
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 319–345

A SEWING PROBLEM IN METRIC SPACES

Peter Haïssinsky

Université de Provence, LATP/CMI
39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France; phaissin@cmi.univ-mrs.fr

Abstract. This note is devoted to the solution of a sewing problem between metric spaces
sharing quasisymmetric copies of a given metric space. It is proved that the sewing yields a well-
defined conformal gauge, and we study properties inherited by the new space. It follows from the
construction that if Y is a closed uniformly perfect subset of a proper metric space X, then, for
any ε > 0, one can find a metric d in the conformal gauge of X so that the Hausdorff dimensions of
both (X, d) and (Y, d) are ε-close to their conformal dimension.

The classical sewing problem, as was explained to me by A. Douady, asks for the
following: given an orientation preserving homeomorphism of the unit circle f : S1 →
S1, do there exist univalent maps F1 : D → Ĉ and F2 : Ĉ \ D → Ĉ which extend
continuously to the closures as homeomorphisms such that F1(D) ∩ F2(Ĉ \D) = ∅,
F1(D) ∪ F2(Ĉ \D) = Ĉ and F1(t) = F2(f(t)) for t ∈ S1?

A standard solution says that if f is quasisymmetric, then such maps exist and
are essentially unique. Actually, a stronger conclusion is established: the maps F1

and F2 are both quasisymmetric. One ingredient of the proof consists in extending
f as a quasiconformal map (Beurling–Ahlfors theorem [7]).

In the context of metric spaces, gluing metric spaces together usually takes place
over isometric subspaces. In this paper, we propose to address the following problem:

Sewing Problem. Let X1, X2 be two metric spaces, and let us consider two
closed subsets Y1 ⊂ X1 and Y2 ⊂ X2, and a homeomorphism f : Y1 → Y2. Does there
exist a metric d̂ on X̂ = X1 ∪X2/(f) such that Id : Xj → X̂ is quasisymmetric and
Id : Xj \ Yj → X̂ is locally quasisimilar for j = 1, 2?

Here, a homeomorphism f : X → Y between metric spaces is quasisymmetric
if there is an increasing homeomorphism η : R+ → R+ such that, for any distinct
points x, y, z, the following 3-point condition holds :

(1)
|f(x)− f(y)|
|f(x)− f(z)| ≤ η

( |x− y|
|x− z|

)
.

Here and in the sequel, | · | stands for the distance between two points of a metric
space.

An embedding f : X → Y between metric spaces is a quasisimilarity if constants
λ > 0 and C ≥ 1 exist such that

(1/C) ≤ |f(x)− f(y)|
λ|x− y| ≤ C
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for all x 6= y ∈ X. Such a map is of course bi-Lipschitz.
A map will be said locally quasisimilar if every point admits a neighborhood on

which the map is a quasisimilarity and the constant C can be chosen independently
from the point.

Conformal maps between general metric spaces do not bear as much significance
as in the plane. The notion of local quasisimilarity is much more natural in this
context. On the one hand, it implies not only a local bi-Lipschitz condition but also
local quasisymmetry (with a uniform distortion function), and, on the other hand,
this propery holds as well for univalent maps by the Koebe distortion theorem.

We observe that it is necessary that f be quasisymmetric for a solution to our
sewing problem to exist. In this paper, we give a positive answer when f is assumed
to be quasisymmetric and when X1 and X2 are proper, and Y1 and Y2 are uniformly
perfect. A metric space X is proper if closed balls (of finite radius) are compact and
is uniformly perfect if X contains at least two points and if there is some constant
λ ∈ (0, 1) such that, for any x ∈ X and any r ≤ diamX, there is some point y ∈ X
such that λ · r ≤ |x− y| ≤ r.

A connected set is always uniformly perfect, so this ensures that these sets are
rather “thick” in the sense that the diameter of a ball can be controlled by its radius.

There are of course many possible metrics which answer the problem. But our
procedure defines a unique conformal gauge which depends only on the gauges of X1

and X2. Given a metric space (X, d), its conformal gauge is the family of all metrics
on X which are quasisymmetric equivalent to d. Thus, our metric space (X̂, d̂) is
well defined up to quasisymmetric homeomorphisms.

Our main result says

Theorem 1. Let X1, X2 be proper metric spaces containing at least two points.
Let us assume that Y1 ⊂ X1, Y2 ⊂ X2 are two closed uniformly perfect subsets such
that there is a quasisymmetric homeomorphism f : Y1 → Y2. We also suppose that
X1 is bounded if Y1 is.

There are a metric d̂ on X̂ = X1 ∪X2/(f) and a constant c > 0 such that
(1) For any (x1, x2) ∈ X1 ×X2, d̂(x1, x2) ≥ c · infy∈Y1{d̂(x1, y) + d̂(f(y), x2)};
(2) Id : Xj → X̂ is quasisymmetric for j = 1, 2, and
(3) Id : Xj \ Yj → X̂ is locally quasisimilar for j = 1, 2.
Furthermore, the conformal gauge of d̂ depends only on the conformal gauges of

X1 and X2.

The pattern of the proof is the same as the original one. It relies on a metric
version of the Beurling–Ahlfors extension theorem of quasisymmetric maps which we
state now.

Theorem 2. Let (X, dX) be a proper metric space containing at least two points
and (Y, dY ) a proper uniformly perfect space. Let us assume that there is a quasisym-
metric embedding f : Y → X. Then there is a metric d̂ on X such that

(1) Id : (X, dX) → (X, d̂) is quasisymmetric;
(2) Id : (X \ f(Y ), dX) → (X \ f(Y ), d̂) is locally quasisimilar;
(3) f : (Y, dY ) → (X, d̂) is bi-Lipschitz onto its image.
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Remark. The proof will show that there is a finite constant C ≥ 1 such that, for
any x ∈ X \ f(Y ), the restriction of Id : (X, dX) → (X, d̂) to BX(x, dist(x, f(Y ))/2)
is C-quasisimilar.

This result can also be interpreted in terms of conformal gauges, which may have
its own interest since their structure remains quite mysterious. For instance, there
are very few known ways to deform a metric in a gauge: a metric d can snow-flaked
[13, Chap. 10], meaning, that we consider dα, for some α > 0 hoping that it still
defines a metric (which is the case if α < 1); if the space carries a doubling measure,
then Semmes has a procedure which deforms the metric within the gauge so that
the measure becomes Ahlfors regular [13, Chap. 14]; if the space is the boundary at
infinity of a hyperbolic group, then one may change the set of generators to define
a new metric [5, § 3]. Thus, Theorem 2 provides another deformation based on
the deformation of a subset. A usually interesting numerical characteristic of the
conformal gauge of a metric space X is its conformal dimension dimc X defined as
the infimum of the Hausdorff dimensions over all the metrics in the conformal gauge
of X. Theorem 2 has the following corollary concerning the conformal dimensions of
pairs Y ⊂ X which might be interesting in its own right:

Corollaire 3. Let X be a proper metric space and Y ⊂ X a closed uniformly
perfect subset of X. Then, for all ε > 0, there exists a metric d̂ in the conformal
gauge of X such that {

dim(X, d̂) ≤ dimc X + ε,

dim(Y, d̂) ≤ dimc Y + ε.

Quasisymmetric maps preserve many properties such as completeness, uniform
perfectness, etc. These notions thus apply to gauges (see [13, Chap. 15] for details).
It also follows from our construction that finer properties are preserved. In particular,
we have the following.

Theorem 4. Let (X1, d1) and (X2, d2) be Q-Loewner and Q-Ahlfors regular
metric spaces for some Q > 1. Assume that Y1 ⊂ X1 and Y2 ⊂ X2 are both
uniformly perfect and porous, and that they are quasisymmetric equivalent. We also
suppose that X1 is bounded if Y1 is. Then the gauge provided by Theorem 1 contains
a Q-Loewner and Q-Ahlfors regular metric.

The notions used in this statement are defined in the first section.
Another point of view from Beurling–Ahlfors theorem has already been studied

on metric spaces: quasisymmetric maps between boundaries at infinity of Gromov
hyperbolic spaces extend as quasi-isometries of the hyperbolic spaces involved (see
[19, 10]).

Conformal deformations of metric measure spaces have been introduced by Bonk,
Heinonen and Koskela in [9] for other purposes (in relation with the Gromov hyper-
bolicity of the quasihyperbolic metric). The basic assumptions are the following: the
space Y is a closed subset of a proper metric space X such that X \Y is uniform. One
then considers a positive continuous function ρ on X \ Y which satisfies a Harnack-
type inequality of the form 1/C ≤ ρ(x)/ρ(x′) ≤ C if |x − x′| ≤ dist(x, Y )/2. Then
one can define a new metric dρ(x, x′) = inf

∫
γ
ρ over all curves γ ⊂ X \ Y joining

x, x′ ∈ X \ Y . The uniformity of X \ Y is a key assumption in the study of the
quasisymmetry of (X, dX)

Id−→ (X, dρ) [9, Chap. 4] and of deformations of Loewner
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spaces [9, Chap. 6]. In our setting, we do have a Harnack-type inequality but not the
uniform assumption of X \ Y , so our method will be quite different.

It is hoped that the results in the present paper will be used to construct in-
teresting examples of conformal dynamical systems on metric spaces. For instance,
if H is a non-elementary quasiconvex subgroup of a hyperbolic group G (see [5] for
definitions and references therein), then its boundary ∂H is uniformly perfect and
quasisymmetric to its limit set Λ(H) in ∂G which is also porous. Furthermore, if H
is a malnormal quasiconvex subgroup of two hyperbolic groups G1 and G2, then the
amalgamated product Ĝ = G1∗H G2 is known to be also hyperbolic, and its boundary
contains quasisymmetric copies of ∂G1 and ∂G2 which intersect over quasisymmetric
copies of ∂H (cf. [6]).

Relationship with the classical sewing problem. Theorems 1 and 4 enable
us to recover the solution to the classical sewing problem in a very indirect and non-
trivial way. Indeed, starting from a quasisymmetric homeomorphism f : S1 → S1,
one obtains by Theorem 1 a metric 2-sphere X̂. This sphere is 2-Loewner and
2-Ahlfors-regular according to Theorem 4. A theorem of Bonk and Kleiner then
implies that there is a quasymmetric homeomorphism ϕ : X̂ → Ĉ [8]. This solves
the quasiconformal sewing problem; the univalent maps are obtained by using the
measurable Riemann mapping theorem. We omit the details.

