
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 353–378

REDUCED MODULUS WITH FREE
BOUNDARY AND ITS APPLICATIONS

Dmitry Karp and Elena Prilepkina

Far Eastern Branch of Russian Academy of Sciences, Institute of Applied Mathematics
7 Radio Street, Vladivostok, 690041, Russia; dmkrp@yandex.ru

Far Eastern Branch of Russian Academy of Sciences, Institute of Applied Mathematics
7 Radio Street, Vladivostok, 690041, Russia; pril-elena@yandex.ru

Abstract. We derive an asymptotic formula for the modulus (= reciprocal of capacity) of
generalized condenser whose field is an arbitrary multiply-connected domain on the complex sphere
and whose plates degenerate into a finite number of inner and/or boundary points of the field.
We call the constant term in this asymptotic formula the reduced modulus with free boundary.
Our modulus generalizes several previously introduced concepts. The asymptotic formula is given
in terms of a generalized version of the classical Neumann function. This generalized Neumann
function is introduced in the paper and its properties are studied. The usefulness of the new
modulus is illustrated by two applications: a two-point distortion theorem for univalent functions
defined in annulus and preserving the unit circle and an inequality for the quadratic form in the
difference of the Neumann and Robin functions.

1. Introduction

The idea of the reduced modulus of a domain in the extended complex plane C is
rooted in the works of Grötszch and Teichmüller. The classical definition deals with
the condenser whose one plate is the complement of the domain of interest while the
other plate is a small disk centered at an inner point of this domain. The constant
term in the asymptotic expansion for the reciprocal of this condenser’s capacity
(called the modulus) as the radius of the disk goes to zero gives the classical reduced
modulus of the domain. This notion found important applications in the geometric
theory of functions of a complex variable [1, 19, 20, 24, 29, 30]. If the center of
the disk lies at the point at infinity the reduced modulus is expressed in terms of
logarithmic capacity of the domain’s complement (see [21, formula (15), page 253] or
[30, formula 2.6, page 18]). This fact is sometimes referred to as Pfluger’s theorem.

The notion was further extended by Kuzmina [22], Emel’yanov [15] and Solynin
[28] who introduced the reduced moduli of digons and triangles using the concept
of extremal length. Soon thereafter Dubinin [3] proposed the idea that the notion
may be extended to n-gons and suggested how this idea may be realized. In a series
of papers Dubinin and his students fulfilled this program and computed generalized
reduced moduli based on generalized condensers having more than two plates. When
one plate is the complement of the domain of interest as before while a finite number
of other plates collapse into inner points of the domain we obtain a generalized
reduced modulus whose value can be expressed in terms of the Green function of the
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domain [4, Theorem 1]. When one plate is a fixed closed subset of the boundary
of the domain of interest while all other plates degenerate into a finite number of
inner and/or boundary points (of course distinct from the first plate) the reduced
modulus can be expressed in terms of the Robin function (see [5, Theorem 7], or [8,
Theorem 2.5]). The Robin capacity (see [13, 14]) is a special case of this construction.
A formula for the reduced modulus of the entire complex sphere was derived in [10,
Theorem 1]. Another version of the reduced modulus was earlier introduced by
Mityuk in [25].

The applications of the reduced moduli are numerous including distortion theo-
rems for univalent functions in both simply and multiply connected domains [2, 4, 7,
8, 19, 27, 30], coefficient inequalities [7, 8], extremal partition problems [4, 7, 8, 15,
16, 24], polynomial inequalities [7, 8, 9, 10], variational principles for conformal map-
pings [11] and other similar problems for analytic functions. See detailed account in
the survey articles by Kuzmina [24], Solynin [29], Dubinin–Karp [8] and in Vasil’ev’s
book [30].

In the present paper we consider yet another version of the reduced modulus
which complements naturally the variations considered previously. Namely, our re-
duced modulus is defined as the constant term in the asymptotic expansion for the
modulus of the generalized condenser all whose plates degenerate into points. Quite
expectedly the Neumann function comes into play as the main ingredient in the ex-
pression for this reduced modulus derived in this paper. We call our modulus the
reduced modulus with free boundary emphasizing that the values of admissible func-
tions on the boundary of the domain of interest are not prescribed unlike the previous
definitions (see precise statements below). The idea to consider this type of modulus
was expressed in [5], where it was also suggested that the Neumann function will
play a role in such construction. It turned out that the classical Neumann function
is insufficient to compute the modulus when some of the plates lie on the domain’s
boundary. We address this issue in the first part of the paper where the classical
definition of the Neumann function is extended in two directions.

Particular cases of the reduced modulus introduced here do occur in the literature.
Most notably, the reduced modulus of digon mentioned above represents a special
case of our construction here. For simply connected domains Dubinin and Eyrikh
found a formula for the reduced modulus with free boundary in terms of the Riemann
mapping in [6, Theorem 4]. We present an alternative derivation of their formula
from our main theorem in section 7. Emel’yanov obtained an inequality for the
weighted sum of the reduced moduli of digons in [16]. Applications of and recent
developments around the reduced moduli of digons and triangles can be found in
[2, 27, 30].

The paper is organized as follows. The definitions of generalized condenser,
its capacity and the reduced modulus with free boundary together with a technical
lemma are collected in section 2. Sections 3 and 4 are concerned with the extensions of
the standard definition of the Neumann function suited for our needs here. Sections
5 and 6 present the derivation of the formula for the reduced modulus with free
boundary for analytic Jordan domains and general domains, respectively. In section
7 we deduce a few explicit formulas for some canonical domains. Finally, section 8
is devoted to applications. They are: a two-point distortion theorem for univalent
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functions defined in an annulus and preserving the unit circle and an inequality for
the quadratic form in the difference of the Neumann and Robin functions.

2. Definitions

Suppose G is a finitely-connected domain in the extended complex plane Cz. Let
G denote its compactification by Carathéodory’s prime ends and let the boundary
∂G be the collection of prime ends. A neighbourhood is any open set in G. When
this cannot lead to confusion we will make no distinction between the elements of
G corresponding to the inner points of G and these points. We will also use single
notation for the support of an accessible boundary point and the boundary point
itself. If G is a Jordan domain, G and ∂G defined above agree with usual closure
and boundary.

Definition 1. Generalized condenser is the triple C = (G,E , ∆), where E =
{Ek}n

k=1 is a collection of closed in G pairwise disjoint sets, n ≥ 2, and ∆ = {δk}n
k=1

is a collection of reals containing at least two distinct numbers.

The sets Ek will be called the plates of the condenser C, while G\⋃ Ek is called
its field.

Definition 2. Capacity of C denoted by cap C is the infimum of the Dirichlet
integral

I(v, G) :=

∫∫

G

|∇v|2 dx dy, z = x + iy,

taken over all admissible functions v : G → R, i.e., real-valued functions continuous
in G, satisfying the Lipschitz condition in a neighbourhood of every finite point of
G possibly excluding a finite number of such points and assuming the value δk in a
neighbourhood of the plate Ek, k = 1, . . . , n.

Let f be the univalent conformal mapping of G onto a Jordan domain D whose
boundary ∂D consists of a finite number of analytic Jordan curves (for brevity such
domains will be called analytic Jordan domains).

Definition 3. A point z0 ∈ G is called admissible if z0 ∈ G or z0 ∈ ∂G is
accessible and for some 0 < βG(z0) ≤ 2

(1) f(z)− f(z0) =

{
(z − z0)

βD(z0)/βG(z0)(c(z0) + o(1)) as z → z0 6= ∞,

(1/z)βD(z0)/βG(z0)(c(z0) + o(1)) as z →∞,

where c(z0) 6= 0 and

βD(z0) =

{
2, f(z0) ∈ D,

1, f(z0) ∈ ∂D.

Here we assumed that f(z0) 6= ∞ which does not entail any loss of generality.
Clearly, (1) holds true for z0 ∈ G by Taylor expansion with βG(z0) = 2, c(z0) = f ′(z0),
so all inner points of G are admissible. If z0 ∈ ∂G is an accessible boundary point,
(1) holds true for analytic corners (i.e., intersections of analytic boundary arcs) with
πβG(z0) being the angle at such corner by Lewy–Lehman theorem [26, Theorem 3.8].
In fact, even weaker conditions suffice for (1) to hold—see details in [26].
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Given a finite z0 ∈ Cz and r > 0 denote by D(z0, r) the closed disk of radius r
centered at z0. For the point at infinity set D(∞, r) := {z : |z| ≥ 1/r}.

