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Abstract. In this paper we consider the nonlinear viscoelastic equation

utt −∆u +
∫ t

0

g(t− τ)∆u(τ) dτ + a(x)|ut|mut + b|u|γu = 0

in a bounded domain. We prove that, for certain class of relaxation functions and certain initial
data, the decay rate of the solution energy is similar to that of the relaxation function regardless of
the presence or the absence of the frictional damping. This result improves earlier ones in Berrimi
and Messaoudi [1] in which only the exponential decay rate is obtained.

1. Introduction

In [1], Berrimi and Messaoudi studied the following nonlinear problem:

utt −∆u +

∫ t

0

g(t− τ)∆u(τ) dτ + a(x)ut|ut|m + |u|γu = 0 in Ω× (0,∞),

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, γ > 0,
m ≥ 0, g is a positive function, and a : Ω → R+ is a function, which may vanish on
any part of Ω (including Ω itself). Under the condition that

g′(t) ≤ −ξg(t) for t ≥ 0

for some positive constant ξ, the authors obtained an exponential decay result under
weaker conditions on both a and g which improved [5].

In fact, in [5], Cavalcanti et al. dealt with the equation

utt −∆u +

∫ t

0

g(t− τ)∆u(τ) dτ + a(x)ut + |u|γu = 0 in Ω× (0,∞),

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.2)

where a : Ω → R+ is a function, which may be null on a part of Ω. Assuming that
a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometry restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

2000 Mathematics Subject Classification: Primary 35B35, 35L20, 35L70
Key words: General decay, viscoelastic equation, exponential decay, polynomial decay, relax-

ation function, nonlinear localized damping.



292 Wenjun Liu

such that ‖g‖L1((0,∞)) is small enough, they obtained an exponential decay result of
energy for (1.2). This work extended the result of Zuazua [20], in which he considered
(1.2) with g = 0 and the linear damping is localized. A related problem, in a bounded
domain, of the form

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u(τ) dτ − γ∆ut = 0,

for ρ > 0, was also studied by Cavalcanti et al. [3]. A global existence result for
γ ≥ 0, as well as an exponential decay for γ > 0, has been established. This last
result has been extended to a situation, where γ = 0, by Messaoudi and Tatar [18, 17]
and exponential and polynomial decay results have been established in the absence,
as well as in the presence, of a source term.

Recently, Messaoudi [15] studied (1.1) without the nonlinear localized damping
term a(x)|ut|mut and the nonlinear term |u|γu. He proved that the solution energy
decays at the same rate of decay of the relaxation function, which is not necessarily
decaying in a polynomial or exponential fashion. Motivated by the ideas of Messaoudi
[15], Han and Wang [8] investigated the general decay of solution energy for the
nonlinear viscoelastic equation

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− τ)∆u(τ) dτ + |ut|mut = 0.

Since the term −∆utt was included, the nonlinear damping term |ut|mut can be
controlled there. For other related works, we refer the reader to [6]–[14] and [19].

In the present paper we are also concerned with problem (1.1). Our intention
is to show that, for certain class of relaxation functions and certain initial data, the
decay rate of the solution energy is similar to that of g (see (G2) below) regardless
of the presence or the absence of the frictional damping. Therefore, our result allows
a larger class of relaxation functions and improves earlier results in [1] in which
only the exponential rate was considered. Our ideas come from [15] while we should
overcome the difficulty brought by the control of the nonlinear localized damping
term a(x)ut|ut|m.

The paper is organized as follows. In the next section, we introduce some nota-
tions and prepare some materials. Section 3 contains the statement and proof of our
result concerning the general decay of the solution.

2. Preliminaries

In this section, we present some materials needed in the proof of our main result.
We use the standard Lebesgue space Lp(Ω) and Sobolev space H1

0 (Ω) with their
usual scalar products and norms. We will also use the embedding H1

0 (Ω) ↪→ Lq(Ω)
for 2 ≤ q ≤ 2n/(n − 2) if n ≥ 3 or q ≥ 2 if n = 1, 2 and Lr(Ω) ↪→ Lq(Ω) for q < r.
We will use the same embedding constant denoted by Cp; i.e.,

‖v‖q ≤ Cp‖∇v‖2, ‖v‖q ≤ Cp‖v‖r.

For the relaxation function g(t) we assume
(G1) g : R+ → R+ is a bounded C 1 function such that g(0) > 0 and

1−
∫ ∞

0

g(s) ds = l > 0.
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(G2) There exist a positive differentiable functions ξ(t) satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0,

where∣∣∣∣
ξ′(t)
ξ(t)

∣∣∣∣ ≤ k, ξ(t) > 0, ξ′(t) ≤ 0 ∀ t > 0,

∫ +∞

0

ξ(t) dt = +∞.