Outline of the paper. In § 1, we provide the necessary background for the
paper. In § 2, we prove Theorem 2 and Corollary 3. We first define the metric d̂, and
then prove it satisfies the right properties. In § 3, we study the problem of sewing
quasisymmetric maps together for the uniqueness statement of Theorem 1: they are
well-behaved if the sewing has a positive angle, the seam is thick and large enough. In
§ 4, Theorem 1 and Theorem 4 are proved. The ideas used to define the new metrics
are given in the beginning of the sections. The remaining parts consist essentially of
the verifications case by case that the procedure goes through.

Background. Quasiconformal maps in Euclidean space have been extensively
studied. References include [2, 17] in the plane and [22] in space. An abstract theory
of quasiconformal maps in metric spaces has been initiated in the early eighties
motivated from Gehring’s seminal paper [12]. One can consult [20, 23, 14, 15, 4] and
the references therein for its developments. An introduction to analysis in metric
spaces can be found in Heinonen’s monograph [13] to which we will refer for most of
the material used here.

Notation. The non-negative real numbers are denoted by R+; the positive reals
by R∗

+. Throughout the paper, if a, b are positive, we will write a . b or b & a
if there is some universal constant u, independent from a and b, such that a ≤ ub.
Similarly, a ³ b means a . b and a & b. A ball in a space X centered at x of radius
r > 0 will be denoted by B(x, r) or BX(x, r). The diameter of a set E will be written
diamE or diamXE.

Acknowledgements. I would like to thank Sari Rogovin for fruitful comments
on a preliminary version of this manuscript. I am also grateful to the Referee for
the many comments which helped me clarify the exposition and for pointing out the
reference [3].
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1. Preliminaries

1.1. Facts on sets. We provide in this section some (very limited) background
on geometric measure theory. For more information, we refer to [18].

If X is a metric space and α > 0, let us define the α-Hausdorff measure of X as
follows: for any δ > 0, let

Λδ
α(X) = inf

{∑
(diamEj)

α
}

where the infimum and sum are taken over all coverings of X by sets of diameter
at most δ; for δ = ∞, Λ∞α = Hα is called the Hausdorff content in dimension α.
Let Λα(X) = limδ→0 Λδ

α(X) be the Hausdorff measure of X of dimension α. The
Hausdorff dimension dim X of X is then the infimum over α such that Λα(X) = 0.

A metric space X is said to be Ahlfors regular of dimension α > 0 if the Hausdorff
measure in dimension α of a closed ball of radius r ≤ diamX is approximately rα.

A subset Y of a set X is called porous if a constant c > 0 exists such that any ball
of radius r centered in Y contains a ball of radius cr disjoint from Y . This condition
implies in particular, when X is α-Ahlfors regular, that the box dimension of Y is
strictly less than α and that some number θ ∈ (0, 1) exists such that Y ∩B(y, r) can
be covered by at most eαβθβ balls (up to some universal factor) of radius e−βr for
any y ∈ Y and β ≥ 1. To see this, one may use a dyadic decomposition of the space
(which is known to exist in an Ahlfors regular metric space [11]) and count the cubes
of a given size which can intersect the porous subset.

A contrario, a uniformly perfect set cannot have a dimension too small. We have
the following theorem of Järvi and Vuorinen [16, Thm. 4.1].

Theorem 1.1. If X is a proper Q-Ahlfors regular metric space and Y is a closed
uniformly perfect subset of X, then there are constants s ∈ (0, Q) and c > 0 which
depend only on the data above such that for any y ∈ Y and r ≤ diamY ,

Hs(Y ∩B(y, r)) ≥ crs.

The original proof takes place in Rn but is local: the only properties used are its
Ahlfors regularity and the fact that it is proper.

We now introduce a property of metric spaces which is particularly relevant to
study quasiconformal geometry. It has been introduced by Heinonen and Koskela
[14].

Definition. Given Q > 1, a proper, rectifiably arcwise connected metric space
X is a Q-Loewner space if a decreasing homeomorphism ψ : R∗

+ → R∗
+ exists such

that, for any disjoint continua E,F such that dist(E, F ) ≤ t min{diamE, diamF}
then

modQ(Γ(E, F )) ≥ ψ(t),

where modQ denotes the Q-modulus and Γ(E, F ) denotes the set of curves which
join E to F .

Proper Q-Ahlfors regular Q-Loewner spaces carry many interesting properties:
they are for instance quasiconvex (meaning that there is some constant C > 1 such
that any two points x, y can be joined by a curve of length at most C|x− y|).

Furthermore, when X is proper Q-Ahlfors regular and quasiconvex, then the
Q-Loewner property is characterised by the existence of a so-called (1, Q)-Poincaré
inequality for bounded continuous functions (cf. Corollary 5.13 in [14]).
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In the sequel, moduli of curves and Poincaré inequalities won’t be used explicitely,
so they will not be defined here. We refer to [14], [13] and the references therein for
their definition and main properties.

1.2. Facts on maps. We provide some properties of quasisymmetric maps
which will be used in the sequel without further reference. We refer to [13] for the
proofs.

Proposition 1.2. If f : X → Y is η-quasisymmetric, then for all A,B ⊂ X with
A ⊂ B and B bounded,

1

2η
(
diamB
diamA

) ≤ diam f(A)

diam f(B)
≤ η

(
2
diamA

diamB

)
.

See [13, Prop. 10.8].
When X is uniformly perfect, then the 3-point condition (1) can be well exploited.

In particular, quasisymmetric maps can always be controlled by homeomorphisms η
of the form

η(t) = C max{tα, t1/α}
where C ≥ 1 and α ∈ (0, 1] (see Theorem 11.3 in [13]). Such maps are called power
quasisymmetric maps. The proof of Theorem 2 will show that Id : (X, dX) → (X, d̂)
is power quasisymmetric.

Such a specific form will be used in the sequel to obtain the following estimates:
for fixed θ > 0, if t ≥ θ then tα ≤ max{1, t1/α} and t1/α ≥ θ1/α so that tα ≤
max{1, θ−1/α}t1/α.

Since t ≤ η(t), it follows that if t, t′ ≥ θ then

(2)

{
η(t)η(t′) . η(tt′),
tη(t′) . η(tt′),

where the implicit constants depend on θ.
Similarly,

(3)

{
η(1/t)η(1/t′) . η(1/(tt′)),
(1/t)η(1/t′) . η(1/(tt′)).

2. Extension of metrics

In this section, we provide a proof of Theorem 2. We first define a prototype of
the metric we are looking for: it is a symmetric function q̂ : X × X → R+ which
vanishes exactly on the diagonal, and which satisfies the right properties besides the
triangle inequality.

There are two main ideas which yield to the definition of q̂.
First, for points close to Y , the quasisymmetry condition implies that q̂(x, y) ³

q̂(y, y′) ³ |y − y′|Y must hold when y, y′ ∈ Y , x /∈ Y and |x− y|X ³ |y − y′|X . Here
the uniform perfectness is used to make sure that we have enough points in Y to use
this strategy.

The second idea is that if f : U → V is a conformal map between two strict simply
connected domains of the complex plane then |f ′(z)| behaves like dist(f(z), ∂V )/
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dist(z, ∂U). This means that if δ(x) and δ̂(x) denote the “distance” of x to Y with
respect to dX and q̂, then we wish that, for points x′ close enough to x,

q̂(x, x′) ³ δ̂(x)

δ(x)
|x− x′|X .

These two conditions essentially define q̂. The defect for q̂ to be a distance is that
the triangle inequality might not hold. A metric can be obtained by using a chain
argument: if x, y ∈ X are given, a chain is a finite ordered set of points x0, . . . , xn

such that x0 = x and xn = y. Let us define

d̂(x, y) = inf
∑

q̂(xj, xj−1)

where the infimum is taken over all chains joining x to y. If, for all distinct x, y,
d̂(x, y) 6= 0, then we have obtained a metric. If, furthermore, there is a universal
constant u > 0 such that d̂(x, y) ≥ uq̂(x, y), then d̂ is a genuine distance bi-Lipschitz
equivalent to q̂. The idea to show the existence of the constant u above is to insert
many points from Y in any given chain, and, ultimately, replace all the points but the
extremities by points in Y , so that the triangle inequality of the metric dY enables
us to conclude.

It then remains to check the properties announced in Theorem 2 are indeed
fulfilled.

2.1. Construction of a metric. Let X and Y be proper metric spaces and
f : Y → X be an η-quasisymmetric embedding. Let us observe that f−1 : f(Y ) → Y
is also quasisymmetric with distortion function η−1(t) = 1/η−1(1/t). Replacing both
functions by max{η, η−1}, we may – and will – assume that both f and f−1 are
quasisymmetric with the same distortion function η.

We denote by dX and dY the initial metrics on X and Y as a whole. But, when
considering distances between two given points, we will prefer the Polish notation |·|X
and | · |Y . In the sequel, we see Y as a closed subset of X (since f is quasisymmetric
and Y complete, f(Y ) is a complete subspace of X). We assume that diamY Y =
diamXY = diamY and that Y is λ-uniformly perfect.

A word regarding the construction of the metric d̂. We will define a first
function q following the ideas described above. Even though it is very crude, it will
be enough to define a “predistance” to Y . The section § 2.1.1 is devoted to obtain
some estimates on this predistance. Then, we will define the “premetric” q̂ and state
the main result Theorem 2.3 of this section. In § 2.1.2, we will prove several lemmata
which will enable us to express q̂ in simpler forms. Finally, in § 2.1.3, we will first
establish several approximate triangle inequalities which enable us to simplify the
chain sums and to insert points from Y , following the strategy described above. The
existence of the metric will then follow.

Definition. (Preliminary function) Let us define a function q : X ×X → R+ as
follows.

• If y, y′ ∈ Y , let q(y, y′) = |y − y′|Y .
• If x ∈ X \ Y and y ∈ Y , then, let q(x, y) = q(y, x) = |x − y|X if |x − y|X ≥
diamY/2; otherwise, set q(x, y) = q(y, x) = inf{|x′ − y|Y } where the infimum
is taken over the set of points x′ ∈ Y such that λ|x−y|X ≤ |x′−y|X ≤ |x−y|X .
We use this second expression for q when Y is unbounded.
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If x ∈ X \ Y , y ∈ Y , and |x− y|X < diamY/2, then we define A(x, y) as the set
of points x′ ∈ Y such that λ|x− y|X ≤ |x′ − y|X ≤ |x− y|X and q(x, y) = |x′ − y|Y .
We note that since Y is closed and X proper, this set is never empty (as soon as
|x− y|X ≤ diamY ).

