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Abstract. We show that under certain condition, the hyperbolic density and the generalized
Kobayashi density coincide on a hyperbolic plane domain. This coincidence has a variety of results.

1. Introduction and key facts

In [1] and [2], Keen and Lakic defined new densities that generalize the hyperbolic
density for a plane domain. One is a generalization of the standard Kobayashi density
defined by focusing on source and the other is a generalization of Carathéodory
density defined by focusing on target.

We show that if Q has certain property (see Section 2) and X is an arbitrary
hyperbolic plane domain, then the hyperbolic density is equal to the generalized
Kobayashi density on X (As we will see later, in order to define the generalized
Kobayashi density on X, we need a hyperbolic plane domain €2).

In this section, we state the definitions, theorems, and the facts that we use in
this paper. In Section 2, we state and prove our result, first in a special case and
then in the general form. We will have several interesting corollaries.

Definition 1.1. The hyperbolic density on the unit disk A is defined as

1
p(Z) - 1 — ’Z|2’

for z in A. In addition, the hyperbolic distance between two points z and w in A is
defined as

1) plz,w) = in / o(t) |di],

where the infimum is over all paths v in A joining z to w.
Definition 1.2. The hyperbolic density on a hyperbolic domain €2 is defined as
p(t)
Pl =Ty

where p is the hyperbolic density on the unit disk and 7 is a holomorphic covering
map from the unit disk onto Q with 7(¢) = w. In addition, the hyperbolic distance
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between two points z and w in €2 is defined as
) pa(zw) = it [ po(t)at|
v

where the infimum is over all paths v in Q joining z to w.

Theorem 1.1. (Generalized Schwarz—Pick lemma) Let Q and X be two arbitrary
hyperbolic domains and let f: 2 — X be a holomorphic map. Then px (f(2))|f(z)] <
pa(z), for every z in Q and px(f(2), f(w)) < pa(z,w), for every pair z,w in €.

For a proof of Theorem 1.1, see [1], p. 130, or [2]|. If f, in the theorem above, is
a covering map from a hyperbolic domain 2 onto a hyperbolic domain X, then it is
an infinitesimal isometry. That is px(7(2))|7'(2)| = pa(z).

Definition 1.3. Let X be a subdomain of a domain 2. X is called a Lipschitz

or p-Lip subdomain of (2 if the infinitesimal contraction constant, which is defined

as m(X, Q) = sup,cx £ (( )) is strictly less than 1.

It is easy to show that the Lipschitz property is invariant under a conformal
homeomorphism. In other words, if f is a conformal homeomorphism from the hy-
perbolic domain € onto f(2), then X is a Lipschitz subdomain of 2 if and only if
f(X) is a Lipschitz subdomain of f(£).

Definition 1.4. Let €2 be a hyperbolic plane domain and let X be a plane
domain. The generalized Kobayashi density for z in X is defined by

* H ) )!
where pq is the hyperbolic density on 2 and the infimum is over all holomorphic
functions f from €2 to X and all points w in €2 such that f(w) = z.

One can check that for a hyperbolic domain X and for every z in X, px(z) <
k% (2). In the case that  is a covering space of X, then for every z in X we have
px(z) = K% (2).

By using the definition of the generalized Kobayashi density we can deduce that if
21 and s, are two hyperbolic plane domains which are conformally homoeomorphic,
then x5 (2) = K2(2), for every z € X. It is also easy to verify that if a map
f: X — Y is a conformal homeomorphism then it is an infinitesimal isometry with
respect to the Kobayashi density. That is, s(f(2))|f'(2)| = £%(2), for every z in X.

Definition 1.5. A subdomain X is a Kobayashi—Lipschitz or k-Lip subdomain of
Q1 if the Kobayashi contraction constant, which is defined as mx (X, Q) = sup,¢ H;& (é))
is strictly less than 1.

Theorem 1.2. X is a k-Lip subdomain of €} if and only if there exists k < 1
such that for every holomorphic function f: €2 — X and every pair of points z and
w in Q) we have po(f(2), f(w)) < kpa(z,w).

For a proof of Theorem 1.2, see [1|, p. 181. Now, we define the generalized
Carathéodory density.

Definition 1.6. Let X be a hyperbolic plane domain. The generalized Carathéo-
dory density for w in €2 is defined by

¢ (w) = sup px (f(w))| f'(w)],
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where px is the hyperbolic density on X and the supremum is over all the holomorphic
functions f from €2 to X.

One can check that if Q is a hyperbolic domain then ¢$(w) < po(w), for every
w € Q. In the case that 2 is a covering space for X we have ¢ (w) = po(w).

Definition 1.7. A subdomain X is a Carathéodory—Lipschitz or c-Lip subdo-

main of € if the Carathéodory contraction constant, which is defined as me(X,Q2) =
Q
Sup,c x %, is strictly less than 1.
X
Theorem 1.3. X is a c-Lip subdomain of ) if and only if there exists k < 1
such that for every holomorphic function f: () — X and every pair of points z and
w in X we have px(f(z), f(w)) < kpx(z,w).