Remark 2.1. (G1) is necessary to guarantee the hyperbolicity of the equa-
tion (1.1).

Remark 2.2. Since ξ(t) is nonincreasing then ξ(t) ≤ ξ(0) = M .

We introduce the same “modified” energy functional as in [1]

(2.1) E (t) :=
1

2

(
1−

∫ t

0

g(s) ds
)
‖∇u(t)‖2

2 +
1

2
‖ut‖2

2 +
1

2
(g ◦ ∇u)(t) +

1

γ + 2
‖u‖γ+2

γ+2,

where

(2.2) (g ◦ v)(t) =

∫ t

0

g(t− τ)‖v(t)− v(τ)‖2
2 dτ, p ≥ 1.

Lemma 2.3. (See Remark 2.3 of [1]) The modified energy functional satisfies,
along the solution of (1.1),

E ′(t) ≤ −
( ∫

Ω

a(x)|ut|m+2 dx− 1

2
(g′ ◦ ∇u)(t) +

1

2
g(t)‖∇u(t)‖2

)

≤ −
∫

Ω

a(x)|ut|m+2 dx +
1

2
(g′ ◦ ∇u)(t) ≤ 0.

(2.3)

Remark 2.4. This means that the “modified” energy is uniformly bounded (by
E (0)) and is decreasing in t.

We also need the following lemma.

Lemma 2.5. (See Lemma 3.1 of [1]) Let m ≤ 2/(n − 2) for n ≥ 3. Then there
exists a constant C depending on Cp, ‖a‖∞, E (0), and m only, such that the solution
of (1.1) satisfies

(2.4)
∫

Ω

a(x)|u|m+2 dx ≤ C
(‖∇u‖2

2 + ‖u‖γ+2
γ+2

)
.

3. General decay of the solution

In this section we state and prove that the rate of decay of energy is similar to
that of the relaxation function. We suppose that u0, u1 ∈ H1

0 (Ω)×L2(Ω). Then, the
existence of a unique global solution is guaranteed by Proposition 2.1 of [1].

We define the functional

(3.1) F (t) := E (t) + ε1Ψ(t) + ε2χ(t)

where ε1 and ε2 are positive constants to be specified later and

Ψ(t) := ξ(t)

∫

Ω

uut dx,

χ(t) := −ξ(t)

∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx.
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Remark 3.1. This functional for ξ(t) ≡ 1 was first introduced in [1, 2], and for
ξ(t) 6≡ 1 it was first introduced in [15].

Our main result reads as follow.

Theorem 3.2. Assume that g satisfies (G1) and (G2), such that

0 ≤ max{m, γ} ≤ 2

n− 2
, n ≥ 3.

Then, for each t0 > 0, there exist strictly positive constants K and κ such that the
solution of (1.1) satisfies

E(t) ≤ Ke
−κ

∫ t
t0

ξ(s)ds
, t ≥ t0.(3.2)

To prove the above result, we establish a series of lemmas by combining the
arguments of [1] and [15].

Lemma 3.3. For ε1 and ε2 small, we have

(3.3) α1F (t) ≤ E (t) ≤ α2F (t)

holds for two positive constants α1 and α2.

Proof. By using Young’s inequality, Sobolev embedding theorem and (2.1), we
easily deduce that

F (t) ≤ E (t) +
ε1

2
ξ(t)

∫

Ω

|ut|2 dx +
ε1

2
ξ(t)

∫

Ω

|u|2 dx

+
ε2

2
ξ(t)

∫

Ω

|ut|2 dx +
ε2

2
ξ(t)

∫

Ω

( ∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)2

dx

≤ E (t) +
ε1

2
M

∫

Ω

|ut|2 dx +
ε1

2
CpM

∫

Ω

|∇u|2 dx

+
ε2

2
M

∫

Ω

|ut|2 dx +
ε2

2
Cp(1− l)M(g ◦ ∇u)(t) ≤ 1

α1

E (t).