Remark. When |x− y|X ≤ diamY/2 and x1, x2 are points of Y satisfying both
λ|x− y|X ≤ |xj − y|X ≤ |x− y|X , j = 1, 2, then

|x1 − y|Y
|x2 − y|Y ≤ η

( |x1 − y|X
|x2 − y|X

)
≤ η(1/λ),

so the choice of the infimum is essentially irrelevant for our considerations.

2.1.1. Predistance to Y . We first define and study the “predistance” to Y .

Definition. (Distance and predistance to the boundary) We define δ(x) =

dist(x, Y ). Let us recall that |δ(x) − δ(y)| ≤ |x − y|X . Let δ̂(x) = infy∈Y {q(x, y)}
denote the predistance of x to the boundary. We will see later that it will coincide
with infy∈Y {q̂(x, y)}.

If x /∈ X, we will often denote by wx a point in Y such that δ(x) = |x − wx|X .
When there are no ambiguity, we will just write w = wx.

Most of the time, it will not be necessary to specify whether Y is bounded
or not. Hence, in the sequel, we will treat the case of Y bounded and unbounded
simultaneously. The condition δ(x) ≥ diamY/2 will only be used when Y is bounded,
and may be skipped otherwise. The important case is the other one, δ(x) < diamY/2,
which always applies as soon as Y is unbounded.

The next two lemmata provide us with estimates of δ̂.

Lemma 2.1. Let x ∈ X and w ∈ Y be such that δ(x) = |x − w|X . Then
q(x,w) . δ̂(x).

Proof. We first assume that Y is bounded. If δ(x) ≥ diamY/2, then for all y ∈ Y ,
q(x, y) = |x− y|X so that q(x,w) = δ(x) = δ̂(x).

Otherwise, let w′ ∈ A(x,w). Let us note that from Proposition 1.2 applied to
B = Y and A = {w,w′}, it follows that

q(x,w) ≤ η

(
2|w′ − w|X
diamY

)
diamY ≤ η

(
2|w − x|X
diamY

)
diamY ≤ η(1)diamY ;

thus, for any y ∈ Y such that |x − y|X ≥ diamY/2, q(x,w) . q(x, y) holds. We are
now left with the case of points y ∈ Y with |x− y|X < diamY/2.

We may now drop the assumption on the boundedness of Y , and consider a point
y ∈ Y such that |y − x|X < diamY/2. Let y′ ∈ A(x, y).

If |y − w|X ≤ λδ(x)/2 then |y − w′|X ≥ |w − w′|X − |w − y|X ≥ λδ(x)/2 and
|y − w′|X ≤ |y − w|X + |w′ − w|X ≤ (1 + λ/2)δ(x). Therefore, since

q(x,w)

q(x, y)
=
|w − w′|Y
|y′ − y|Y =

|w′ − w|Y
|w′ − y|Y

|w′ − y|Y
|y′ − y|Y ,

it follows that

q(x, w)

q(x, y)
≤ η

( |w′ − w|X
|w′ − y|X

)
· η

( |w′ − y|X
|y′ − y|X

)
≤ η(2/λ)η(1/λ + 1/2).
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If |y − w|X ≥ λδ(x)/2, then

q(x,w) ≤ η

( |w − w′|X
|w − y|X

)
η

( |w − y|X
λ|x− y|X

)
q(x, y).

But |w − y|X ≤ |w − x|X + |x− y|X ≤ 2|x− y|X so that

q(x, w) ≤ η(2/λ)2q(x, y).

All in all, we see that q(x,w) . q(x, y) for any y ∈ Y , and so q(x,w) . δ̂(x). ¤

Lemma 2.2. Let x, z ∈ X \ Y .
(1) If Y is bounded, then for any θ > 0, there is some θ′ > 0 such that, if

δ(x) ≥ θ diamY then δ̂(x) ≥ θ′ diamY .
(2) If |x− z|X ≤ δ(x)/2, then δ̂(x) ³ δ̂(z).

Proof. Let wx ∈ Y be such that δ(x) = |x−wx|X . Then Lemma 2.1 implies that
q(x,wx) . δ̂(x).

(1) If θ ≥ 1/2, then one may choose θ′ = θ. Let us assume that δ(x) < diamY/2.
Let w′

x ∈ A(x,wx) and pick also y ∈ Y such that |wx − y|X ≥ diamY/2. It follows
that |wx − y|Y & diamY and that

|wx − y|Y ≤ η

( |wx − y|X
|wx − w′

x|X

)
|wx − w′

x|Y . η

(
diamY

λθdiamY

)
δ̂(x).

Hence δ̂(x) & diamY .
(2) The assumptions imply that |wx − z|X ≤ (3/2)|wx − x|X . Using that δ̂(z) ≤

q(z, wx), it follows that

δ̂(z)

δ̂(x)
. q(wx, z)

q(wx, x)
≤ η

( |wx − z|X
λ|wx − x|X

)
≤ η

(
3

2λ

)
.

The second inequality follows from a similar argument noting that δ(z) ≥ δ(x)/2 and
using a point wz ∈ Y such that |wz − z|X = δ(z). ¤

2.1.2. The premetric. We define q̂ and establish several estimates which
enable us to express q̂ in a simpler way.

Definition. (Premetric) We define q̂ : X ×X → R+ as follows:
• If y, y′ ∈ Y , let q̂(y, y′) = q(y, y′) = |y − y′|Y .
• If x ∈ X\Y and y ∈ Y , then, let q̂(x, y) = q̂(y, x) = infy′∈Y {q(x, y′)+q(y, y′)}.
• If x, x′ ∈ X \ Y , assume that δ(x) ≥ δ(x′). If |x− x′|X ≤ δ(x)/2, then define

q̂(x, x′) = q̂(x′, x) =
δ̂(x)

δ(x)
|x− x′|X ,

and otherwise, let

q̂(x, x′) = q̂(x′, x) = inf
y∈Y

{q(x, y) + q(y, x′)}.

Remark. One may easily check that if x ∈ X \ Y , then δ̂(x) = infY q̂(x, y).

The main result of this section is

Theorem 2.3. There is a metric bi-Lipschitz equivalent to q̂.
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From Lemma 2.4 to Lemma 2.7, we provide estimates on q̂ for points out of Y
and in terms of points which realise the distance to Y .

Lemma 2.4. If x ∈ X \ Y , y, w ∈ Y with δ(x) = |x− w|X , then

q̂(x, y) ³ q(x,w) + q(w, y).

Proof. We already know that q̂(x, y) ≤ q(x,w)+q(w, y) from the definition of q̂. If
δ(x) ≥ diamY/2, then q̂(x, y) ≥ δ̂(x) = δ(x) and q(x,w)+ q(w, y) ≤ δ(x)+diamY ≤
3δ(x). We assume from now on that δ(x) < diamY/2. Let w′ ∈ A(x,w).

• If |x− y|X ≤ 2δ(x), then |y − w|X ≤ |y − x|X + |x− w|X ≤ 3δ(x) so that

q(y, w) ≤ η(3/λ)q(x,w).

Thus
q(x,w) + q(w, y) . q(x,w) . δ̂(x)

by Lemma 2.1 and δ̂(x) . q̂(x, y) by definition. Hence q̂(x, y) & q(x,w) + q(w, y)
holds.

• If |x − y|X ≥ 2δ(x), then let z ∈ Y . If |x − z|X ≥ diamY/2, then, on the one
hand,

q(x, z) + q(z, y) ≥ diamY/2

and on the other hand,

q(x,w) + q(w, y) . δ̂(x) + q(w, y) . diamY.

Hence
q(x, z) + q(z, y) & q(x,w) + q(w, y).

We assume now that |x − z|X ≤ diamY/2. Let z′ ∈ A(x, z). If |z − y|X ≤
|w − y|X/2, then |w − y|X/2 ≤ |z − w|X ≤ 2|z − x|X so that

|w − y|Y
|z − z′|Y =

|w − y|Y
|z − w|Y

|w − z|Y
|z − z′|Y ≤ η(2)η(2/λ).

Thus q(w, y) . q(x, z) and since q(x,w) . δ̂(x) ≤ q(x, z) by Lemma 2.1, it follows
that

q(x,w) + q(w, y) . q(x, z) ≤ q(x, z) + q(z, y)

for any z ∈ Y ∩B(y, |w − y|X/2).
On the other hand, if |z − y|X ≥ |w − y|X/2, then q(w, y) ≤ η(2)q(y, z) so that

q(x,w) + q(w, y) . q(x, z) + q(z, y).

Hence
q(x,w) + q(w, y) ³ q̂(x, y). ¤

We give a more precise version of Lemma 2.4:

Lemma 2.5. Let x ∈ X \Y and y ∈ Y . Let w ∈ Y be such that |w−x|X = δ(x).
• If |x− y|X ≤ 4δ(x), then q̂(x, y) ³ q(x, y) ³ q(x,w).
• If |x− y|X ≥ 4δ(x), then q̂(x, y) ³ q(w, y).

Proof. We first notice that

max{q(x,w), q(w, y)} . q̂(x, y) ≤ q(x, y)

by Lemma 2.4 and the definition of q̂. We distinguish four different cases depending
on the relative positions of x and y.
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• If δ(x) ≥ diamY/2, then q(x, y) ≤ δ(x) + diamY ≤ 3δ(x) . q(x,w).
• If δ(x) ≤ diamY/2 ≤ |x − y|X ≤ 4δ(x), then δ̂(x) & diamY by Lemma 2.2.

Thus
q̂(x, y) ≤ q(x, y) = |x− y|X ³ δ(x) . δ̂(x).