Definition 4. A parametric family of closed sets {D̃(z0, r)}0<r<r0 will be said
to comprise almost disks if

D(z0, r1(r)) ⊂ D̃(z0, r) ⊂ D(z0, r2(r)), 0 < r < r0,

for some positive functions r1(r), r2(r) such that limr↓0[ri(r)/r] = 1, i = 1, 2.

For a given domain G ⊂ Cz and a point z0 ∈ G introduce the notation E(z0, r, G)
= D̃(z0, r) with small enough r to get the inclusion D̃(z0, r) ⊂ G; if z0 is an acces-
sible boundary point of G, E(z0, r, G) will mean the closure in G of the connected
component of G ∩ D̃(z0, r) in which z0 is accessible. We will abbreviate E(z0, r, G)
to E(z0, r) when the underlying domain G is apparent.

Suppose, m ≥ 2, Z = {zk}m
k=1 is a collection of distinct admissible points of G

and ∆ = {δk}m
k=1 is a collection of reals containing at least two different numbers.

For a sufficiently small r > 0 define the condenser

(2) C(r; G,Z, ∆, Ψ) = (G; {E(z1, ψ1(r)), E(z2, ψ2(r)), . . . , E(zm, ψm(r))}, ∆),

where
Ψ = {ψk(r)}m

k=1, ψk(r) = µkr
νk , µk, νk > 0, k = 1, . . . , m.

Definition 5. The reduced modulus of the domain G with free boundary with
respect to the collections Z, ∆ and Ψ is defined by

(3) M(G,Z, ∆, Ψ) = lim
r↓0

(
|C(r; G, Z, ∆, Ψ)|+ ν

π
log r

)
,

if the limit in (3) exists. Here

(4) |C(r; G, Z, ∆, Ψ)| = (cap C(r; G,Z, ∆, Ψ))−1, ν =

(
m∑

k=1

δ2
kβG(zk)

νk

)−1

.

Denote

C∗(r; G,Z, ∆, Ψ)

= (G; {〈D(z1, ψ1(r)) ∩G〉, 〈D(z2, ψ2(r)) ∩G〉, . . . , 〈D(zm, ψm(r)) ∩G〉}, ∆),

where 〈D(zk, ψk(r))∩G〉 is the closure in G of the connected component of D(zk, ψk(r))∩
G in which zk is accessible. For inner points zk ∈ G, 〈D(zk, ψk(r))∩G〉 simply equals
D(zk, ψk(r)) ∩G.

Lemma 1. If

(5) lim
r↓0

(
|C∗(r; G,Z, ∆, Ψ)|+ ν

π
log r

)

exists then limit (3) also exists and they are equal. Conversely, if limit (3) exists for
some choice of almost disks then limit (5) also exists and they are equal.

Proof. Repeats word for word the proof of the similar lemma in [4, Lemma 1]. ¤
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3. Generalized Neumann function

Let G denote an analytic Jordan domain in Cz and ϕ(z) be any continuous real
function on ∂G such that

(6)
∫

∂G

ϕ(z)|dz| = −π.

Define the generalized Neumann function NG,ϕ(z, ζ), z ∈ G, ζ ∈ G, of G associated
with boundary values ϕ(z) with pole at ζ by the following requirements:

1) NG,ϕ(z, ζ) is harmonic in G\{ζ} and differentiable in G\{ζ} as a function of
z.

2) NG,ϕ(z, ζ)+ 1
β

log |z−ζ| is harmonic a in neighbourhood of ζ 6= ∞ or NG,ϕ(z, ζ)−
1
β

log |z| is harmonic in the neighbourhood of ζ = ∞, where

β =

{
2, ζ ∈ G,

1, ζ ∈ ∂G.

3) The (outer) normal derivative satisfies

∂NG,ϕ(z, ζ)

∂n
= ϕ(z)

for all z ∈ ∂G possibly except z = ζ.
In what follows we will use NG(z, ζ) as the generic notation for any of the func-

tions satisfying 1) – 3) for some ϕ.

Lemma 2. The set of generalized Neumann functions of an analytic Jordan
domain G coincides with the set of functions of the form

(7) NG(z, ζ) + h(z) + c(ζ),

where NG(z, ζ) is any fixed generalized Neumann function, h(z) is harmonic in G
and has continuous normal derivative on ∂G and c(ζ) is any function of ζ.

Proof. Clearly, any function of the form (7) falls under the definition of the
generalized Neumann function. Conversely, let NG,ψ(z, ζ) and NG,ϕ(z, ζ) be two
generalized Neumann functions. Then the function u(z, ζ) = NG,ψ(z, ζ)−NG,ϕ(z, ζ)
is harmonic in G and has continuous values of the normal derivative at the boundary
∂u/∂n = ψ(z) − ϕ(z). Hence, it is a solution of the Neumann problem with the
boundary function ψ(z)− ϕ(z) and thus can be written as [18, page 264]:

u(z, ζ) = h(z) + c(ζ). ¤

Lemma 3. For any analytic Jordan domain G and any given continuous function
ϕ on ∂G satisfying (6) the generalized Neumann function NG,ϕ(z, ζ) exists.

Proof. Note first that by Lemma 2 it suffices to prove the lemma for some contin-
uous boundary function ψ, then by adding the solution of the Neumann problem with
normal derivative ϕ−ψ on the boundary we obtain the required function NG,ϕ(z, ζ).

Suppose first that G is simply-connected. Then a generalized Neumann function
is given explicitly by

(8) NG(z, ζ) = −1

2
log |f(z)− f(ζ)||1− f(z)f(ζ)|,
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where f is the Riemann mapping. Properties 1) – 3) can be verified directly taking
account of the fact that expansion (1) is valid for every ζ ∈ G.

For a multiply-connected domain G denote by Ki, i = 1, 2, . . . , n, the connected
components of Cz\G. Without loss of generality we may assume that either ζ ∈ G
or ζ ∈ ∂K1. Since the domain Cz\K1 is simply connected we can construct its
generalized Neumann function by (8). Denote by γi(s, ζ), i = 1 . . . , n, the normal
derivative of NCz\K1

on ∂Ki. By definition γ1(s) is independent of ζ, and
∫

∂Ki

γi(s, ζ) ds = 0, i = 2, . . . , n,

∫

∂K1

γ1(s)ds = −π,

since NCz\K1
is harmonic in Ki, i = 2 . . . , n. Consider the following Neumann prob-

lem: find a function u harmonic in G whose normal derivative satisfies
∂u

∂n
(s) = −γi(s, ζ), s ∈ ∂Ki, i = 2, . . . , n,

∂u

∂n
(s) = 0, s ∈ ∂K1,

This problem always has a solution and for NG = NCz\K1
+ u we will have

∫

∂G

∂NG(z, ζ)

∂n
ds = −π,

i.e., we have built the generalized Neumann function for ψ(z) = 0, z ∈ ∂Ki, i =
2, . . . , n, ψ(z) = γ1(z) for z ∈ ∂K1. ¤

For an arbitrary finitely connected domain G without degenerate boundary com-
ponents define the generalized Neumann function by the formula

NG(z, ζ) := Nf(G)(f(z), f(ζ)),

where f is the univalent conformal mapping of G onto an analytic Jordan domain
f(G). For an admissible point ζ this definition implies the expansion

NG(z, ζ) = − 1

βG

log |z − ζ|+ N(ζ) + o(1), z → ζ, ζ 6= ∞,(9)

NG(z,∞) =
1

βG

log |z|+ N(∞) + o(1), z →∞, ζ = ∞,(10)

where βG is taken from expansion (1).
The generalized Neumann functions gives the same boundary representation for-

mula as the classical one allowing to recover a harmonic function from the boundary
values of its normal derivative. It is also symmetric in its two variables under addi-
tional normalization condition∫

∂G

NG,ϕ(z, ζ)ϕ(z)|dz| = const

and unique for any chosen value of the constant. An advantage of the generalized
Neumann function over its classical counterpart is that its conformal transplantation
leads to the generalized Neumann function of the transformed domain. Unlike the
classical Neumann function it is defined for unbounded as well as for bounded do-
mains. The arbitrariness in choosing ϕ leads to additional freedom when computing
the generalized Neumann function for specific domains.
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4. Bipolar Neumann function

In what follows we will need a version of the Neumann function whose normal
derivative vanishes on the boundary. Condition (6) prohibits such behavior for the
generalized Neumann function and one has to consider a function with two poles
instead of one. For an analytic Jordan domain G and two different points z∗ and z0

from G, vG(z, z0|z∗) will be called the bipolar Neumann function normalized at z∗ if
1) vG(z, z0|z∗) is continuous in G \ {z0, z∗} and harmonic in G \ {z0, z∗},
2) in the neighborhoods of z0 and z∗

vG(z, z0|z∗) =

{
−β−1

0 log |z − z0|+ R(z0) + o(1), z → z0, z0 6= ∞,

β−1
0 log |z|+ R(z0) + o(1), z → z0, z0 = ∞,

(11)

vG(z, z0|z∗) =

{
β−1
∗ log |z − z∗|+ o(1), z → z∗, z∗ 6= ∞,

−β−1
∗ log |z|+ o(1), z → z∗, z∗ = ∞.

