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Two problems have been brought to our attention since the publication of our
paper “New characterizations of Bergman spaces” [5] which will be referred to as
“the paper” in what follows. The first issue concerns a result which we thought was
well-known but was actually not quite so. The second issue concerns a lack of details
in a major step of the proof of Theorem 2 in the paper. We will clarify these issues
in this addendum.

In addition, Kwon sent [3] to the first named author before our paper was ac-
cepted for publication, but we failed to acknowledge Kwon’s paper. We wish to
apologize here. Kwon’s paper [3] proves the one-dimensional case of our main results
for Bergman spaces with more general weights under the additional assumption that
f(0) = 0. The one dimensional case of the Littlewood–Paley inequality can also be
found in [1]. Related work for Hardy spaces on the unit ball can be found in [6].

We asserted in the paper that Lemma 9 could be found in [4]. This is not the
case. The first inequality in Lemma 9,

(1)
∫

Bn

|f |p dv ≤ C

[
|f(0)|p +

∫

Bn

|f(z)|p−2|∇̃f(z)|2 dv(z)

]
,

was not used anywhere in the paper. However, the second inequality in Lemma 9,

(2) |f(0)|p +

∫

Bn

|f(z)|p−2|∇̃f(z)|2 dv(z) ≤ C

∫

Bn

|f |p dv,

was used in the paper to prove the inequality

|f(0)|p + I4(f) ≤ CI1(f).

To prove (2), we use the identity

(3)
∫

Bn

|f |p dv = |f(0)|p + cp,n

∫

Bn

|∇̃f(z)|2|f(z)|p−2G1(z)(1− |z|2)−n−1 dv(z),

where

G1(z) =

∫ 1

|z|

(1− t2)n−1(1− t2n)

t2n−1
dt.
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Identity (3), which was stated as Exercise 4.5 in [7], follows from Theorem 4.23 of [7]
and integration in polar coordinates. Since

G1(z) ≥
∫ 1

|z|

(1− t)n−12nt2n−1(1− t) dt

t2n−1
=

2n

n + 1
(1− |z|)n+1,

we obtain inequality (2).
Taking q = 2 in Theorem 2 of the paper, we obtain Lemma 9 as a consequence.
There is a second point in the paper that warrants clarification. Namely, we

proved that for p < q < p + 2,

cI1(f) ≤ |f(0)|p + I2(f)
1
r I1(f)

1
s ,

and we then wrote that from this one easily deduces

I1(f) ≤ C[|f(0)|p + I2(f)].

This is true if f is holomorphic in a neighborhood of the closed ball. If f is arbitrary,
we want to apply this fact to the functions

fρ(z) = f(ρz), 0 < ρ < 1,

to get
1

ρ2n+2α

∫

ρBn

|f(w)|p(ρ2 − |w|2)α dv(w)

≤ C|f(0)|p +
C

ρ2n+2α+2q

∫

ρBn

|Rf(w)|q|f(w)|p−q(ρ2 − |w|2)q+α dv(w).

When q + α ≥ 0, we let ρ → 1− and apply Fatou’s lemma on the left hand side and
the monotone convergence theorem on the right to get the desired result. However,
if q + α < 0, which implies p < 1, we cannot apply the monotone convergence
theorem. In this case, we can use a trick due to Kwon [2, 3] as follows. From the
Littlewood–Paley type inequality

Mp
p (r, f) ≤ C|f(0)|p + C

∫

ρBn

(ρ− |z|)p−1|Rf(z)|p dv(z), p < 1, 1
2

< ρ < 1,

we get as in [2, 3]
∫

ρBn

|f(z)|p(1− |z|2)α dv(z) ≤ C|f(0)|p + C

∫

ρBn

|Rf(z)|p(1− |z|2)p+α dv(z).

If we replace I1(f) and I2(f) by I1(ρ, f) and I2(ρ, f), respectively, where

I1(ρ, f) =

∫

ρBn

|f(z)|p dvα(z),

and

I2(ρ, f) =

∫

ρBn

|f(z)|p−q|(1− |z|2)Rf(z)|q dvα(z),

we obtain
I1(ρ, f) ≤ C [|f(0)|p + I2(ρ, f)] .

Let ρ → 1 then we obtain the desired result.
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