• If |x−y|X ≤ min{4δ(x), diamY/2}, then we consider w′ ∈ A(x,w). If |w−y|X ≥
|w − w′|X/2 then, using y′ ∈ A(x, y),

q(x, y) ≤ η

( |y′ − y|X
|y − w|X

)
q(y, w)

≤ η

( |x− y|X
|y − w|X

)
η

( |y − w|X
λ|x− w|X

)
q(x,w)

≤ η(8/λ)η(5/λ)q(x,w),

where we have used that |w−y|X ≥ (λ/2)δ(x) and |y−w|X ≤ |y−x|X +δ(x) ≤ 5δ(x).
Similarly, if |w− y|X < |w−w′|X/2, then |y−w′|X ≥ (λ/2)δ(x) and |y−w′|X ≤

|y − w|X + |w − w′|X ≤ 6δ(x) so that

q(x, y) ≤ η

( |x− y|X
|y − w′|X

)
η

( |y − w′|X
λ|x− w|X

)
q(x,w) ≤ η(8/λ)η(6/λ)q(x,w).

It follows that q̂(x, y) ≤ q(x, y) . q(x,w) and q̂(x, y) ³ q(x, y) ³ q(x,w) holds.
• If |x−y|X ≥ 4δ(x), then 3δ(x) ≤ |w−y|X ≤ diamY and |w−y|X ≥ (3/4)|x−y|X

so that δ(x) < diamY/2 and

q(w, x)

q(y, w)
≤ η

(
δ(x)

|w − y|X

)
≤ η

(
4

3

δ(x)

|x− y|X

)
≤ η(1/3).

Thus, q̂(x, y) ³ q̂(x,w) + q̂(w, y) ³ q(w, y). ¤

Lemma 2.6. Let x, z ∈ X \ Y , wx, wz ∈ Y such that δ(x) = |x − wx|X and
δ(z) = |z − wz|X . Assume δ(x) ≥ δ(z).

(i) If δ(x) ≥ diamY/2, then q̂(x, z) ³ |x− z|X .
(ii) If |x− z|X ≤ δ(x)/2, then q̂(x, z) ³ (δ̂(x)/δ(x))|x− z|X .
(iii) If |x− z|X ≥ δ(x)/2, then q̂(x, z) ³ q(x,wx) + q(wx, wz) + q(wz, z).

Proof. Observe first that (ii) holds by definition. We first establish q̂(x, z) &
q(x,wx) + q(wx, wz) + q(wz, z). For any y ∈ Y , Lemma 2.4 implies

{
q(x, y) & q(x,wx) + q(wx, y)

q(z, y) & q(z, wz) + q(wz, y)

so that

q(x, y) + q(y, z) & q(x,wx) + (q(wx, y) + q(wz, y)) + q(z, wz)

& q(x,wx) + q(wx, wz) + q(wz, z)

since q(wx, y) + q(wz, y) = |wx − y|Y + |wz − y|Y ≥ |wx − wz|Y . Taking the infimum
over all y ∈ Y yields

q̂(x, z) & q(x,wx) + q(wx, wz) + q(wz, z).

For the other inequality implying (iii), we distinguish two cases (the first case will
also deal with (i)).
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• If δ(x) ≥ diamY/2, then

|x− z|X ≤ |x− wx|X + |wx − wz|X + |wz − z|X ≤ 2δ(x) + diamY ≤ 4δ(x).

But δ(x) = δ̂(x) ≤ q(x, y) ≤ q(x, y) + q(y, z) for any y ∈ Y , so |x− z|X . q̂(x, z).
If |x − z|X ≤ δ(x)/2, then since δ̂(x) = δ(x), it follows that q̂(x, z) = |x − z|X .

Otherwise |x− z|X ≥ δ(x)/2 holds, and

q̂(x, z) ≤ δ̂(x) + diamY + δ̂(z) . δ̂(x) = δ(x)

since δ(z) ≤ δ(x). Hence, it follows that q̂(x, z) . |x− z|X .
Since we established |x− z|X . δ̂(x), we obtain from (i) that

q̂(x, z) . |x− z|X . q(x,wx) . q(x, wx) + q(wx, wz) + q(wz, z).

• Let us assume that δ(x) < diamY/2; we establish

q̂(x, z) . q(x,wx) + q(wx, wz) + q(wz, z).

By definition,
q̂(x, z) ≤ q(x, wx) + q(wx, z)

holds. In any case, |wx − z|X ≤ (3/2)diamY , so that, if |wx − z|X ≥ (1/2)diamY ,
then Proposition 1.2 or Lemma 2.2 ensures that

q(wx, wz) + q(wz, z) & diamY & |wx − z|X = q(wx, z).

So we might as well assume that |wx−z|X < (1/2)diamY . If |wx−z|X ≤ 2|wx−wz|X
then q(wx, z) ≤ η(2)q(wx, wz) and we are done; otherwise,

|wx − z|X ≤ |wx − wz|X + |wz − z|X ≤ |wx − z|X/2 + δ(z)

and we note that |wx − z|X ≤ 2δ(z) so that Lemma 2.5 implies that

q(wx, z) . δ̂(z) ³ q(z, wz).

This establishes q̂(x, z) . q(x,wx) + q(wx, wz) + q(wz, z). ¤
Lemma 2.7 give further estimates on q̂ refining Lemma 2.6 (iii).

Lemma 2.7. Let x, z ∈ X \ Y . Let us assume that δ(x) ≥ δ(z) and that
|x − z|X ≥ δ(x)/2. Let wx ∈ Y be such that |wx − x|X = δ(x) and let wz ∈ Y be
such that |wz − z|X = δ(z).

• If |wx−wz|X ≥ |x−z|X/4, then |wx−wz|X ³ |x−z|X and q̂(x, z) ³ q(wx, wz).
• If |wx − wz|X ≤ |x − z|X/4, then |x − z|X ³ δ(x) and q̂(x, z) ³ q(x,wx) ³

q(x, wz).

Proof. It follows from the assumptions that |wx − wz|X ≤ 5|x− z|X .
• If |wx − wz|X ≥ |x − z|X/4 then |wx − wz|X ³ |x − z|X and δ(z) ≤ δ(x) ≤

8|wx − wz|X . It follows from Lemma 2.6 that q(wx, wz) . q̂(x, z).
− If δ(x) ≥ diamY/2, then |wx − wz|X & diamY so that |wx − wz|Y & diamY

holds also. But δ(x) . |wx − wz|X so

q(x,wx) . diamY . q(wx, wz).

− If δ(x) ≤ diamY/2, then

q(x,wx) ≤ η

(
1

8λ

)
q(wx, wz).

Similarly, q(wz, z) . q(wx, wz) so that q̂(x, z) ³ q(wx, wz).
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• If |wx−wz|X ≤ |x−z|X/4 then δ(x)+δ(z) ≥ (3/4)|x−z|X , and so |x−z|X ³ δ(x)
holds. We deduce also that q(wx, wz) . q(x, wx).

By Lemma 2.4,
q(x,wx) . q̂(x,wz) . q(x,wx)

always holds.
It follows that, since |x− z|X ≤ (8/3)δ(x), then |x− wz|X ≤ |x− wx|X + |wx −

wz|X ≤ 2δ(x) and Lemma 2.5 implies that q̂(x,wz) ³ q(x,wz).
− If δ(z) ≥ diamY/2, then since |x − wz|X ≥ δ(x) ≥ δ(z), one has q(z, wz) ≤

q(x,wz) . q(x,wx). Therefore

q̂(x, z) ³ q(x,wx) ³ q(x,wz).

− If δ(z) < diamY/2, then, either δ(x) ≥ diamY/2, and it follows that

q(z, wz) . diamY . δ̂(x),

whence q̂(x, z) . q(x,wx); or δ(x) < diamY/2, but then δ(z) ≤ δ(x) ≤ |x− wz|X so
that

q(z, wz) . q(x,wz)

which means that q̂(x, z) ³ q(x,wz) holds also. ¤
2.1.3. Approximate triangle inequalities. From Lemma 2.8 to Lemma 2.11,

we prove building blocks for the proof of Theorem 2.3 which is given afterwards.

Lemma 2.8. If x ∈ X \ Y and y, z ∈ Y , then q̂(y, x) + q̂(x, z) & q̂(y, z).

Proof. If δ(x) ≥ diamY/2, then q̂(y, x) + q̂(x, z) ≥ diamY ≥ q̂(y, z). Let us
assume that δ(x) ≤ diamY/2 and let w ∈ Y be such that |w − x|X = δ(x). Then
Lemma 2.4 implies

q̂(y, x) + q̂(x, z) & 2q(x,w) + |y − w|Y + |z − w|Y ≥ q̂(y, z). ¤

Lemma 2.9. If x, z ∈ X \ Y and y ∈ Y , then q̂(x, z) + q̂(z, y) & q̂(x, y).

Proof. If δ(z) ≥ diamY/2, then Lemma 2.6 implies that

q̂(x, z) + q̂(z, y) & |x− z|X + |z − y|X ≥ max{|x− y|X , diamY/2} & q̂(x, y) .

Assume from now on that δ(z) ≤ diamY/2. Let wz ∈ Y be such that δ(z) = |z−wz|X .
• If δ(x) ≥ diamY/2, then by Lemma 2.6,

(4) q̂(x, z) + q̂(z, y) & |x− z|X + δ̂(z) + |wz − y|Y .

Either |x− z|X ≥ (1/2)|x− wz|X so (4) becomes

q̂(x, z) + q̂(z, y) & |x− wz|X + |wz − y|Y ≥ q̂(x, y).

Or |x− z|X ≤ (1/2)|x− wz|X , and so

|z − wz|X ≥ |x− wz|X − |z − x|X ≥ δ(x)/2 ≥ diamY/4.

This implies by Lemma 2.2 that δ̂(z) & diamY . Moreover,

|x− wz|X ≤ |x− z|X + |z − wz|X ≤ (1/2)|x− wz|X + diamY/2

so that |x− wz|X ≤ diamY . Thus, δ(x) . diamY and (4) yields

q̂(x, z) + q̂(z, y) & diamY & q̂(x,wz) + q̂(wz, y) ≥ q̂(x, y).
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• We now assume that δ(x) < diamY/2. If |x− z|X ≥ δ(x)/2, then

q̂(x, z) + q̂(z, y) & δ̂(x) + q(wx, wz) + 2δ̂(z) + q(wz, y) ≥ δ̂(x) + q(wx, y) ≥ q̂(x, y).