(12)

Here β0 and β∗ equal 2 for inner points of G and 1 for boundary points as before.
3) on the boundary of G

∂vG(z, z0|z∗)
∂nz

= 0, z ∈ ∂G\{z0, z∗}.

Requirements 1) – 3) define the unique function v(z, z0|z∗). This function can be
built by taking the difference of generalized Neumann functions:

(13) vG(z, z0|z∗) = NG,ϕ(z, z0)−NG,ϕ(z, z∗) + N(z∗)−NG,ϕ(z∗, z0),

where the constant N(z∗) is taken from (9) or by taking a difference of bipolar
Neumann functions with one common pole:

(14) vG(z, z0|z1) = vG(z, z0|z∗)− vG(z, z1|z∗) + R(z1)− vG(z1, z0|z∗).

The bipolar Neumann function with z∗ = ∞ was used in [13], where it was shown
that it plays the same role for the Robin capacity logarithm plays for the logarithmic
capacity. Standard computations (see, for instance, [18, formula (15.6-8)]) show that
vG(z, z0|z∗) is symmetric in first two variables:

vG(z1, z2|z∗) = vG(z2, z1|z∗),

including the case when any of the points z1, z2, z∗ belong to ∂G.
For a general multiply connected domain G and admissible points z0, z∗ we can

define the bipolar Neumann function by conformal transplantation:

(15) vG(z, z0|z∗) := vf(G)(f(z), f(z0)|f(z∗))− 1

β∗
log |c∗|,

where f is the univalent conformal mapping of G onto an analytic Jordan domain
and c∗ = c(z∗) is the constant from expansion (1).
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5. Computation of the reduced modulus for analytic Jordan domains

To formulate our main theorem we will need the following constants (k, l =
2, . . . ,m):

(16) Rk,l =





vG(zk, zl|z1) if k 6= l,

lim
z→zk

[vG(z, zk|z1) + β−1
k log |z − zk|] if k = l and zk 6= ∞,

lim
z→zk

[vG(z, zk|z1)− β−1
k log |z|] if k = l and zk = ∞.

Theorem 1. Suppose G is a finitely connected analytic Jordan domain and the
collections Z, ∆, Ψ are as defined above. Then the reduced modulus (3) exists if

(17)
m∑

l=1

δlβl

νl

= 0

and is found from the formula

(18) M = −ν2

π

(
m∑

k=1

βkδ
2
k log µk

ν2
k

−
m∑

k,l=2

βkβlδkδlRk,l

νkνl

)
,

where ν is defined by (4). If condition (17) is violated the modulus is infinite.

Proof. Most of the proof follows the line of argument from [10, Theorem 1].
Without loss of generality we may assume that z1 = 0. Introduce the notation

vk(z) = vG(z, zk|z1).

First we make
assumption 1: δl 6= 0, l = 1, 2, ..., m.

Later we will get rid of this assumption. Consider the function

(19) gr(z) = −
m∑

l=2

δlβl

log ψl(r)
vl(z)−

m∑

k,l=2

δlβlβkRk,l

log ψl(r) log ψk(r)
vk(z)

defined in G. It is clearly harmonic in G\Z and

∂gr(z)

∂nz

= 0, z ∈ ∂G\Z.

Fix n ≥ 2. We can rearrange the definition of gr(z) to get:

gr(z) =
vn(z)

− log ψn(r)

(
δnβn +

m∑

l=2

βlδlβnRn,l

log ψl(r)

)

−
m∑

l=2
l 6=n

βlδlvl(z)

log ψl(r)
−

m∑

k,l=2
k 6=n

δlβlβkRk,lvk(z)

log ψl(r) log ψk(r)
.

(20)

This representation shows that gr(z) has the same sign as δn in some neighborhood
of zn for sufficiently small r. Indeed, − log ψn(r) > 0 for sufficiently small r and all
quantities under summations cannot affect the sign of gr(z). Since gr(z) → 0 as r ↓ 0
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for each z ∈ G\Z, then in a neighbourhood of zn there are points z(r) satisfying
gr(z) = δn. For such points we obtain from (20) and the definition of vn(z):

δn = δn
log |z(r)− zn|

log ψn(r)
+ O

(
1

log r

)
, r ↓ 0,

or
log |z(r)− zn|

log ψn(r)
= 1 + O

(
1

log r

)
, r ↓ 0,

which implies z(r) → zn as r ↓ 0. Substituting the last relation into (20) and taking
account of vl(z) = Rn,l + o(1) as z → zn we get

δn =

[
log |z − zn|
βn log ψn(r)

− Rn,n

log ψn(r)
+ o

(
1

log r

)]

δnβn +

δnβ
2
nRn,n

log ψn(r)
+

m∑

l=2
l 6=n

δlβlβnRn,l

log ψl(r)




−
m∑

l=2
l 6=n

δlβlRn,l

log ψl(r)
+ o

(
1

log r

)
= δn

log |z − zn|
log ψn(r)

+
δnβnRn,n

log ψn(r)

(
1 + O

(
1

log r

))

+
1

βn

m∑

l=2
l 6=n

δlβlβnRn,l

log ψl(r)

(
1 + O

(
1

log r

))
− δnβnRn,n

log ψn(r)
−

m∑

l=2
l 6=n

δlβlRn,l

log ψl(r)
+ o

(
1

log r

)

= δn
log |z − zn|
log ψn(r)

+ o

(
1

log r

)
.

This equality yields after rearrangement:

log |z(r)− zn| − log ψn(r) = o(1) ⇒ |z(r)− zn| ∼ ψn(r), r ↓ 0.

The last asymptotic formula implies that the parametric family of sets

(21) E(zn, ψn(r)) = {z : gr(z)/δn ≥ 1}, n = 2, . . . , m,

comprises almost disks as r ↓ 0.
Now we want to prove that the same conclusion is true in a neighborhood of

z1 = 0. In contrast with n ≥ 2 all functions vk(z) have a pole at z1. According to
(12) and (19) we have as z → 0:

(22) gr(z) =
log |z|

β1

(
−

m∑

l=2

δlβl

log ψl(r)
−

m∑

k,l=2

δlβlβkRk,l

log ψl(r) log ψk(r)

)
+ oz(1) Or

(
1

log r

)
,

where the subscripts in oz and Or are intended to emphasize the underlying asymp-
totic variable. Clearly,

(23)
1

log ψk(r)
=

1

νk log r

(
1− log µk

νk log r
+ O

(
[log r]−2

))
, r ↓ 0.
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Hence, we have the following expansion for the expression in parentheses in (22):

−
m∑

l=2

δlβl

log ψl(r)
−

m∑

k,l=2

δlβlβkRk,l

log ψl(r) log ψk(r)

= − 1

log r

m∑

l=2

δlβl

νl

[
1− log µl

νl log r
+ O

(
[log r]−2

)]

− 1

(log r)2

m∑

k,l=2

δlβlβkRk,l

νlνk

(
1 + O

(
[log r]−1

))

=
1

log r

[
−

m∑

l=2

δlβl

νl

+
m∑

l=2

δlβl log µl

ν2
l log r

− 1

log r

m∑

k,l=2

δlβlβkRk,l

νlνk

+ O
(
[log r]−2

)
]

.

Now we make

(24) assumption 2:
m∑

l=1

βlδl log µl

ν2
l

=
m∑

k,l=2

βlβkδlRk,l

νkνl

.

