rα,n, Un) + (1− πν cot πν)aα,n

= πν(cot πν)N(rα,n, u) + (1− πν cot πν)aα,n

(27)

and

(28) Un(rα,n) < πν(csc πν)N(rα,n, u) + (1− πν csc πν)aα,n,

which, combined with (20) and (21) at r = rα,n, give (12) and (13).
It remains to prove the conclusions about T . Fix a positive integer n and consider,

for that n, Un given by (8). Changing notation somewhat, for any α > 0, let tα be a
point at which

max{N(t, Un)− αtν : t ∈ [0,∞)}
is attained. Following the argument of [4, pp. 247–248], the points tα increase as
α decreases, and occupy all points of [0,∞) apart from exceptional intervals of the
form (t−α , t+α ), where (recalling that there may be several values of tα) t−α and t+α
are the smallest and largest among the possible values of tα. Further, for all α,
µ∗(t−α , Un) = αν(t−α )ν , and µ∗(t+α , Un) = αν(t+α )ν . As we have shown (cf. (26)), if
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α ≥ αn = 5Cεn/ν then tα ≤ Rn, so that µ∗(tα, Un) = µ∗(tα, u). Returning to our
earlier notation, we have tα = rα,n, so that

(29) µ∗(r−α,n, u) = αν(r−α,n)ν and µ∗(r+
α,n, u) = αν(r+

α,n)ν .

Thus the set {rα,n : α0 ≥ α ≥ αn} consists of all points in (r−α0,n, r+
αn,n) outside an

exceptional set of intervals of total logarithmic measure
∑

α0≥α≥αn

ν−1 log
(
µ∗(r+

α,n, u)/µ∗(r−α,n, u)
) ≤ ν−1 log(µ∗(r+

αn,n, u)/µ∗(r−α0,n, u))

= log(r+
αn,n/r

−
α0,n) + ν−1 log(αn/α0),

(30)

using (29). Evidently, since T increases as α0 increases, we may assume without loss
of generality that α0 is sufficiently small that α0 < N(R1, u)R−ν

1 . In that case aα,n > 0
for all n and all α satisfying α0 ≥ α ≥ αn, and, since N(t, u) − α0t

ν = −α0t
ν ≤ 0

for 0 ≤ t ≤ 1, we have rα0,n > 1 for all n. Thus the logarithmic measure of the
exceptional points in [1, r+

αn,n] is at most log r+
αn,n +ν−1 log(αn/α0), and consequently

the logarithmic measure of the part of T in [1, r+
αn,n] is at least ν−1 log(α0/αn) →∞

as n →∞.
Suppose that u has lower order λ, where 0 ≤ λ < ν, and that ν1 satisfies λ < ν1 <

ν. There is a sequence of positive numbers Rn ↑ ∞ such that B(8R1, u) ≥ −u(0),
N(R1, u) > 0 and

(31) B(8Rn, u) < Rν1
n , N(4Rn, u) < Rν1

n and µ∗(4Rn, u) < Rν1
n ,

for all n, as we have shown. Thus we have (7), with εn = Rν1−ν
n , and (12) and (13)

hold.
From (29) and (30), again assuming as we may that α0 < N(R1, u)R−λ

1 , the set
{rα,n : α0 ≥ α ≥ αn} contains all points in [1, r+

αn,n] outside an exceptional set of
logarithmic measure at most ν−1 log µ∗(r+

αn,n, u)− ν−1 log(α0ν). Now, from (29), (9)
and the fact that r+

αn,n ≤ Rn,

µ∗(r+
αn,n, u) = αnν(r+

αn,n)ν = 5CRν1−ν
n (r+

αn,n)ν ≤ 5C(r+
αn,n)ν1 ,

and therefore the logarithmic measure of the part of T in [1, r+
αn,n] is at least (1 −

ν1/ν) log r+
αn,n − ν−1 log(5C/(α0ν)). Since r+

αn,n →∞ as n →∞, the upper logarith-
mic density of T is thus at least 1− ν1/ν, for any ν1 satisfying λ < ν1 < ν, and so is
at least 1− λ/ν.

Concerning a choice of α0 that ensures that aα,n →∞ as rα,n →∞ in T , suppose
that it is possible to find sequences α(j) and nj, with 1 ≥ α(j) ≥ 5ν−1εnj

, such that
rα(j),nj

→ ∞, while aα(j),nj
= O(1) as j → ∞. Write γj := aα(j),nj

and γ := sup γj,
so that 0 ≤ γ < ∞. From the definition of aα(j),nj

, we have

(32) N(t, u) ≤ α(j)tν + γj, 0 ≤ t ≤ Rnj
,

with equality at t = rα(j),nj
. Write α′ := limj→∞ α(j), so that 0 ≤ α′ ≤ 1, and

suppose that α′ = 0. In that case, α(j) → 0 on a subsequence, and since Rnj
≥

rα(j),nj
→∞ as j →∞, we conclude from (32) that N(t, u) ≤ γ, a contradiction, since

u is nonconstant and of order less than 1. So α′ > 0 and, from (32), N(t, u) ≤ α′tν+γ,
for t ≥ 0. Thus, since N(rα(j),nj

, u) = α(j)rν
α(j),nj

+ γj ≥ α(j)rν
α(j),nj

, we have

(33) lim
t→∞

N(t, u)/tν = α′.
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It follows that if 0 < α0 < α′ then aα,n → ∞ as rα,n → ∞ in T . For otherwise,
repeating the above argument, we would obtain 0 ≤ limt→∞ N(t, u)/tν = α′′, for
some α′′ with 0 < α′′ ≤ α0. This completes the proof of Theorem 2.