And if |x − z|X ≤ δ(x)/2, then δ(x) ≤ |x − wz|X ≤ |x − z|X + δ(z) so δ(x) ≤ 2δ(z)

and |x − z|X ≤ δ(z). Therefore, q(x,wz) ≤ η(1/λ)q(z, wz), so that δ̂(z) & q(x, wz)
and

q̂(x, z) + q̂(z, y) & δ̂(z) + q(wz, y) & q(x,wz) + q(wz, y) ≥ q̂(x, y). ¤

Lemma 2.10. Assume that x, z ∈ X \ Y are such that δ(z)/2 ≤ |z − x|X ≤
δ(x)/2, and let wx ∈ Y be such that δ(x) = |x− wx|X . Then

q̂(x,wx) + q̂(wx, z) ³ q̂(x, z) .

Proof. It follows from the assumptions that δ(x) ³ δ(z) ³ |x − z|X and by
Lemma 2.2 that δ̂(x) ³ δ̂(z). By definition,

q̂(x, z) =
|x− z|X

δ(x)
δ̂(x) ³ δ̂(x).

Thus,
q̂(x, z) . q̂(x,wx) + q̂(wx, z).

On the other hand, |z − wx|X ≤ (3/2)δ(x) ≤ 3δ(z), so q̂(z, wx) ³ δ̂(x) ³ δ̂(z).
Hence

q̂(x, z) ³ q̂(x,wx) + q̂(wx, z). ¤

Lemma 2.11. If z1, z2, x ∈ X \ Y are such that |x− zj|X ≤ max{δ(x), δ(zj)}/2,
j = 1, 2 and |z1 − z2|X ≥ max{δ(z1), δ(z2)}/2. Let w ∈ Y be such that δ(x) =
|x− w|X , then

q̂(z1, x) + q̂(x, z2) & q̂(z1, w) + q̂(w, z2).

Proof. It follows that δ(x) ³ δ(z1) ³ δ(z2) and so δ̂(x) ³ δ̂(z1) ³ δ̂(z2) holds too
by Lemma 2.2. Therefore,

q̂(z1, x) + q̂(x, z2) & δ̂(x)

δ(x)
|z1 − z2|X & δ̂(x).

Besides, if max{|z1 − w|X , |z2 − w|X , δ(x)} ≤ diamY/2, then, for j = 1, 2,

q̂(w, zj) ≤ η

( |w − zj|
λ|w − x|

)
q̂(x,w) . η

(
3

λ

)
δ̂(x).

Hence q̂(z1, w) + q̂(w, z2) . δ̂(x) ≤ q̂(z1, x) + q̂(x, z2).
Otherwise, it follows that δ(x) & diamY , so that all the distances are comparable

to δ(x). ¤
Proof of Theorem 2.3. Let us define

d̂(x, y) = inf
∑

1≤j≤n

q̂(xj−1, xj)

where the sum is taken over any finite chains (x0, . . . , xn) such that x0 = x and
xn = y. We will prove that d̂(x, y) & q̂(x, y) for any x, y ∈ X.
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Let x0, . . . , xn be a chain. Let us consider the following partition. Let



K(1) = {xj ∈ Y },
K(2) = {xj /∈ Y, δ(xj) < diamY/2},
K(3) = {xj /∈ Y, δ(xj) ≥ diamY/2}.

The idea of the proof is to replace as many xj as possible by points in Y , so that
we may use the triangle inequality for dY .

For the sake of convenience, we will write in this proof

q̂(x1, x2) + . . . + q̂(xn−1, xn) = q̂(x1, x2, . . . , xn).

First step. Let j0 = 0. We first construct inductively a subchain x̂0, . . . , x̂m until
xn is reached. Assume j0, . . . , jk are constructed, and let xj`

= x̂` for 0 ≤ ` ≤ k.
• If x̂k ∈ K(1), either xjk+1 ∈ K(1) and then let jk+1 = min{j ≥ jk, xj+1 /∈

K(1)}, or set jk+1 = jk + 1.
• If x̂k ∈ K(2), either |xjk+1 − x̂k|X ≤ δ(x̂k)/2 and then let

{
jk+1 = min{j ≥ jk, |xj+1 − x̂k| ≥ δ(x̂k)/2}
jk+2 = jk+1 + 1

so that |x̂k − x̂k+2|X ≥ δ(x̂k)/2; or let jk+1 = jk + 1 otherwise.
• If x̂k ∈ K(3), let jk+1 = min{j ≥ jk, xj /∈ K(3) and |x̂k − xj|X > δ(x̂k)/2}.
In either case, it follows easily that

∑
jk≤j≤jk+1−1

q̂(xj, xj+1) & q̂(x̂k, x̂k+1).

Therefore ∑
0≤j≤n−1

q̂(xj, xj+1) &
∑

0≤k≤m−1

q̂(x̂k, x̂k+1).

Second step. We show how to insert points from Y in between points out of Y .
We define inductively on k a chain (ŷj)0≤j≤p with ŷ0 = x0 and ŷp = x̂m = xn. We
assume that we have already constructed ŷ1, . . . , ŷ` with x̂k = ŷ` and such that, for
all j < `, if ŷj /∈ K(1) then ŷj+1 ∈ K(1).

• If x̂k ∈ K(1) or x̂k+1 ∈ K(1), then we set ŷ`+1 = x̂k+1.
• If k = m−1 then we set ŷ`+1 = ŷp = x̂m. If x̂m−1, x̂m /∈ K(1), then ŷ`−1 ∈ K(1),

so Lemma 2.9 implies that

q̂(ŷp−2, ŷp−1, ŷp) & q̂(ŷp−2, ŷp).

We assume now that k < m− 1.

• Let us assume that x̂k ∈ K(3) and x̂k+1 ∈ K(2). We know from Lemma 2.6
(iii) the existence of some y ∈ Y such that

q̂(x̂k, x̂k+1) & q̂(x̂k, y, x̂k+1).

We set ŷ`+1 = y and ŷ`+2 = x̂k+1.
• Let us assume that x̂k ∈ K(2) and x̂k+1 ∈ K(2). If |x̂k − x̂k+1|X > δ(x̂k)/2,

then the definition of q̂ or Lemma 2.10 implies the existence of some point y ∈ Y
such that

q̂(x̂k, x̂k+1) & q̂(x̂k, y, x̂k+1).

We set ŷ`+1 = y and ŷ`+2 = x̂k+1.
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Otherwise, |x̂k − x̂k+1|X ≤ δ(x̂k)/2 but then, by construction |x̂k − x̂k+2|X >
δ(x̂k)/2, so, either |x̂k+1 − x̂k+2|X ≤ δ(x̂k+1)/2 and then Lemma 2.11 shows the
existence of some y ∈ Y such that q̂(x̂k, x̂k+1, x̂k+2) & q̂(x̂k, y, x̂k+2); or, as in the
previous case, there is some y ∈ Y such that q̂(x̂k+1, x̂k+2) & q̂(x̂k+1, y, x̂k+2), and,
with Lemma 2.9, one obtains

q̂(x̂k, x̂k+1, x̂k+2) & q̂(x̂k, x̂k+1, y, x̂k+2) & q̂(x̂k, y, x̂k+2).

We set ŷ`+1 = y and ŷ`+2 = x̂k+2.
• Let us assume that x̂k ∈ K(2) and x̂k+1 ∈ K(3). From above, q̂(x̂k+1, x̂k+2) &

q̂(x̂k+1, y, x̂k+2) holds for some y ∈ Y . Applying Lemma 2.9 again, it follows that

q̂(x̂k, x̂k+1, x̂k+2) & q̂(x̂k, x̂k+1, y, x̂k+2) & q̂(x̂k, y, x̂k+2).

We set ŷ`+1 = y and ŷ`+2 = x̂k+2.
In conclusion, we have constructed a new chain ŷ0, . . . , ŷp such that, if ŷj /∈ Y ,

then ŷj+1 ∈ Y . Moreover, it follows that

q̂(x0, . . . , xn) & q̂(ŷ0, . . . , ŷp).

Third step. Applying Lemma 2.8, we may take out the points not in Y (besides
x0 and xn), then use the triangle inequality on Y , and Lemma 2.6 to conclude. ¤

Remark. It follows from the definitions of q̂ and d̂ that, for all y, y′ ∈ Y ,

(5) d̂(f(y), f(y′)) ≤ dY (y, y′).

2.2. Quasisymmetry of the metric. We prove that the metric which has
been constructed in the previous section is power quasisymmetric equivalent to dX .

If f : Z → Z ′ is a homeomorphism between doubling and connected (or quasi-
convex) metric spaces, then the 3-point condition (1) follows from an a priori weaker
condition (cf. [13, Thm. 10.19] and [24, Thm. 6.6]): there is a finite constant H such
that, for any z1, z2, z3 ∈ Z,

|z1 − z2| ≤ |z1 − z3| =⇒ |f(z1)− f(z2)| ≤ H · |f(z1)− f(z3)|.
In our setting however, the proof of the weak quasisymmetry would also require
many case by case verifications which do not greatly simplify the arguments. Hence
we prefer to prove directly the strong quasisymmetry condition (1) of the identity
map in full generality, even when dX and d̂ enjoy stronger properties. We also note
that [24] contains a discussion on relative quasisymmetry; unfortunately, it barely
simplifies the proof given below.

Since d̂ and q̂ is bi-Lipschitz, it is enough to establish (1) for q̂, namely: there
exists an increasing homeomorphism η̂ : R+ → R+ such that for all x1, x2, x3 ∈ X,

q̂(x1, x2)

q̂(x1, x3)
≤ η̂

( |x1 − x2|X
|x1 − x3|X

)
.

The proof is cut into six lemmata, each of which deals with a specific situation
provided by our estimates for q̂. Since Y is uniformly perfect, we know that η may
be chosen of the form η(t) = C max{tα, t1/α} with C ≥ 1 and α ∈ (0, 1). In each
lemma, the existence of some increasing homeomorphism η̂∗ of the positive reals will
be established: it will always be of the same form with the same exponent α.
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Lemma 2.12. A homeomorphism η̂1 : R+ → R+ exists such that, for any x ∈
X \ Y and any y, z ∈ Y ,

q̂(y, x)

q̂(y, z)
≤ η̂1

( |y − x|X
|y − z|X

)

and
q̂(y, z)

q̂(y, x)
≤ η̂1

( |y − z|X
|y − x|X

)
.

Proof. Let us first note that if δ(x) ≥ diamY/8, then q̂(x, y) & diamY . Therefore,
if y′ ∈ Y satisfies |y − y′|X ≥ diamY/2, then

q̂(y, x)

q̂(y, z)
=

q̂(y, x)

q̂(y, y′)
q̂(y, y′)
q̂(y, z)

. |y − x|X
diamY

η

(
diamY

|y − z|X

)
. η

( |y − x|X
|y − z|X

)
,

where we have used (2) for the last inequality knowing that |y − x|X & diamY and
diamY ≥ |y − z|X .