Similarly, we have

F (t) ≥ E (t)− ε1

2
M

∫

Ω

|ut|2 dx− ε1

2
CpM

∫

Ω

|∇u|2 dx

− ε2

2
M

∫

Ω

|ut|2 dx− ε2

2
Cp(1− l)M(g ◦ ∇u)(t)

≥ 1

2
l‖∇u(t)‖2

2 +
1

2
‖ut‖2

2 +
1

2
(g ◦ ∇u)(t) +

1

γ + 2
‖u‖γ+2

γ+2

− ε1 + ε2

2
M

∫

Ω

|ut|2 dx− ε1

2
CpM

∫

Ω

|∇u|2 dx− ε2

2
Cp(1− l)M(g ◦ ∇u)(t)

≥
(

l

2
− ε1

2
CpM

)
‖∇u(t)‖2

2 +

(
1

2
− ε1 + ε2

2
M

)
‖ut‖2

2

+

(
1

2
− ε2

2
Cp(1− l)M

)
(g ◦ ∇u)(t) +

1

γ + 2
‖u‖γ+2

γ+2 ≥
1

α1

E (t)

for ε1 and ε2 small enough. ¤
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Lemma 3.4. Under the assumptions of Theorem 3.2, the functional

Ψ(t) := ξ(t)

∫

Ω

uut dx

satisfies, along solutions of (1.1),

Ψ′(t) ≤
[
1 +

2kC2
p

l

]
ξ(t)

∫

Ω

u2
t dx− l

8
ξ(t)

∫

Ω

|∇u|2 dx

− 4− l

4
ξ(t)

∫

Ω

|u|γ+2 dx +
1− l

2l
ξ(t)(g ◦ ∇u)(t)

+ c(δ)ξ(t)

∫

Ω

a(x)|ut|m+2 dx.

(3.4)

Proof. Using equation (1.1), we easily see that

Ψ′(t) = ξ(t)

∫

Ω

(uutt + u2
t ) dx + ξ′(t)

∫

Ω

uut dx

= ξ(t)

∫

Ω

u2
t dx− ξ(t)

∫

Ω

|∇u|2 dx

+ ξ(t)

∫

Ω

∇u(t)

∫ t

0

g(t− τ)∇u(τ) dτ dx− ξ(t)

∫

Ω

|u|γ+2 dx

− ξ(t)

∫

Ω

a(x)|ut|mutu dx + ξ′(t)
∫

Ω

uut dx.

(3.5)

For the third term of the right-hand side of (3.5), we have
∫

Ω

∇u(t)

∫ t

0

g(t− τ)∇u(τ) dτ dx

≤ 1

2

∫

Ω

|∇u(t)|2 dx +
1

2

∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|) dτ
)2

dx.

We then use Cauchy–Schwarz and Young’s inequality, and the fact that
∫ t

0
g(τ) dτ ≤∫∞

0
g(τ) dτ = 1− l to obtain, for any η > 0 (see also [1])

∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|) dτ
)2

dx

≤
∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)| dτ
)2

dx +

∫

Ω

( ∫ t

0

g(t− τ)|∇u(t)| dτ
)2

dx

+ 2

∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)| dτ
)( ∫ t

0

g(t− τ)|∇u(t)| dτ
)
dx

≤
(

1 +
1

η

) ∫

Ω

∫ t

0

g(t− τ) dτ

∫ t

0

g(t− τ)|∇u(τ)−∇u(t)|2 dτ dx

+ (1 + η)

∫

Ω

|∇u(t)|2
( ∫ t

0

g(t− τ) dτ
)2

dx
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≤ (1 + η)(1− l)2

∫

Ω

|∇u(t)|2 dx

+

(
1 +

1

η

)
(1− l)

∫

Ω

∫ t

0

g(t− τ)|∇u(τ)−∇u(t)|2 dτ dx.

For the fifth term of the right-hand side of (3.5), we use Young’s inequality and
Lemma 2.5 to get

∫

Ω

a(x)|ut|mutu dx ≤ δ

∫

Ω

a(x)|u|m+2 dx + c(δ)

∫

Ω

a(x)|ut|m+2 dx

≤ c(δ)

∫

Ω

a(x)|ut|m+2 dx + δC{‖∇u‖2
2 + ‖u‖γ+2

γ+2}.
(3.6)

By combining (3.5)–(3.6) and using
∫

Ω

uut dx ≤ αC2
p‖∇u‖2

2 +
1

4α
‖ut‖2

2,

we have

Ψ′(t) ≤
[
1 +

1

4α

∣∣∣∣
ξ′(t)
ξ(t)

∣∣∣∣
]

ξ(t)

∫

Ω

u2
t dx− ξ(t)

∫

Ω

|u|γ+2 dx

− 1

2

[
1− (1 + η)(1− l)2 − 2

∣∣∣∣
ξ′(t)
ξ(t)

∣∣∣∣ αC2
p

]
ξ(t)

∫

Ω

|∇u(t)|2 dx

+
1

2

(
1 +

1

η

)
(1− l)ξ(t)(g ◦ ∇u)(t) + c(δ)ξ(t)

∫

Ω

a(x)|ut|m+2 dx

+ δCξ(t){‖∇u‖2
2 + ‖u‖γ+2

γ+2}.