3. Proofs of Theorems 1 and 3

The argument conflates the proofs of Theorems 1 and 3 in [3]. To prove Theo-
rem 1, given ν satisfying λ < ν < σ (so that 1 − δ < cos πν), choose ∆ such that
0 < ∆ < δ, 1−∆ < cos πν and

(34) K := κ(ν, ∆) > κ(σ, δ).

This is possible, and in addition ∆ can be chosen so that ∆ → δ as ν → σ. Following
[2, p. 394], we may assume that u(z) ≥ v(z) for all z and that limr→∞ N(r, v)/N(r, u)
≤ 1− δ. Thus, for some positive constant c,

(35) N(r, v) ≤ (1−∆)N(r, u) + c, r ≥ 0.

(In what follows, we use c to denote a positive constant that depends only on u,
v and the parameters of Theorem 1, not necessarily the same at each occurrence.)
From (1), limr→∞(B(r, u) + B(r, v))/rν = 0. We may thus find sequences εn ↓ 0 and
Rn ↑ ∞ such that the inequalities (7), with εn/2 instead of εn, hold for both u and
v, and define Un by (8) with C = 9(1 − ∆)−1/8, and Vn by (8) with C = 1 (and v
replacing u). Let

w(z) := u(z) + Kv(z),

where K is given by (34). Then w is subharmonic, since K > 0, and the inequalities
(7) hold for w also, since K < 1. Also, if Wn is defined by (8), with C = 9(1 −
∆)−1/8 + K and w instead of u, then

(36) Wn(z) = Un(z) + KVn(z).

Write ψn(z) = Un(z)− Vn(−z). For 0 ≤ r ≤ Rn, we have

A(r, φ) ≥ A(r, u)−B(r, v) > Un(−r)− Vn(r) = ψn(−r)

and
B(r, φ) ≤ B(r, u)− A(r, v) < Un(r)− Vn(−r) = ψn(r),

from (20) and (21), so that, for 0 ≤ r ≤ Rn,
A(r, φ)−KB(r, φ) > ψn(−r)−Kψn(r)

= Wn(−r)−KWn(r)− (1−K2)Vn(r).
(37)

Also, integrating twice by parts,

(38) Vn(r) = v(0) +

∫ ∞

0

log |1 + r/t| dµ∗(t, Vn) = v(0) +

∫ ∞

0

N(t, Vn)
r

(t + r)2
dt,

and further

N(t, Vn) = N(t, v) ≤ (1−∆)N(t, u) + c = (1−∆)N(t, Un) + c, 0 ≤ t ≤ 4Rn,

using (35), while for t ≥ 4Rn, using (35) again and also (7),

N(t, Vn) = N(4Rn, v) + (µ∗(4Rn, v) + 8εnR
ν
n) log(t/(4Rn))

≤ (1−∆)N(4Rn, u) + 9εnR
ν
n log(t/(4Rn)) + c

≤ (1−∆)N(4Rn, u) + (1−∆)
[
µ∗(4Rn, u) +
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+ 8(9(1−∆)−1/8)εnRν
n] log(t/(4Rn)) + c = (1−∆)N(t, Un) + c.

Thus, from (38) and a similar expression for Un(r), Vn(r) ≤ (1 − ∆)Un(r) + c. It
follows from (36) that, for all r,

Wn(r) ≥ ((1−∆)−1 + K)Vn(r)− c.

From (37) then,

A(r, φ)−KB(r, φ) > Wn(−r)− K + 1−∆

1 + (1−∆)K
Wn(r)− c

= Wn(−r)− cos πνWn(r)− c,

(39)

for 0 ≤ r ≤ Rn. We apply Theorem 2 (ii) to w, with C = 9(1−∆)−1/8 + K and α0

chosen so that aα,n →∞ as rα,n →∞. From (12) and (13),
Wn(−rα,n) > πν(cot πν)N(rα,n, w) + (1− πν cot πν)aα,n,(40)

Wn(rα,n) < πν(csc πν)N(rα,n, w) + (1− πν csc πν)aα,n.(41)

Recalling that rα,n ≤ Rn, and substituting these inequalities into (39), we obtain
(42) A(rα,n, φ)−KB(rα,n, φ) > (1− cos πν)aα,n − c > 0

for all large rα,n. Thus A(r, φ)/B(r, φ) > K > κ(σ, δ), from (34), for all r in a set
of upper logarithmic density at least 1 − λ/ν. Since we may take ν as close to σ as
we please, we conclude that (2) holds in a set of upper logarithmic density at least
1− λ/σ, which completes the proof of Theorem 1.

To prove that (2) holds for all sufficiently large r under the assumption (4),
note that the exceptional set E where (2) fails comes from the exceptional set for
w = u + Kv. By (4), µ∗(t, w) = ε(t)tλ is continuous for all large t, and ε(t) ↓ 0 as
t → ∞. Thus, if α is sufficiently small and t ∈ (R,∞) for some positive number
R, then, provided R is sufficiently large, the equation µ∗(t, w) = ανtν has precisely
one solution. By the argument surrounding (29), we have r−α,n = r+

α,n for all such α
and all large enough n. Thus, since the exceptional set is contained in the intervals
(r−α,n, r

+
α,n), E ∩ (R,∞) = ∅ for sufficiently large R.

The proof of Theorem 3 is almost identical to that of Theorem 1. One needs to
set ν = λ in Theorem 2, make use of (14) and set k = 1−∆ in (35).
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