We proceed similarly for the other inequality.
We now assume that δ(x) ≤ diamY/8. It follows from Lemma 2.5 that if |x −

y|X ≤ 4δ(x), then

q̂(x, y) ³ q(x, y) ≤ η

( |x− y|X
|y − z|X

)
q̂(y, z).

Similarly,

q̂(x, z) ≤ η

( |y − z|X
λ|x− y|X

)
q(x, y) . q̂(x, y).

Otherwise, q̂(x, y) ³ q(w, y) where w ∈ Y satisfies |w − x|X = δ(x). Therefore

q̂(y, x) ³ q(y, w) ≤ η

( |y − w|X
|y − z|X

)
q̂(y, z) ≤ η

(
5|y − x|X
4|y − z|X

)
q̂(y, z),

and

q̂(y, z) ≤ η

( |y − z|X
|y − w|X

)
q̂(y, w) . η

(
4|y − z|X
3|y − x|X

)
q(y, w). ¤

Lemma 2.13. A homeomorphism η̂2 : R+ → R+ exists such that, for any
x ∈ X \ Y and any y, z ∈ Y ,

q̂(x, z)

q̂(x, y)
≤ η̂2

( |x− z|X
|x− y|X

)
.

Proof. If δ(x) ≥ diamY/8, then the lemma is trivially true. Let w ∈ Y with
δ(x) = |x− w|X .

We will make a repeated use of Lemma 2.5.
• If |x− z|X ≤ 4δ(x) and |x− y|X ≤ 4δ(x), then |x− y|X ³ |x− z|X ³ δ(x) and

q̂(x, y) ³ q̂(x, z) ³ δ̂(x).
• If |x− z|X ≥ 4δ(x) and |x− y|X ≤ 4δ(x), then

q̂(x, y) ³ q(x, w) ≤ η

(
δ(x)

|w − z|X

)
q(w, z) . η

(
4|x− y|X
3|x− z|X

)
q̂(x, z).
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• If |x− z|X ≥ 4δ(x) and |x− y|X ≥ 4δ(x), then q̂(x, y) ³ q(w, y) and q̂(x, z) ³
q(w, z). Thus

q̂(x, y) ³ q(y, w) ≤ η

( |w − y|X
|w − z|X

)
q(w, z) . η

(
5|x− y|X
3|x− z|X

)
q̂(x, z).

• If |x− z|X ≤ 4δ(x) and |x− y|X ≥ 4δ(x), then

q̂(x, y) ³ q(w, y) ≤ η

( |w − y|X
λ|w − x|X

)
q(w, x) . η

(
5|x− y|X
λ|x− z|X

)
q̂(x, z). ¤

Lemma 2.14. A homeomorphism η̂3 : R+ → R+ exists such that, if x, z ∈ X\Y ,
and if y ∈ Y , then

q̂(y, x)

q̂(y, z)
≤ η̂3

( |y − x|X
|y − z|X

)
.

Proof. We distinguish several cases according to Lemma 2.5.
• Assume that |y − x|X ≤ 4δ(x) and |y − z|X ≤ 4δ(z), then

q̂(y, x)

q̂(y, z)
³ q(y, x)

q(y, z)
.

− If max{δ(x), δ(z)} ≤ diamY/2, then

q(y, x)

q(y, z)
≤ η

( |y − x|X
λ|y − z|X

)
.

− If min{δ(x), δ(z)} ≥ diamY/2, then we have equality.
− If δ(x) ≤ diamY/2 ≤ δ(z) then let y′ ∈ Y be such that |y − y′|X ≥ diamY/2.

It follows that
q(y, x)

q(y, z)
³ |y − y′|X
|y − z|X

q(y, x)

|y − y′|Y . diamY

|y − z|X · η
( |y − x|X

diamY

)
. η

( |y − x|X
|y − z|X

)
,

where (3) has been used to conclude.
− If δ(z) ≤ diamY/2 ≤ δ(x) then let also y′ ∈ Y be such that |y − y′|X ≥

diamY/2. We proceed as above. One gets

q(y, x)

q(y, z)
³ |y − x|X
|y − y′|X

|y − y′|Y
q(y, z)

. |y − x|X
diamY

· η
(

diamY

|y − z|X

)
. η

( |y − x|X
|y − z|X

)
,

applying (2) to conclude.
• Assume that |y − x|X ≤ 4δ(x) and |y − z|X ≥ 4δ(z). Then

q̂(y, x)

q̂(y, z)
³ q(y, x)

q(y, wz)
,

where wz ∈ Y satisfies |z − wz|X = δ(z). Furthermore, δ(z) ≤ diamY/3.
− If δ(x) ≤ diamY/2, then

q(y, x)

q(y, wz)
≤ η

( |y − x|X
|y − wz|X

)
. η

( |y − x|X
|y − z|X

)
.

− If δ(x) ≥ diamY/2, then let y′ ∈ Y be such that |y − y′|X ≥ diamY/2. One
obtains

q(y, x)

q(y, wz)
³ |y − x|X
|y − y′|X

|y − y′|Y
q(y, wz)

. |y − x|X
diamY

· η
(

diamY

|y − wz|X

)
. η

( |y − x|X
|y − z|X

)
,
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where (2) has also been used to conclude.
• Assume that |y − x|X ≥ 4δ(x) and |y − z|X ≤ 4δ(z). Then

q̂(y, x)

q̂(y, z)
³ q(y, wx)

q(y, z)
,

where wx ∈ Y satisfies |x− wx|X = δ(x). Furthermore, δ(x) ≤ diamY/3.
− If δ(z) ≤ diamY/2, then

q(y, wx)

q(y, z)
. η

( |y − wx|X
|y − z|X

)
. η

( |y − x|X
|y − z|X

)
.

− If δ(z) ≥ diamY/2, then let y′ ∈ Y be such that |y − y′|X ≥ diamY/2. One
obtains

q(y, wx)

q(y, z)
³ |y − y′|X
|y − z|X

q(y, wx)

|y − y′|Y . diamY

|y − z|X · η
( |y − wx|X

diamY

)
. η

( |y − x|X
|y − z|X

)

by (3).
• Assume that |y − x|X ≥ 4δ(x) and |y − z|X ≥ 4δ(z). Then

q̂(y, x)

q̂(y, z)
³ q(y, wx)

q(y, wz)
.

Furthermore, max{δ(x), δ(z)} ≤ diamY/3. Thus

q(y, x)

q(y, z)
³ q(y, wx)

q(y, wz)
. η

( |y − wx|X
|y − wz|X

)
. η

( |y − x|X
|y − z|X

)
. ¤

Lemma 2.15. A homeomorphism η̂4 : R+ → R+ exists such that, if x, z ∈ X \Y
are such that |z − x| ≤ δ(x)/2, and if y ∈ Y , then

q̂(x, z)

q̂(x, y)
≤ η̂4

( |x− z|X
|x− y|X

)

and
q̂(x, y)

q̂(x, z)
≤ η̂4

( |x− y|X
|x− z|X

)
.

Proof. We pick w ∈ Y such that δ(x) = |x− w|X .
• If |x− y|X ≤ 4δ(x), then Lemma 2.5 implies that q̂(x, y) ³ q(x,w).





q̂(x, z)

q̂(x, y)
³ |x− z|X

δ(x)

δ̂(x)

q(x,w)
. |x− z|X
|x− y|X ,

q̂(x, y)

q̂(x, z)
³ q(x,w)

δ̂(x)

δ(x)

|x− z|X . |x− y|X
|x− z|X .

• Otherwise, |w−y|X ≥ 3δ(x), and |x−y|X ≥ |w−y|X−|x−w|X ≥ (2/3)|w−y|X .
Thus,

q̂(w, y) ≤ q̂(x, y) ³ q̂(w, x) + q̂(w, y) . q̂(w, y)

so that

q̂(x, z)

q̂(x, y)
³ |x− z|X

δ(x)

δ̂(x)

q̂(w, y)
. |x− z|X

δ(x)
η

(
δ(x)

|x− y|X

)
. η

( |x− z|X
|x− y|X

)
.
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Similarly,

q̂(x, y)

q̂(x, z)
³ q̂(w, y)

δ̂(x)

δ(x)

|x− z|X . δ(x)

|x− z|X η

( |w − y|X
δ(x)

)
. η

( |x− y|X
|x− z|X

)
.

where we have used (3) and (2), respectively. ¤

Lemma 2.16. A homeomorphism η̂5 : R+ → R+ exists such that, if x, z ∈ X \Y
are such that |z − x|X ≥ δ(x)/2, and if y ∈ Y , then

q̂(x, z)

q̂(x, y)
≤ η̂5

( |x− z|X
|x− y|X

)

and
q̂(x, y)

q̂(x, z)
≤ η̂5

( |x− y|X
|x− z|X

)
.

Proof. We remark that if δ(x) ≥ diamY/8, then the lemma follows easily, so let
us assume that δ(x) < diamY/8. Also, if |x− z|X ≤ δ(z)/2, then the lemma follows
essentially as in the proof of Lemma 2.15 since then δ(x) ³ δ(z). So we assume
|x− z|X ≥ δ(z)/2. In particular, |wx − wz|X ≤ 5|x− z|X holds.

We will use Lemma 2.5 and Lemma 2.7. So let wx ∈ Y be such that |wx−x|X =
δ(x) and let wz ∈ Y be such that |wz − z|X = δ(z).

• If |x− y|X ≤ 4δ(x) and if |wx − wz|X ≥ |x− z|X/4, then

q̂(x, z)

q̂(x, y)
³ q̂(wx, wz)

q̂(wx, x)
≤ η̂1

( |wx − wz|X
δ(x)

)
.

Similarly,
q̂(x, y)

q̂(x, z)
³ q̂(wx, x)

q̂(wx, wz)
≤ η̂1

(
δ(x)

|wx − wz|X

)

which provides the result since |wx − wz|X & |x− z|X .
• If |x− y|X ≤ 4δ(x) and if |wx −wz|X ≤ |x− z|X/4, then we should distinguish

two cases. If |x − z|X ³ δ(x), then all the ratios are essentially constant, so it is
fine. Otherwise, |x − z|X ³ δ(z), and Lemma 2.7 implies that q̂(x, z) ³ q(wx, z).
Therefore,

q̂(x, z)

q̂(x, y)
³ q̂(wx, z)

q̂(wx, x)
≤ η̂3

( |wx − z|X
δ(x)

)
.