Later we will get rid of this assumption. Under (24) and in view of (17) the expression
in brackets becomes

δ1β1

ν1

(
1− log µ1

ν1 log r

)
+ O

(
[log r]−2

)
=

δ1β1 log r

log ψ1(r)
+ O

(
[log r]−2

)
.

Thus

gr(z) =
δ1 log |z|
log ψ1(r)

(
1 + Or

(
[log r]−2

))
+ oz(1) Or

(
1

log r

)
.

This formula shows that solutions z(r) of gr(z) = δ1 do exist and z(r) → 0 as r ↓ 0.
Then repeating the argument given for the neighborhoods of zn, n ≥ 2, we conclude
that the family of sets

(25) E(z1, ψ1(r)) = {z : gr(z)/δ1 ≥ 1}
comprises almost disks as r ↓ 0.

According to the extended Dirichlet principle [17] the function gr(z) coincides
with the potential function of the condenser C(r; G,Z, ∆, Ψ) defined by (2) in the
field of this condenser. Hence, by an application of the second and the first Green’s
formulas we have

cap C(r; G,Z, ∆, Ψ) =

∫∫

G\∪m
k=1E(zk,ψk)

|∇gr(z)|2 dx dy = −
m∑

k=1

∫

∂E(zk,ψk)

δk
∂gr

∂n
ds

= −
m∑

k=1

δk

∫

∂D(zk,ρ)∩G

∂gr

∂n
ds = −

m∑

k=2

δk

∫

∂D(zk,ρ)∩G

∂gr

∂n
ds− δ1

∫

∂D(z1,ρ)∩G

∂gr

∂n
ds,

(26)

where ρ > 0 is sufficiently small. From (11) and (19) we have in a neighbourhood of
z = zk, k = 2, . . . , m:

gr(z) =
log |z − zk|

βk

(
δkβk

log ψk(r)
+

m∑

l=2

δlβlβkRk,l

log ψk(r) log ψl(r)

)
+ H(z),
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where H(z) is harmonic in a neighbourhood of zk. Consequently,
∫

∂D(zk,ρ)∩G

∂gr

∂n
ds =

(
δkβk

log ψk(r)
+

m∑

l=2

δlβlβkRk,l

log ψk(r) log ψl(r)

)
1

βk

∫

∂D(zk,ρ)∩G

∂log |z − zk|
∂n

ds

+

∫

∂D(zk,ρ)∩G

∂H

∂n
ds = π

(
βkδk

log ψk(r)
+

m∑

l=2

δlβlβkRk,l

log ψk(r) log ψl(r)

)
+ o(1)

as ρ → 0, since by definition of βk

1

βk

∫

∂D(zk,ρ)∩G

∂log |z − zk|
∂n

ds =
1

βk

∫

∂D(zk,ρ)∩G

∂log ρ

∂ρ
ρ dθ = π + o(1) as ρ → 0

and ∫

∂D(zk,ρ)∩G

∂H

∂n
ds = ρ

∫

∂D(zk,ρ)∩G

∂H

∂n
dθ = O(ρ) as ρ → 0.

In a neighbourhood of z1 = 0 we have by (12) and (19):

gr(z) = − log |z|
β1

(
m∑

l=2

δlβl

log ψl(r)
+

m∑

k,l=2

δlβlβkRk,l

log ψl(r) log ψk(r)

)
+ H1(z),

where H1(z) is harmonic. Acting as before we get
∫

∂D(z1,ρ)∩G

∂gr

∂n
ds = −π

(
m∑

l=2

δlβl

log ψl(r)
+

m∑

k,l=2

δlβlβkRk,l

log ψl(r) log ψk(r)

)
+ o(1) as ρ → 0.

Substitution of these formulas into (26) yields:

1

π
cap C(r; G,Z, ∆, Ψ) = −

m∑

k=2

βkδ
2
k

log ψk(r)
−

m∑

k,l=2

δkδlβlβkRk,l

log ψk(r) log ψl(r)

+
m∑

l=2

δ1δlβl

log ψl(r)
+

m∑

k,l=2

δ1δlβlβkRk,l

log ψl(r) log ψk(r)
+ o(1) as ρ → 0.

Since capacity of C(r; G,Z, ∆, Ψ) is independent of ρ we have o(1) = 0 in the last
formula. Using (23) we derive for r ↓ 0:

1

π
cap C(r; G,Z, ∆, Ψ) =

−1

log r

m∑

k=2

δ2
kβk

νk

(
1− log µk

νk log r

)
+

δ1

log r

m∑

l=2

δlβl

νl

(
1− log µl

νl log r

)

−
m∑

k,l=2

δkδlβlβkRk,l

νkνl[log r]2
+

m∑

k,l=2

δ1δlβlβkRk,l

νkνl[log r]2
+ O

(
[log r]−3

)

=
−1

log r

m∑

k=2

δ2
kβk

νk

− δ2
1β1

ν1 log r
+

1

[log r]2

m∑

k=2

δ2
kβk log µk

ν2
k

− δ1

[log r]2

m∑

l=2

δlβl log µl

ν2
l

− 1

[log r]2

m∑

k,l=2

δkδlβlβkRk,l

νkνl

+
δ1

[log r]2

m∑

k,l=2

δlβlβkRk,l

νkνl

+ O
(
[log r]−3

)
,
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where we used (17). An application of (24) gives:

1

π
cap C(r; G,Z, ∆, Ψ) =

−1

log r

m∑

k=1

δ2
kβk

νk

+
1

[log r]2

m∑

k=1

δ2
kβk log µk

ν2
k

− 1

[log r]2

m∑

k,l=2

δkδlβlβkRk,l

νkνl

+ O
(
[log r]−3

)

= − 1

ν log r
+

M1

[log r]2
+ O

(
[log r]−3

)
,

where

M1 =
m∑

k=1

δ2
kβk log µk

ν2
k

−
m∑

k,l=2

δkδlβlβkRk,l

νkνl

, ν =

(
m∑

k=1

δ2
kβk

νk

)−1

.

Taking the reciprocals we get:

π|C(r; G,Z, ∆, Ψ)| = −ν log r

[
1− M1ν

log r
+ O

(
[log r]−2

)]−1

= −ν log r

[
1 +

M1ν

log r
+ O

(
[log r]−2

)]

= −ν log r −M1ν
2 + O

(
[log r]−1

)

or

|C(r; G,Z, ∆, Ψ)|+ ν

π
log r = −ν2

π
M1 + O

(
[log r]−1

)
.

Hence, by definition of the reduced modulus

M = −ν2

π

(
m∑

k=1

δ2
kβk log µk

ν2
k

−
m∑

k,l=2

δkδlβkβlRk,l

νkνl

)
.

This proves the theorem under additional assumptions 1 and 2.
We now remove assumption 1. According to formula (33)

m∑

k,l=2

δkδlβkβlRk,l

νkνl

=
m∑

k,l=1

δkδlβkβlNkl

νkνl

which implies that the left-hand side of this formula is invariant with respect to
renumbering of points zk. Hence we may safely assume that δ1 6= 0. Suppose further
that δl 6= 0, l = 1, . . . , p, and δl = 0, l = p + 1, . . . , m. Denote Z ′ = {z1, . . . , zp},
Ψ′ = {ψ1, . . . , ψp}, ∆′ = {δ1, . . . , δp}. Using these collections we can build the
function gr(z) by (19). It will coincide with the potential function of the condenser

C ′(r) = (G; {E(z1, ψ1(r)), . . . , E(zp, ψp(r)}, ∆′),

inside its field. Here the sets E(zk, ψk(r)), k = 1 . . . , p, are defined by (21) and (25).
Set as before

C(r) = (G; {E(z1, ψ1(r)), . . . , E(zm, ψm(r))}, ∆),

where E(zk, ψk(r)) = D(zk, ψk(r))∩G for k = p+1, . . . ,m. The definition of capacity
implies

cap C ′(r) ≤ cap C(r)
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for all sufficiently small r > 0. The sets E(zk, R) := D(zk, R) ∩ G do not intersect
for sufficiently small R > 0 and we put

Mk(r) = max{|gr(z)| : |z − zk| = R}, k = p + 1, . . . , m.

From (19) we have

Mk(r) = O

(
1

log r

)
, r ↓ 0.