For a proof of Theorem 1.3, see [1], p. 184.

2. The main theorem

As we mentioned in Section 1, if X is a hyperbolic plane domain then for every
zin X we have py(z) < k%(2). We state a condition on 2, under which, for every
hyperbolic plane domain X and every z in X we have px(2) = k%t(z). First, we state
the theorem in the special case that (2 is a non-Lipschitz subdomain of the unit disk.

Then we state the theorem in the general form.

Theorem 2.1. Suppose {2 is a non-Lipschitz subdomain of the unit disk and X
is any hyperbolic plane domain. Then

px(2) = wx(2),
for every z in X.

Proof. Since px(z) < k%(2), we need only to show that k$t(z) < px(2). As X is
hyperbolic, there is a holomorphic covering

m A — X.
Since 7 is a covering, it is locally an isometry and we have
(3) pa(w) = px(2) - [7'(w)],

where 7(w) = z. By precomposing by a Mobius map we can let w be anywhere in €.
Now, let f be the restriction of 7 to €). Therefore,

m%(z) < pa(w) _ pa(w)

AR
By equation 3, )
/ PAlW
S e
Consequently,
) < 2 e,

Since (2 is a non-Lipschitz subdomain of A, ZZ—E‘:)) can be made as close as we wish to

1 by choosing w properly. Therefore,

Ky (2) < px(2).
This completes the proof. O
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Now, we want to generalize Theorem 2.1 for a large class of domains in the plane.

Definition 2.1. A domain €2 in the complex plane is called quasi-bounded if
the smallest simply connected plane domain containing 2 is a proper subset of the
complex plane C. The smallest simply connected domain containing € is denoted by
Q.

In fact, () is obtained by adding to €2 all the bounded connected components of
C\ Q.

Example. If © is the round annulus {z : < |z| < 1}, then it is quasi-bounded
and Q = A.

Example. If Q = C\ {—1, 1}, then it is not quasi-bounded because the smallest
simply connected domain containing €2 is C.

Theorem 2.2. Suppose (1 is quasi-bounded and is a non-Lipschitz subdomain
of Q). Then for any hyperbolic plane domain X we have
px(2) = wx(2),
for every z in X.

Proof. Since € is quasi-bounded, by the Riemann mapping theorem there is a
conformal homeomorphism f from Q onto A. Since the Lipschitz property is invariant
under a conformal homeomorphism, f(€2) is a non-Lipschitz subdomain of A.

By Theorem 2.1

(4) px(2) = 65V (2),

for every z in X.
As Q and f(Q) are conformally homeomorphic, we have

(5) R (2) = i (2),
for every z in X.
By equations 4 and 5, we conclude that
px(2) = £%(2).
This completes the proof. 0

Example. Let Q = A\{0}. We have pg(z) = m (see [1], p. 135) and

e _ 2zm(L)
pa(z) — 1-22
as |z| — 1. Therefore, () satisfies the conditions of the theorem above and we have
px(2) = K¥(2), for any hyperbolic domain X and any z in X.

Q) = A. In fact, Q is a non-Lipschitz subdomain of €, because

— 1,

~ Corollary 2.1. If X is a subdomain of a hyperbolic domain €2 non-Lipschitz in
Q2 then mk(X, Q) = m(X, Q). In particular, X is a k-Lip subdomain of §) if and only
if it is a p-Lip subdomain of 2.

Proof. By Theorem 2.2 we have
(6) px(2) = Ky (2).

As any domain is a covering for itself we have

(7) Ko = pa-
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So we have,
Q
(8) mk(X, ) = sup ra(2) = sup pa(?) =m(X,Q).
cex Ky (2)  zex px(2)
This completes the proof. O

Corollary 2.2. If X is a subdomain of a hyperbolic domain €2 then mc(X, ) <
m(X, ). In particular, a p-Lip subdoamin of Q) is always a c-Lip subdomain of 2,
and, moreover, if () is non-Lipschitz in Q) then any k-Lip subdomain of €2 is a c-Lip
subdomain of €.

Proof. Since X is a covering for itself we have

(9) cx(2) = px(2).
In addition, as we mentioned in Section 2
(10) ¢ (2) < pal2).

Therefore, we have
e pal2)
11 me(X, Q) = sup —— < su m(X, Q).

This completes the proof. 0

~—

Remark. For an example that X is c-Lip in €2 but not k-Lip, see Example 3 of
Chapter 10 in [1].

Corollary 2.3. Suppose 2 is a non-Lipschitz subdomain of Q. If there is ki < 1
such that for every holomorphic function f: () — X and every pair of points z and
w in Q we have po(f(2), f(w)) < ki1pa(z,w) then there is ko < 1 such that for every
holomorphic function f: 2 — X and every pair of points z and w in X we have

px(f(2), f(w)) < kapx(z, w).
Proof. 1t clearly follows from Theorems 1.2, 1.3 and Corollary 2.2. U
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