Similarly,
q̂(x, y)

q̂(x, z)
³ q̂(wx, x)

q̂(wx, z)
≤ η̂3

(
δ(x)

|wx − z|X

)
.

• If |x− y|X ≥ 4δ(x) and if |wx − wz|X ≥ |x− z|X/4, then

q̂(x, z)

q̂(x, y)
³ q̂(wx, wz)

q̂(wx, y)
≤ η̂1

( |wx − wz|X
|wx − y|X

)
.

Similarly,
q̂(x, y)

q̂(x, z)
³ q̂(wx, y)

q(wx, wz)
≤ η̂1

( |wx − y|X
|wx − wz|X

)
.
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• If |x − y|X ≥ 4δ(x) and if |wx − wz|X ≤ |x − z|X/4, then we should also
distinguish two cases. Either |z − x|X ³ δ(x), and then

q̂(x, z)

q̂(x, y)
³ q̂(wx, x)

q̂(wx, y)
≤ η̂1

( |wx − x|X
|wx − y|X

)
,

and similarly for the inverse.
Or |z − x|X ³ δ(z). In this case,

q̂(x, z)

q̂(x, y)
³ q(wx, z)

q̂(wx, y)
≤ η̂1

( |wx − z|X
|wx − y|X

)
,

which also enables us to conclude. We leave the last estimate to the reader’s attention.
¤

Lemma 2.17. A homeomorphism η̂6 : R+ → R+ exists such that, if x, z1, z2 ∈
X \ Y , then

q̂(x, z1)

q̂(x, z2)
≤ η̂6

( |x− z1|X
|x− z2|X

)
.

Proof. It follows from Lemma 2.7 that it is enough to consider the case δ(x) <
diamY/2.

• If |x− zj|X ≤ δ(x)/2 for j = 1, 2, then

q̂(x, z1)

q̂(x, z2)
³ |x− z1|X
|x− z2|X .

• If |x− z1|X ≤ δ(x)/2 and |x− z2|X ≥ δ(x)/2 then we discuss according to the
value of q̂(x, z2) provided by Lemma 2.7. We let w ∈ Y be such that |w−x|X = δ(x)
and w2 ∈ Y be such that |w2 − z2|X = δ(z2).

− If |w − w2|X ≥ |x− z2|X/4, then

q̂(x, z1)

q̂(x, z2)
³ |x− z1|X

δ(x)

q(x,w)

q(w,w2)
. |x− z1|X

δ(x)
η̂1

(
δ(x)

|w − w2|X

)
. η̂1

( |x− z1|X
|x− z2|X

)
,

where the special form of η̂1 and (3) have been used.
− If |w − w2|X ≤ |x− z2|X/4 and q(x, z2) ³ q(x,w), then

q̂(x, z1)

q̂(x, z2)
³ |x− z1|X

δ(x)

δ̂(x)

δ̂(x)
. |x− z1|X
|x− z2|X .

− If |w − w2|X ≤ |x− z2|X/4 and q(x, z2) ³ q(z2, w), then

q̂(x, z1)

q̂(x, z2)
³ |x− z1|X

δ(x)

q(w, x)

q(w, z2)
. |x− z1|X

δ(x)
η̂3

(
δ(x)

|w − z2|X

)
. η̂3

( |x− z1|X
|x− z2|X

)

using (3) as well for η̂3.
• If |x− z1|X ≥ δ(x)/2 and |x− z2|X ≤ δ(x)/2, then we discuss according to the

value of q̂(x, z1) as above. We let w ∈ Y be such that |w − x|X = δ(x) and w1 ∈ Y
be such that |w1 − z1|X = δ(z1).

− If |w − w1|X ≥ |x− z1|X/4, then

q̂(x, z1)

q̂(x, z2)
³ δ(x)

|x− z2|X
q(w,w1)

q(x,w)
. δ(x)

|x− z2|X η̂1

( |w − w1|X
δ(x)

)
. η̂1

( |x− z1|X
|x− z2|X

)

using (2).
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− If |w − w1|X ≤ |x− z1|X/4 and q(x, z1) ³ q(x,w), then

q̂(x, z1)

q̂(x, z2)
³ δ(x)

|x− z2|X
δ̂(x)

δ̂(x)
. |x− z1|X
|x− z2|X .

− If |w − w1|X ≤ |x− z1|X/4 and q(x, z1) ³ q(z1, w), then

q̂(x, z1)

q̂(x, z2)
³ δ(x)

|x− z2|X
q(w, z1)

q(w, x)
. δ(x)

|x− z2|X η̂3

( |w − z1|X
δ(x)

)
. η̂3

( |x− z1|X
|x− z2|X

)

by (2).
• If |x − zj|X ≥ δ(x)/2 for j = 1, 2, then we discuss according to the values of

q̂(x, z1) and q̂(x, z2) given by Lemma 2.7. It follows that q̂(x, zj) can be approximated
by either q(w, wj), q(w, x) or q(w, zj). In each case, we get similar approximations
for the distance in X. So, looking at the ratio

q̂(x, z1)

q̂(x, z2)

always yields us to compare two distances concerning w, for which we may apply the
quasisymmetry assumption.

When δ(zj) ≥ diamY/2, then one is led to use an intermediate point w′ ∈ Y such
that |w − w′|X ≥ diamY/2 and to use the specific form of η as in previous proofs.
Nonetheless, the inequality follows essentially as above. ¤

Proof of Theorem 2. It follows from Theorem 2.3 that there is a metric bi-
Lipschitz d̂ equivalent to q̂. This implies that the proof of the quasymmetry of
Id : (X, dX) → (X, d̂) reduces to the establishment of the 3-point condition for q̂.
This was done in Lemma 2.12, 2.13, 2.14, 2.15, 2.16 and 2.17.

Lemma 2.2 implies that the restriction Id : (B(x, δ(x)/2), dX) → (X \ Y, d̂) is
locally bi-Lipschitz of factors equivalent to δ̂(x)/δ(x). Hence Id is locally quasisimilar.

Finally, the definition of q̂ makes Id : (Y, dY ) → (Y, d̂) uniformly bi-Lipschitz. ¤
2.3. Further properties of the new metrics. Since the map Id : (X, dX) →

(X, d̂) is quasisymmetric, (X, d̂) has all the properties of (X, dX) which are invariant
under quasisymmetric maps. Furthermore, it is also easy to see the following relation
between the Hausdorff dimensions: dim(X, d̂) = max{dim(Y, dY ), dim(X \ Y, dX)}.

We now turn to the proof of Corollary 3:

Proof of Corollary 3. Let ε > 0; we first choose a metric dX in the gauge of
X such that dim(X, dX) ≤ dimc X + ε. If dim(Y, dX) ≤ dimc Y + ε holds as well,
then we are done. Otherwise, we choose a metric dY in the gauge of Y such that
dim(Y, dY ) ≤ dimc Y + ε. Applying Theorem 2 to the embedding (Y, dY ) → (X, dX)
establishes the corollary. ¤

Proposition 2.18. We choose X and Y as in Theorem 2. We assume further-
more that

(i) the space (X, dX) is Q-Ahlfors regular for some Q > 0;
(ii) the subset f(Y ) is porous in X, and, constants θ ∈ (0, 1) and C > 0 exist

such that, for any r ≤ diamY and β ≥ 1, any dY -ball BY (y, r) ⊂ Y can be
covered by at most CeQβθβ balls of radius e−βr.

Then (X, d̂) is Q-Ahlfors regular.
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Let us note that the second assumption in (ii) is an upper bound for the box
dimension of (Y, dY ), and it holds for porous subsets of Q-regular metric spaces (see
§ 1.1). Moreover, Theorem 2 and Proposition 1.2 imply that if Y is porous in (X, dX),
then it has to be porous in (X, d̂) also, so this assumption is also necessary for the
Ahlfors regularity of (X, d̂) since dY and d̂ are bi-Lipschitz.

Proof. Let us denote by µ the Q-Hausdorff measure in (X, d̂). We will write
BX(x, r) for a ball in (X, dX) and B̂(x, r) for a ball in (X, d̂).

Since Id : (X \ Y, dX) → (X \ Y, d̂) is a quasisimilarity, it follows that, for any
x ∈ X\Y and any r ≤ 1/2, the ball BX(x, rδ(x)) corresponds approximately to a ball
of radius Crδ̂(x) in (X, d̂) for some universal constant C > 0, so that µ(B̂(x, rδ̂(x))) ³
(rδ̂(x))Q.

Let us fix a point y ∈ Y and r > 0. Since Y is porous, a constant c > 0 exists
such that B̂(y, r) contains a ball B̂(x, cr) disjoint from Y . Therefore cr ≤ δ̂(x) so

µ(B̂(y, r)) ≥ µ(B̂(x, δ̂(x))) & δ̂(x)Q & rQ.

For the converse inequality, we first note that µ(Y ) = 0 by assumption (ii). Thus
it is enough to bound µ(B̂(y, r) \ Y ). We cover B̂(y, r) \ Y by balls BX(x, δ(x)/10).
We extract an at most countable subfamily BX(xj, δj/10) of balls pairwise disjoint
such that B̂(y, r) \ Y ⊂ ∪BX(xj, δj/2) (Theorem 1.2 in [13]).

Denote by An the set of centers (xj) such that re−(n+1) < δ̂(xj) ≤ re−n. It follows
that if xj ∈ An, then µ(BX(xj, δj/2)) ³ δ̂(xj)

Q ³ rQe−nQ. For each xj, choose a
point yj ∈ Y such that δ̂(xj) = d̂(x, yj). Since (X, d̂) is doubling and the balls
{BX(xj, δj/10)}j are disjoint, the nerve of the family of balls {B̂(yj, δ̂(xj)), xj ∈ An}
has uniformly bounded valence V (independent from n). Therefore, we may split
this family of balls into V + 1 families of pairwise disjoint balls. The assumption
(ii) and the fact that f : (Y, dY ) → (Y, d̂) is bi-Lipschitz now imply that the number
of balls involved in An is bounded by eQnθn up to a factor (which depends on the
bi-Lipschitz constant, the uniform perfectness of (Y, dY ) and V ). Thus

∑
An

µ(BX(xj, δj/2)) . eQnθn
(
e−nr

)Q . θnrQ.