Choose r sufficiently small to have ψk(r) < R for k = p + 1, . . . , m and define the
auxiliary functions

fk(z) = Mk(r)
log(|z − zk|/ψk)

log(R/ψk)

for z in the annuli ψk(r) ≤ |z − zk| ≤ R. The function

hk(z) = max{min{gr(z), fk(z)},−fk(z)}, k = p + 1, . . . , m,

is Lipschitz in Kk(r,R) := G ∩ {ψk(r) ≤ |z − zk| ≤ R} (see, for instance, [10,
Theorem 1]) and hk(z) = gr(z) for |z − zk| = R, since

−fk(z) = −Mk ≤ gr(z) ≤ Mk = fk(z).

For |z − zk| = ψk(r) we have fk(z) = 0 and hence hk(z) = 0 irrespective of the sign
of gr(z). Thus the function

h(z) :=





gr(z), z /∈ [
⋃p

k=1 E(zk, ψk(r))]
⋃

[
⋃m

k=p+1 E(zk, R)],

hk(z), z ∈ Kk(r,R), k ≥ p + 1,

δk, z ∈ E(zk, ψk(r)), k = 1, . . . , m,

defined in G is admissible for the condenser C(r). Then,

cap C ′(r) ≤ cap C(r) ≤
∫∫

G

|∇h|2 dx dy

≤
∫∫

G\
p⋃

l=1
E(zl,ψl(r))

|∇gr|2 dx dy +
m∑

k=p+1

∫∫

Kk(r,R)

|∇fk|2 dx dy

= cap C ′(r) +
m∑

k=p+1

2πMk(r)
2

log(R/ψk(r))
= cap C ′(r) + O

(
[log r]−3

)
, r ↓ 0.

Since
1

π
capC(r; D, Z, ∆, Ψ) = − 1

ν log r
+

M1

[log r]2
+ O

(
[log r]−3

)
,

we conclude that
M(G, Z, ∆, Ψ) = M(G,Z ′, ∆′, Ψ′)

implying that formula (18) can be applied without changes when some of δk are equal
to zero.

It is left to remove assumption 2 (recall that δ1 6= 0). To this end we shall apply
the mapping f(z) = az with positive a. The family of condensers C(r; G,Z, ∆, Ψ)
will transform into the family C(r; G′, Z ′, ∆, Ψ′) with parameters

(27) G′ = aG, Z ′ = {azk}m
k=1, Ψ′ = {µ′krνk}, µ′k = aµk.
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The constants R′
k,l for the new configuration are related to those from the original

one as follows:

(28) R′
k,k = Rk,k +

1

β1

log a +
1

βk

log a, R′
k,l = Rk,l +

1

β1

log a, k 6= l.

Then
m∑

l=1

βlδ
′
l log µ′l
ν ′2l

−
m∑

k,l=2

βlβkδ
′
lR

′
k,l

ν ′lν
′
k

=
m∑

l=1

βlδl(log µl + log a)

ν2
l

−
m∑

k,l=2
k 6=l

βlβkδl(Rk,l + β−1
1 log a)

νlνk

−
m∑

k=2

β2
kδk(Rk,k + β−1

1 log a + β−1
k log a)

ν2
k

=
m∑

l=1

βlδl log µl

ν2
l

−
m∑

k,l=2

βlβkδlRk,l

νlνk

+ log a

(
β1δ1

ν2
1

− 1

β1

m∑

k,l=2

βlβkδl

νlνk

)
.

Using (17) the expression in parentheses becomes

β1δ1

ν2
1

− 1

β1

m∑

k,l=2

βlβkδl

νlνk

=
β1δ1

ν2
1

− 1

β1

m∑

k=2

βk

νk

(
−β1δ1

ν1

)
=

δ1

ν1

m∑

k=1

βk

νk

.

Hence, choosing a equal to

exp





(
m∑

k,l=2

βlβkδlRk,l

νlνk

−
m∑

l=1

βlδl log µl

ν2
l

)(
δ1

ν1

m∑

k=1

βk

νk

)−1




we infer that condition (24) is valid for the new family C(r; G′, Z ′, ∆, Ψ′). It is left
to show that the reduced modulus is invariant under the mapping z′ = az. Indeed,
by (18) and in view of (27) and (28) we get (ν ′ = ν):

− π

ν2
M ′ =

m∑

k=1

βkδ
2
k log aµk

ν2
k

−
m∑

k,l=2
k 6=l

βlβkδlδk(Rk,l + β−1
1 log a)

νkνl

−
m∑

k=2

β2
kδ

2
k(Rk,k + β−1

1 log a + β−1
k log a)

ν2
k

= − π

ν2
M +

m∑

k=1

βkδ
2
k log a

ν2
k

− 1

β1

m∑

k,l=2

βlβkδkδl log a

νkνl

−
m∑

k=2

βkδ
2
k log a

ν2
k

= − π

ν2
M +

β1δ
2
1 log a

ν2
1

− log a

β1

(
m∑

k=2

βkδk

νk

)2

= − π

ν2
M,

where we used (17) in the last equality.
Finally, let us see what happens with the reduced modulus when condition (17)

is violated. In this case we can shift all δk to satisfy (17):

δ̃l = δl − γ, γ =

∑m
l=1(βlδl/νl)∑m
l=1(βl/νl)

, ∆̃ = {δ̃1, . . . , δ̃m},
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and
∑m

l=1(βlδ̃l/νl) = 0. Define

ν̃ =

(
m∑

l=1

βlδ̃
2
l

νl

)−1

.

Direct computation shows that ν̃ > ν. The definition of capacity gives

cap C(r; G,Z, ∆̃, Ψ) = cap C(r; G,Z, ∆, Ψ),

since for every function v admissible for the second condenser, the function v − γ is
admissible for the first and ∇v = ∇(v − γ). By what we have proved so far

|C(r; G,Z, ∆̃, Ψ)|+ ν̃

π
log r = M + o(1), r ↓ 0,

which implies

|C(r; G,Z, ∆, Ψ)|+ ν

π
log r → +∞, r ↓ 0. ¤

6. Computation of the reduced modulus for general domains

Theorem 2. Suppose G ⊂ Cz is a finitely connected domain, Z = {zk}m
k=1

comprises admissible points of G, βk = βG(zk) (βk = 2 for inner points) and the
collections ∆ = {δk}m

k=1, Ψ = {µkr
νk} satisfy (17). Then the reduced modulus (3)

exists and is found from the formula (18), where ν is defined by (4). If condition
(17) is violated the modulus is infinite.

Proof. Let f be the univalent conformal mapping of G onto an analytic Jordan
domain G∗. We will use asterisk to denote quantities associated with the domain G∗.
According to (1) the mapping f in the neighborhood of zk has the form

(29) f(z)− f(zk) = (z − zk)
β∗k/βk(ck + o(1)), z → zk,

for finite zk or

(30) f(z)− f(zk) = (1/z)β∗k/βk(ck + o(1)), z → zk,

if zk = ∞. These expansions and the definition (15) of bipolar Neumann function
for general domains yield

R∗
k,l = Rk,l +

1

β∗1
log |c1|, k 6= l,

R∗
k,k = Rk,k +

1

β∗1
log |c1|+ 1

β∗k
log |ck|,

(31)

where the constants Rk,l are defined in (16). Indeed, by (15) and (16)

Rk,l = vG(zk, zl|z1) = vG∗(f(zk), f(zl)|f(z1))− 1

β∗1
log |c1| = R∗

k,l −
1

β∗1
log |c1|
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for k 6= l. Further, for k = l, zk 6= ∞, we have by (11), (15), (16) and (29):

Rk,k = lim
z→zk

[
vG(z, zk|z1) + β−1

k log |z − zk|
]

= lim
z→zk

[
vG∗(f(z), f(zk)|f(z1))− 1

β∗1
log |c1|+ β−1

k log |z − zk|
]

= lim
z→zk

[
−(β∗k)

−1 log |f(z)− f(zk)|+ R∗
k,k −

1

β∗1
log |c1|+ β−1

k log |z − zk|+ o(1)

]

= lim
z→zk

[−(β∗k)
−1 log |(z − zk)

β∗k/βk(ck + o(1))|+ R∗
k,k

− 1

β∗1
log |c1|+ β−1

k log |z − zk|+ o(1)

]
= R∗

k,k −
1

β∗k
log |ck| − 1

β∗1
log |c1|.

The same relation is obtained for zk = ∞.
The set E(zk, ψk(r); G) is mapped onto the set E(f(zk), ψ

∗
k(r); G

∗) where

ψ∗k(r) = µ
β∗k/βk

k |ck|rνkβ∗k/βk .

Hence, the image C(r; G∗; Z∗, ∆∗, Ψ∗) of the condenser C(r; G; Z, ∆, Ψ) under f con-
sists of the following collections:

Z∗ = {f(zk)}m
k=1, ∆∗ = ∆, Ψ∗ = {µ∗krν∗k}m

k=1,

where µ∗k = µ
β∗k/βk

k |ck|, ν∗k = νkβ
∗
k/βk. A straightforward computation shows that

ν∗ = ν. Conformal invariance of capacity implies

M(G,Z, ∆, Ψ) = lim
r↓0

(
|C(r; G,Z, ∆, Ψ)|+ ν

π
log r

)

= lim
r↓0

(
|C(r; G∗, Z∗, ∆∗, Ψ∗)|+ ν∗

π
log r

)
= M(G∗, Z∗, ∆∗, Ψ∗).

Thus by Theorem 1

− π

ν2
M(G,Z, ∆, Ψ) =

m∑

k=1

β∗kδ
2
k log µ∗k
(ν∗k)

2
−

m∑

k,l=2

β∗kβ
∗
l δkδlR

∗
k,l

ν∗kν
∗
l

=
m∑

k=1

β∗kδ
2
k((β

∗
k/βk) log µk + log |ck|)

(νkβ∗k/βk)2
−

m∑

k,l=2

β∗kβ
∗
l δkδl(Rk,l + 1

β∗1
log |c1|)

νkνlβ∗kβ
∗
l /(βkβl)

−
m∑

k=2

(β∗k)
2δ2

k(
1
β∗k

log |ck|)
ν2

k(β
∗
k)

2/β2
k

=
m∑

k=1

βkδ
2
k log µk

ν2
k

−
m∑

k,l=2

βkβlδkδlRk,l

νkνl

+
log |c1|

β∗1

(
β2

1δ
2
1

ν2
1

−
m∑

k,l=2

βkβlδkδl

νkνl

)
.

The expression in parentheses vanishes due to (17). ¤
Formula (18) is not symmetric in z1, z2, . . . , zm due to a special role played by z1 in

the definition of the bipolar Neumann function normalized at z1. On the other hand
the definition of the reduced modulus (3) is symmetric in all points z1, z2, . . . , zm.
Hence it seems desirable to find a symmetric form of formula (18). This can be
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achieved by employing representations (13) or (14). For the generalized Neumann
function NG defined in section 2 denote

Nkl = NG(zk, zl), k 6= l; Nkk = N(zk),

where the constant N(zk) is taken form expansion (9) or (10). Then according to
(13) and (16):

(32) Rk,l = Nkl −Nk1 −N1l + N11, k, l = 2, . . . , m.

Substituting this relation into (18) and repeatedly using (17) we obtain:

π

ν2
M +

m∑

k=1

βkδ
2
k log µk

ν2
k

=
m∑

k,l=2

βkβlδkδl(Nkl −Nk1 −N1l + N11)

νkνl

=
m∑

k,l=2

βkβlδkδlNkl

νkνl

+
β1δ1

ν1

m∑

k=2

βkδkNk1

νk

+
β1δ1

ν1

m∑

l=2

βlδlN1l

νl

+
β2

1δ
2
1

ν2
1

N11

=
m∑

k,l=1

βkβlδkδlNkl

νkνl

or

(33) M = −ν2

π

(
m∑

k=1

βkδ
2
k log µk

ν2
k

−
m∑

k,l=1

βkβlδkδlNkl

νkνl

)

which is the desired representation.

7. The reduced moduli of some canonical domains

1) Consider the unit disk U = {z : |z| < 1} and a collection of points zk, k =
1, . . . ,m, located either in U or on ∂U . The classical Neumann function of U is given
by (see [18, page 272]):

(34) NU(z, ζ) =
1

2
log

1

|z − ζ||1− zζ| .

This definition extends to the case |ζ| = 1 without changes. Hence, we have

Nkl = −1

2
log |zk − zl||1− zkzl|, k 6= l, Nkk =

{
−1

2
log(1− |zk|2), zk ∈ U,

0, zk ∈ ∂U.

So by (33):

M = −ν2

π

m∑

k=1

βkδ
2
k log µk

ν2
k

− ν2

2π

m∑

k,l=1
k 6=l

βkβlδkδl

νkνl

log |zk − zl||1− zkzl|

− ν2

2π

m∑ ′

k=1

β2
kδ

2
k

ν2
k

log(1− |zk|2),

where the prime at the summation sign here and henceforth means that the infinite
terms are omitted. As before βk = 2 if zk ∈ U and βk = 1 if zk ∈ ∂U .
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2) Consider the upper half-plane Π+ = {z : =z > 0} and a collection of points
zk, k = 1, . . . , m, lying either inside Π+ or on its boundary. The function f(z) =
(z − i)/(z + i) maps Π+ onto U . It follows that

NΠ+(z, ζ) = −1

2
log |f(z)− f(ζ)||1− f(z)f(ζ)|

= −1

2
log |z − ζ||z − ζ|+ log |z + i||ζ + i| − log 2

is the generalized Neumann function of Π+. As shown in section 3 we may omit the
constant and put

NΠ+(z, ζ) = −1

2
log |z − ζ||z − ζ|+ log |z + i||ζ + i|.

Hence, the constants Nkl equal

Nkl = −1

2
log |zk − zl||zk − zl|+ log |zk + i||zl + i|, k 6= l,

Nkk =

{
−1

2
log |zk − zk|+ 2 log |zk + i|, zk ∈ Π+,

2 log |zk + i|, zk ∈ ∂Π+.

(35)

Then by (33) and using (17) we get:

M = −ν2

π




m∑

k=1

βkδ
2
k log µk

ν2
k

+
1

2

m∑

k,l=1
k 6=l

βkβlδkδl

νkνl

log |zk − zl||zk − zl|

+
1

2

m∑ ′

k=1

β2
kδ

2
k

ν2
k

log |zk − zk|
)

,

where βk = 2 if zk ∈ Π+ and βk = 1 if zk ∈ ∂Π+.

3) The reduced modulus of a simply-connected domain. For a finite point z and
an arbitrary point ζ ∈ Cz define d(z, ζ) := |z − ζ| if ζ 6= ∞ and d(z, ζ) := 1/|z|
if ζ = ∞. Let B be a simply connected hyperbolic domain and suppose that Z
is a collection of admissible points while ∆ and Ψ are as above. Denote by f(z)
the univalent conformal mapping of B onto the upper half-plane Π+, wk = f(zk),
W = {wk}, k = 1, 2, ..., m. We assume that for boundary points zk ∈ Z

d(f(z), f(zk)) ∼ ckd(z, zk)
β∗k/βk as z → zk in B,

where βkπ > 0 is the inner angle of B at zk, β∗k = 1. For inner points zk ∈ Z we have
βk = β∗k = 2, ck = |f ′(zk)| as before. For the reduced modulus to be finite we must
assume that condition (17) holds. Put ν∗k = νkβ

∗
k/βk, µ∗k = µ

β∗k/βk

k |ck|, Ψ∗ = µ∗kr
ν∗k .

Similarly to the proof of Theorem 2 we check that

M(B, Z, ∆, Ψ) = M(Π+,W, ∆, Ψ∗).
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Hence,

M(B, Z, ∆, Ψ) = −ν2

π

(
m∑

k=1

βkδ
2
k log µk

ν2
k

+
m∑

k=1

β2
kδ

2
k

ν2
kβ

∗
k

log |ck|

+
1

2

m∑

k,l=1
k 6=l

βkβlδkδl

νkνl

log |wk − wl||wk − wl|

+
1

2

m∑ ′

k=1

β2
kδ

2
k

ν2
k

log |wk − wk|
)

.

(36)

This formula was earlier derived in [6, Theorem 4] using reflection principle and
reduced modulus of the complex sphere.

4) Using formula (36) Dubinin and Eyrikh found in [6, Examples 4.2, 4.3, page
159] explicit expressions for the reduced moduli of triangles and rectangles with
respect to their corners. The reduced modulus of a triangle T is given by

M(T, Z, ∆, Ψ) = − 1

π

(
3∑

k=1

βkδ
2
k/νk

)−2

log
3∏

k=1

(µkβkB(β1, β2))
βkδ2

k/ν2
k ,

where Z = {zk}3
k=1, z1 = 0, z2 = 1, =z3 > 0, T is the triangle with vertices Z and

inner angles βkπ > 0, k = 1, 2, 3. The collections ∆ and Ψ are from the definition of
the reduced modulus and such that condition (17) is satisfied. B(β1, β2) is Euler’s
beta function.