Therefore,
µ(B̂(y, r)) ≤

∑
n≥0

∑
An

µ(BX(xj, δj/2)) .
∑
n≥0

θnrQ . rQ.

Let us consider a point x ∈ X \ Y , and let y ∈ Y be such that δ̂(x) = d̂(x, y). If
r ∈ [δ̂(x)/2, 2δ̂(x)], then

µ(B̂(x, r)) ≥ µ(B̂(x, δ̂(x)/2)) & δ̂(x)Q & rQ.

On the other hand,
µ(B̂(x, r)) ≤ µ(B̂(y, 2r)) . rQ.

If r ≥ 2δ̂(x), then B̂(y, r− δ̂(x)) ⊂ B̂(x, r) ⊂ B̂(y, r + δ̂(x)) with r− δ̂(x) ≥ r/2 and
r + δ̂(x) ≤ (3/2)r, so µ(B̂(x, r)) ³ rQ. ¤

Corollary 2.19. Let us assume that X and Y satisfy the assumptions of Propo-
sition 2.18. If (X, dX) is Q-Loewner, then (X, d̂) is Q-Loewner too.
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Proof. From Proposition 2.18, it is known that (X, dX) and (X, d̂) are both
Q-Ahlfors regular. A theorem of Tyson implies under these assumptions that the
Loewner condition is preserved under quasisymmetric equivalence (cf. [21]). ¤

3. Angles at seams

Definition. Let X1 and X2 be two closed subsets of a metric space X such that
X1 ∩ X2 6= ∅. The seam is by definition the closed set Y = X1 ∩ X2. Following
Agard and Gehring [1], the angle ∠(X1, X2) between X1 and X2 is by definition the
supremum over all c > 0 such that, for any (x1, x2) ∈ X1 ×X2,

|x1 − x2| ≥ c · inf
y∈Y

{|x1 − y|+ |y − x2|}.
Theorem 3.1. Let X = X1 ∪ X2 and X ′ = X ′

1 ∪ X ′
2 be metric spaces with

positive angles. Let us assume that Y = X1 ∩X2 and Y ′ = X ′
1 ∩X ′

2 are λ-uniformly
perfect subspaces such that diamY ≥ µdiamX1 for some µ ∈ (0, 1).

If f : X → X ′ is a homeomorphism such that f |Xj
is η-quasisymmetric and

f(Xj) = X ′
j, then f is globally η̂-quasisymmetric quantitatively.

Remark. A condition such as diamY ≥ µdiamX1 is necessary for the theorem
to be true. A counter-example will be given after the proof of Theorem 1.

We will reduce its proof to the following result due to Aseev, Kuzin and Tetenov
[3, Thm. 3.1].

Theorem 3.2. A map f : X1 ∪X2 → X ′ is quasisymmetric under the following
conditions:

(a1) f is η-quasisymmetric on each set Xi;
(a2) f(X1) ∩ f(X2) = f(X1 ∩X2);
(a3) ∠(X1, X2) > 0 and ∠(f(X1), f(X2)) > 0;
(a4) the map f is η-quasisymmetric at y for any y ∈ X1∩X2 i.e., for all y ∈ X1∩X2,

for any x1, x2 ∈ X1 ∪X2,

|f(x1)− f(y)|
|f(x2)− f(y)| ≤ η

( |x1 − y|
|x2 − y|

)
.

Proof of Theorem 3.1. In order to apply Theorem 3.2, it just remains to verify
(a4) for x1 ∈ X1, x2 ∈ X2 and y ∈ Y .

Since diamY ≥ µdiamX1, there is some ŷ ∈ Y such that |x1 − y| ≥ |y − ŷ| ≥
λµ|x1 − y|. Therefore

|f(x1)− f(y)|η(1) ≥ |f(ŷ)− f(y)| ≥ 1

η(1/(λµ))
|f(x1)− f(y)|

so that
|f(x2)− f(y)|
|f(x1)− f(y)| . |f(x2)− f(y)|

|f(ŷ)− f(y)| ≤ η

( |x2 − y|
|ŷ − y|

)
≤ η

( |x2 − y|
λµ|x1 − y|

)

and
|f(x1)− f(y)|
|f(x2)− f(y)| . |f(ŷ)− f(y)|

|f(x2)− f(y)| ≤ η

( |ŷ − y|
|x2 − y|

)
≤ η

( |x1 − y|
|x2 − y|

)

Thus (a4) holds. ¤
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4. Sewing metric spaces

In this section, we prove Theorem 1. Then we look at how properties are pre-
served under gluing and provide a proof of Theorem 4.

Proof of Theorem 1. Let dj be the metric on Xj, j = 1, 2. We may normalise
them so that diamY1 = diamY2. We apply Theorem 2 to (X1, d1), (Y2, d2) and to the
quasisymmetric embedding f−1 : Y2 → X1. We obtain a metric d̂1 on X1 which is
power quasisymmetric to d1 on X1 and its restriction to Y1 is bi-Lipschitz to d2 on
Y2 via the map f . Moreover, the identity is also locally quasisimilar on X1 \ Y1 with
respect to d1 and d̂1.

Let us first define a function q̂ : X̂ × X̂ → R+.

• If x1, x
′
1 ∈ X1, set q̂(x1, x

′
1) = d̂1(x1, x

′
1).

• If x2, x
′
2 ∈ X2, set q̂(x2, x

′
2) = d2(x2, x

′
2).

• If x1 ∈ X1 and x2 ∈ X2, set q̂(x1, x2) = q̂(x2, x1) = infy∈Y1{d̂1(x1, y) +
d2(x2, f(y))}.

Define finally

d̂(x, y) = inf
∑

q̂(xj, xj+1)

where the infimum is taken over all finite chains x0, . . . , xn with x0 = x and xn = y.
Then d̂ is a metric, equal to d̂1 on X1 by (5) and bi-Lipschitz to d2 on X2 (since
both metrics d̂1 and d2 are just bi-Lipschitz on the seam, it is not clear why the
restriction of d̂ to X2 should coincide with d2). Hence d̂ is locally quasisimilar on
(X1 \ Y1) ∪ (X2 \ Y2).

It also follows from the definition of d̂ that the seam of this sewing has a positive
angle.

It remains to prove that the gauge of X̂ is well defined. Let us assume that we
are given two metrics d̂ and d̂′ on X̂ such that the angle at the seam Y = Y1 = Y2

is positive in both cases, and the embeddings Id : Xj → X̂ are all quasisymmetric.
Then the identity map Id : (X̂, d̂) → (X̂, d̂′) is a quasisymmetric map restricted to
each Xj, j = 1, 2. The assumptions of Theorem 3.1 are clearly satisfied, so the map
Id : (X̂, d̂) → (X̂, d̂′) is globally quasisymmetric: both metrics d̂ and d̂′ determine the
same gauge. This implies in particular that if instead of d1 and d2, we had started
with other metrics in their respective gauge, then the metric obtained would also
define the same gauge on X̂. ¤

Remark. If we assume that Y is bounded but (X1, d1) and (X2, d2) are both
unbounded, then the gauge of the gluing is not well-defined. Let d̂ be the metric on
X̂ obtained with d1 and d2, and let d̂′ be the metric obtained with d1 and d

1/2
2 . Let

us fix y ∈ Y . For x1 ∈ X1 far enough from Y , it follows that d̂(x1, y) ³ d̂(x1, y) ³
d1(x1, y). Similarly, if x2 ∈ X2 is far enough from Y , then d̂(x2, y) ³ d2(x2, y) and
d̂′(x2, y) ³ d2(x2, y)1/2. Therefore, if we choose x1 and x2 such that d1(x1, y) ³
d2(x2, y) then d̂(x1, y) ³ d̂(x2, y) but d̂′(x2, y) ³ d̂′(x1, y)1/2 so the identity map is
not quasisymmetric.

We now turn to properties of X̂ inherited from X1 and X2. We note that since
the embedding (X1 \ Y1, d1) → (X̂, d̂) is a local quasisimilarity and the embedding
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(X2, d2) → (X̂, d̂) is bi-Lipschitz, the Hausdorff dimensions are related by dim X̂ =
max{dim(X1 \ Y1), dim X2} ≤ max{dim X1, dim X2}. Relabeling the spaces so that
dim Y2 ≥ dim Y1 would yield the equality.

Since the gauge of the gluing in Theorem 4 does not depend on the initial metrics
of the conformal gauges of X1 and X2, it follows from Corollary 3 that

dimc X̂ = max{dimc X1, dimc X2} .

Proposition 4.1. We consider metric spaces as in Theorem 1. If Y1 and Y2 are
porous, and X1 and X2 are both Q-Ahlfors regular, then X̂ is Q-Ahlfors regular as
well.

Proof. Since Y2 is porous in an Q-regular space, the assumptions of Proposi-
tion 2.18 are satisfied (cf. §1.1), so (X1, d̂1) is Q-Ahlfors regular. Therefore X̂ is also
Ahlfors regular since the metrics are bi-Lipschitz equivalent. ¤

We restate Theorem 4:

Corollary 4.2. Let us assume that X1 and X2 are Q-Loewner and Q-regular
proper metric spaces, each containing a uniformly perfect and porous closed subset
Y1 and Y2 which are quasisymmetrically equivalent. We assume that X1 is bounded
if Y1 is. Then X̂ is also Q-Ahlfors regular and Q-Loewner.

Proof. From Proposition 4.1, it is known that X̂ is Q-Ahlfors regular. Further-
more, (X1, d̂1) is also Loewner. Thus, (X1, d̂) and (X2, d̂) are both Loewner and
Ahlfors regular.

Since the gluing makes a positive angle, the space X̂ is quasiconvex. Therefore,
it is enough to prove that X̂ admits a (1, Q)-Poincaré inequality. We already know
that (X1, d̂) and (X2, d̂) both carry (1, Q)-Poincaré inequalities.

Since (Y, d̂) is uniformly perfect in a Q-Ahlfors regular space, it follows from
Theorem 1.1 that there is some s ∈ (0, Q) such that Hs(Y ∩ B(y, r)) & rs. Thus,
the assumptions of Theorem 6.15 in [14] are satisfied and X̂ admits a (1, Q)-Poincaré
inequality: X̂ is also a Loewner space. ¤
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