The reduced modulus of the rectangle R (described below) is found from

M(R, Z, ∆, Ψ) = − 2

π

(
4∑

k=1

δ2
k

νk

)−2

log

{
2

δ1δ4
ν1ν4

(
2

λ

) δ2δ3
ν2ν3

(
1

λ
− 1

) δ1δ2
ν1ν2

+
δ3δ4
ν3ν4

·
(

1

λ
+ 1

) δ1δ3
ν1ν3

+
δ2δ4
ν2ν4

4∏

k=1

(µk

√
ck)

(δk/νk)2

}
.

Here the vertices of R are located at the points z1 = K(λ), z2 = K(λ) + iK ′(λ),
z3 = −K(λ)+iK ′(λ), z4 = −K(λ), where K(λ) is the complete elliptic integral of the
first kind, K ′(λ) = K(

√
1− λ2). The constants are defined by c1 = c4 = (1− λ2)/2,

c2 = c3 = (1− λ2)/(2λ).

5) Consider the annulus A = {z : µ < |z| < 1} and a collection of inner points
zk ∈ A, k = 1, . . . , m. We need to compute a generalized Neumann function of A.
Let us begin with the Neumann function of the unit disk (34). It is rotation invariant:

(37) NU(zeiθ, ζeiθ) = NU(z, ζ).

Hence, we may assume ζ = τ ∈ (0, 1) without loss of generality. When ρ < τ we get
by expanding logarithms:

2NU(ρeiα, τ) = − log |ρeiα − τ | − log |1− ρe−iατ |

= log(1/τ) +
∞∑

n=1

ρn(τn + τ−n) cos(αn)/n.
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The normal derivative of this function at the points |z| = µ is given by

(38)
∂NU(ρeiα, τ)

∂ρ
=

1

2

∞∑
n=1

ρn−1 cos(αn)(τn + τ−n)|ρ=µ.

Suppose from here on that τ ∈ (µ, 1). To build a generalized Neumann function of
A we need a harmonic function M(ρeiα, τ) having the following normal derivatives
at the boundary of A:

∂M(ρeiα, τ)

∂ρ
= −∂NU(ρeiα, τ)

∂ρ

for ρ = µ and

∂M(ρeiα, τ)

∂ρ
= 0

for ρ = 1. Then M(z, τ) + NU(z, τ) gives a generalized Neumann function of A.
Direct computation shows that the function

M(ρeiα, τ) = −1

2

∞∑
n=1

µn−1(τn + τ−n)

n(µn−1 − µ−n−1)
(ρn + ρ−n) cos(αn), µ ≤ ρ ≤ 1, 0 ≤ α ≤ 2π,

has the required properties. Hence,

2NA(ρeiα, τ) = − log |ρeiα − τ ||1− ρe−iατ |

+
∞∑

n=1

µ2n(τn + τ−n)

n(1− µ2n)
(ρn + ρ−n) cos(αn).

(39)

When ρ < τ this function can be written as the series

2NA(ρeiα, τ) = log(1/τ)−
∞∑

n=1

cos(αn)(τn + τ−n)

n(µn − µ−n)
[(ρ/µ)n + (ρ/µ)−n].

When ρ > τ the variables ρ and τ swap roles:

2NA(ρeiα, τ) = log(1/ρ)−
∞∑

n=1

cos(αn)(ρn + ρ−n)

n(µn − µ−n)
[(τ/µ)n + (τ/µ)−n].

We can express NA(ρeiα, τ) in terms of Jacobi’s theta function

ϑ1(z; q) = −i

∞∑
n=−∞

(−1)nq(n+1/2)2ei(2n+1)z

= 2
∞∑

n=0

(−1)nq(n+1/2)2 sin(2n + 1)z

= 2q1/4 sin z

∞∏
n=1

(1− q2n)(1− q2ne2iz)(1− q2ne−2iz).
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To this end we compute

∞∑
n=1

q2n(xneiαn + x−ne−iαn)

n(1− q2n)
=

∞∑
n=1

q2n(xneiαn + x−ne−iαn)

n

∞∑

k=0

q2nk

=
∞∑

k=0

∞∑
n=1

(q2k+2)n(xneiαn + x−ne−iαn)

n

= −
∞∑

k=0

log(1− q2k+2xeiα)(1− q2k+2x−1e−iα)

= − log
∞∏

m=1

(1− q2mxeiα)(1− q2mx−1e−iα)

= log
2q1/4 sin

(
α−i log x

2

) ∏∞
k=1(1− q2k)

ϑ1

(
α−i log x

2

) .

Using this formula we obtain after some calculations:

2NA(ρeiα, τ) = log
4µ1/2

∏∞
k=1(1− µ2k)2

∣∣∣sin
(

α−i log(ρτ)
2

)
sin

(
α−i log(ρ/τ)

2

)∣∣∣
∣∣∣ϑ1

(
α−i log(ρτ)

2
; µ

)
ϑ1

(
α−i log(ρ/τ)

2
; µ

)∣∣∣
.

Applying

sin

(−i

2
log(zζ)

)
=

zζ − 1

2i
√

zζ
,

sin

(−i

2
log(z/ζ)

)
=

z − ζ

2i
√

zζ

(40)

we get:

2NA(z, ζ) = log

µ1/2
∞∏

k=1

(1− µ2k)2|(zζ)1/2 − (zζ)−1/2||(z/ζ)1/2 − (z/ζ)−1/2|

|z − ζ||1− zζ|
− log

∣∣ϑ1

(−i log(zζ)/2; µ
)
ϑ1(−i log(z/ζ)/2; µ)

∣∣

= log

µ1/2
∞∏

k=1

(1− µ2k)2

|zζ| − log
∣∣ϑ1

(−i log(zζ)/2; µ
)
ϑ1(−i log(z/ζ)/2; µ)

∣∣ .

The first term here is a sum of harmonic function (in z) and a constant and therefore
it can be omitted by Lemma2. Thus, finally in view of the formula ϑ1(−w) = −ϑ1(w)
we get:

(41) NA(z, ζ) = −1

2
log

∣∣ϑ1

(
i log(zζ)/2; µ

)
ϑ1(i log(z/ζ)/2; µ)

∣∣ .
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Using (40) this formula can be cast into the form

NA(z, ζ) = −1

2
log |z − ζ|+ 1

2
log

∣∣∣∣
zζ

1− zζ

∣∣∣∣

− 1

2
log

∣∣∣∣∣
ϑ1

(
i
2
log(zζ); µ

)
ϑ1

(
i
2
log(z/ζ); µ

)

4 sin
(

i
2
log(zζ)

)
sin

(
i
2
log(z/ζ)

)
∣∣∣∣∣ .

(42)

This yields the following expansion in the neighborhood of z = ζ:

NA(z, ζ) = −1

2
log |z − ζ|+ N(ζ) + o(1), z → ζ,

N(ζ) =
1

2
log

∣∣∣∣
4|ζ|2 sin (i log |ζ|)

(1− |ζ|2)ϑ1(i log |ζ|; µ) ϑ′1(0; µ)

∣∣∣∣ .

Hence, finally the reduced modulus of A with respect to inner points in found from
(33) with

(43) Nkl =

{
−1

2
log |ϑ1(i log(zkzl)/2; µ) ϑ1(i log(zk/zl)/2; µ)| , k 6= l

1
2
log |4|zk|2 sin (i log |zk|) /[(1− |zk|2)ϑ1(i log |zk|; µ) ϑ′1(0; µ)]| , k = l.

8. Applications

The applications below and most other potential applications hinge on some sort
of monotonic behavior of the reduced modulus under certain transformations of the
underlying domain. Two types of such monotonic behavior will be required here.
First, the reduced modulus M(G,Z, ∆, Ψ) is non-increasing under the expansion
of G. Indeed, consider M(G′, Z, Ψ, ∆), where G ⊂ G′ and all boundary points
zk ∈ Z together with their respective angles βkπ > 0 remain fixed and belong to
the boundary of G′. Restriction to G of any function admissible for the condenser
C(r; G′, Z, ∆, Ψ) yields a function admissible for C(r; G, Z, ∆, Ψ). This implies that
the class of admissible functions for C(r; G,Z, ∆, Ψ) in not smaller than that for
C(r; G′, Z, ∆, Ψ) and hence

cap C(r; G,Z, ∆, Ψ) ≤ cap C(r; G′, Z, ∆, Ψ)

⇔ |C(r; G,Z, ∆, Ψ)| ≥ |C(r; G′, Z, ∆, Ψ)|.
In view of the definition (3) of the reduced modulus passing to the limit as r ↓ 0 in
this inequality gives

(44) M(G′, Z, ∆, Ψ) ≤ M(G,Z, ∆, Ψ).

Another type of monotonicity appears when our reduced modulus is compared
with the reduced modulus M(G, Γ, Z, ∆, Ψ) introduced by Dubinin in [5, Theorem 7].
It is defined by the same formula (3) with condenser (2) replaced by the condenser

C(r; Γ; G,Z, ∆, Ψ)

= (G; {Γ, E(z1, ψ1(r)), E(z2, ψ2(r)), . . . , E(zm, ψm(r))}, {0, δ1, . . . , δm}),(45)

where Γ is a closed non-empty subset of ∂G. Now if G ⊂ G′ and G′ ∩ ∂G ⊂ Γ then
mimicking the reasoning above shows that

(46) M(G′, Z, ∆, Ψ) ≥ M(G, Γ, Z, ∆, Ψ).
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Denote by M (R) the class of functions meromorphic and univalent in the ring
K := {z : 1 < |z| < R}, 1 < R < ∞, such that f(K) ⊂ D, where D := {z : |z| > 1}
and f(∂D) = ∂D.

Theorem 3. Let f ∈ M (R) and a, b ∈ K are arbitrary. Then

|f ′(a)f ′(b)|(|f(a)|2 − 1)(|f(b)|2 − 1)

|f(b)− f(a)|2|f(a)f(b)− 1|2

≥ ϑ′1(0; µ)2(1− |a|2)(1− |b|2)|ϑ1(i log |a|; µ) ϑ1(i log |b|; µ) |
16|a|2|b|2| sinh (log |a|) sinh (log |b|) ||ϑ1

(
i log(ab)/2; µ

)
ϑ1(i log(a/b)/2; µ) |2 ,

(47)

where µ = 1/R and ϑ1 is Jacobi’s theta-function.

Proof. Suppose Z = {a, b}, ∆ = {+1,−1}, Ψ = {r, r}, W = {f(a), f(b)}. By a
straightforward computation ν = 1/4 and

M(K,Z, ∆, Ψ) = M(f(K),W, ∆, {r|f ′(a)|, r|f ′(b)|})
= M(f(K),W, ∆, {r, r})− 1

8π
log |f ′(a)f ′(b)|

according to (33). Further by inequality (44):

M(f(K),W, ∆, Ψ) ≥ M(D, W, ∆, Ψ) =
1

4π

2∑

k,l=1

δkδlN
D
lk

=
1

8π

(
− log(|f(a)|2 − 1)(|f(b)|2 − 1) + 2 log |(f(b)− f(a))(f(a)f(b)− 1)|

)

=
1

8π
log

|f(b)− f(a)|2|f(a)f(b)− 1|2
(|f(a)|2 − 1)(|f(b)|2 − 1)

.

According to (33) we have

M(K, Z, ∆, Ψ) =
1

4π
(NK

11 + NK
22 − 2NK

12).

Combining the above inequalities with the last formula we obtain:

2(NK
11 + NK

22 − 2NK
12) + log |f ′(a)f ′(b)| ≥ log

|f(b)− f(a)|2|f(a)f(b)− 1|2
(|f(a)|2 − 1)(|f(b)|2 − 1)

⇒ |f ′(a)f ′(b)|(|f(a)|2 − 1)(|f(b)|2 − 1)

|f(b)− f(a)|2|f(a)f(b)− 1|2 ≥ exp(−2NK
11 − 2NK

22 + 4NK
12).

The constants NK
ij can be computed from formula (43). Indeed, the generalized

Neumann functions of the annuli A and K are equal for µ = 1/R, since, in view of
ϑ1(−w) = −ϑ1(w), we have

NK(z, ζ) = NA(1/z, 1/ζ) = −1

2
log

∣∣ϑ1

(−i log(zζ)/2; µ
)
ϑ1(−i log(z/ζ)/2; µ)

∣∣

= −1

2
log

∣∣ϑ1

(
i log(zζ)/2; µ

)
ϑ1(i log(z/ζ)/2; µ)

∣∣ .

(48)
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Hence, we get by (43):

exp(−2NK
11 − 2NK

22 + 4NK
12)

=
ϑ′1(0; µ)2(1− |a|2)(1− |b|2)|ϑ1(i log |a|; µ) ϑ1(i log |b|; µ) |

16|a|2|b|2| sinh (log |a|) sinh (log |b|) ||ϑ1

(
i log(ab)/2; µ

)
ϑ1(i log(a/b)/2; µ) |2 . ¤

The upper bound for the product |f ′(a)f ′(b)| is given in [8, Theorem 3.2].
Duren and Schiffer showed in [14, p. 194] that for a domain B containing the point

at infinity and bounded by a finite number of smooth Jordan curves, any distinct
points z1, z2, . . ., zk of B and arbitrary real parameters δ1, δ2, . . ., δk the inequality

(49)
n∑

k=1

n∑

l=1

δkδl [gB′(zk, zl)− gB(zk, zl; Γ)] ≤ 0

holds. Here Γ is a non-empty closed subset of ∂B comprising a finite number of non-
degenerate connected components and B′ is the unbounded component of C\Γ. The
functions gB′(z, ζ) and gB(z, ζ; Γ) are Green and Robin functions of their correspond-
ing domains, respectively [14]. For k = l both functions in brackets are infinite but
their difference is to be interpreted as the appropriate limit. Inequality (49) is sharp
if we allow domains with slits along analytic arcs. This inequality is a generalization
of the inequality between Robin and logarithmic capacities. Relation (49) can also
be obtained using the reduced moduli [12, Proposition 1, Section 4].

Here we compare quadratic forms in the Neumann and Robin functions. Suppose
a domain B ⊂ C, ∞ ∈ B is bounded by a finite number of piecewise analytic
curves. Let Γ be a non-empty closed subset of ∂B comprising a finite number of non-
degenerate connected components. Here ∂B is understood as a collection accessible
boundary points of B. Suppose Γ1 = ∂B\Γ and B1 is the unbounded component
of C\Γ̂1 (here Γ̂1 is the collection of the supports of the points of Γ1). Assume in
addition that n ≥ 2 and

∑n
k=1 δk = 0. Then the following sharp inequality is true:

(50)
n∑

k=1

n∑

l=1

δkδl [2NB1(zk, zl)− gB(zk, zl; Γ)] ≥ 0.

To prove this inequality note that B ⊂ B1 and ∂B1 ∩ B ⊂ Γ. Hence we are in
the position to apply (46). Writing formula (33) for M(B1, Z, ∆, Ψ) and [5, formula
(7)] (or [8, formula (2.6)]) for M(B, Γ, Z, ∆, Ψ) we immediately obtain the required
inequality. In both of the above moduli Z = {z1, . . . , zn}, ∆ = {δ1, . . . , δn} and
Ψ = {r, . . . , r}.

The following example shows that (50) is sharp. Take B = {z : |z| > 1} \ Γ,
Γ = [2, 3], z1 = 2 + i, z2 = 2− i, z3 = −2 + i, z4 = −2− i, δ1 = δ3 = 1, δ2 = δ4 = −1.
We have B1 = {z : |z| > 1}. Denote by u the function harmonic in B1 \

⋃4
i=1 D(zi, r),

having ∂u/∂n = 0 on ∂B1 and u = δi on D(zi, r). This function is a solution of mixed
boundary value problem with continuous boundary data and hence it clearly exists
[18, Proposition 15.7b]. By symmetry u = 0 on Γ. Hence according to the extended
Dirichlet principle u is the potential function for both condenser C(r; Γ; B, Z, ∆, Ψ)
defined by (45) and C(r; B1, Z, ∆, Ψ) defined by (2) which implies that

|C(r; Γ; B, Z, ∆, Ψ)| = |C(r; B1, Z, ∆, Ψ)| ⇒ M(B, Γ, Z, ∆, Ψ) = M(B1, Z, ∆, Ψ),

and we have equality in (50).
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