Since
∣∣∣ ξ′(t)

ξ(t)

∣∣∣ ≤ k, we get

Ψ′(t) ≤
[
1 +

1

4α
k

]
ξ(t)

∫

Ω

u2
t dx− ξ(t)

∫

Ω

|u|γ+2 dx

− 1

2

[
1− (1 + η)(1− l)2 − 2kαC2

p

]
ξ(t)

∫

Ω

|∇u(t)|2 dx

+
1

2

(
1 +

1

η

)
(1− l)ξ(t)(g ◦ ∇u)(t) + c(δ)ξ(t)

∫

Ω

a(x)|ut|m+2 dx

+ δCξ(t){‖∇u‖2
2 + ‖u‖γ+2

γ+2}.

By choosing η = l/(1− l), δ = l/4C and α = l/8kC2
p , (3.4) is established. ¤

Lemma 3.5. Under the assumptions of Theorem 3.2, the functional

χ(t) := −ξ(t)

∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx
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satisfies, along solutions of (1.1),

χ′(t) ≤ δ

{
1 + 2(1− l)2 + Cp

(
2E (0)

l

)γ}
ξ(t)‖∇u‖2

2

+

[(
1

2δ
+ 2δ +

Cp(k + 1)

4δ

)
(1− l)+

C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2

]
ξ(t)(g ◦ ∇u)(t)

+
g(0)

4δ
Cpξ(t)(−(g′ ◦∇u)(t)) +

[
δ(k + 1)−

∫ t

0

g(s) ds

]
ξ(t)

∫

Ω

u2
t dx

(3.7)

+ δ(1− l)
m + 1

m + 2
ξ(t)

∫

Ω

a(x)|ut|m+2 dx.

Proof. Direct computations, using (1.1), yield

χ′(t) = −ξ(t)

∫

Ω

utt

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

− ξ(t)

∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx

− ξ(t)

(∫ t

0

g(s)ds

) ∫

Ω

u2
t dx− ξ′(t)

∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

= ξ(t)

∫

Ω

∇u(t)

(∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ

)
dx(3.8)

− ξ(t)

∫

Ω

(∫ t

0

g(t− τ)∇u(τ) dτ

)(∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ

)
dx

+ ξ(t)

∫

Ω

a(x)ut|ut|m
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

+ ξ(t)

∫

Ω

|u|γu
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

− ξ(t)

∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx− ξ(t)

(∫ t

0

g(s) ds

) ∫

Ω

u2
t dx

− ξ′(t)
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx.

Similarly to (3.5), we estimates the right-hand side terms of the above inequality (see
also [1]). So for δ > 0, we have: For the first term,

∫

Ω

∇u(t)

(∫ t

0

g(t− τ)(∇u(t)−∇u(τ)) dτ

)
dx

≤ δ

∫

Ω

|∇u|2 dx +
1− l

4δ
(g ◦ ∇u)(t).

(3.9)

For the second term,
∫

Ω

(∫ t

0

g(t− s)∇u(s) ds

)(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

≤ δ

∫

Ω

∣∣∣∣
∫ t

0

g(t− s)∇u(s) ds

∣∣∣∣
2

dx +
1

4δ

∫

Ω

∣∣∣∣
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

∣∣∣∣
2

dx
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≤ δ

∫

Ω

(∫ t

0

g(t− s)|∇u(t)−∇u(s)| ds

)2

dx

+ 2δ(1− l)2

∫

Ω

|∇u|2 dx +
1

4δ
(1− l)(g ◦ ∇u)(t)

≤
(

2δ +
1

4δ

)
(1− l)(g ◦ ∇u)(t) + 2δ(1− l)2

∫

Ω

|∇u|2 dx.

For the third term, we use Hölder’s inequality, Young’s inequality and Lemma 2.3 to
get

∫

Ω

a(x)ut|ut|m
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

≤
∫ t

0

g(t− τ)

(∫

Ω

a(x)|ut|m+2 dx

)m+1
m+2

(∫

Ω

a(x)|u(t)− u(τ)|m+2 dx

) 1
m+2

dτ

≤ δ
m + 1

m + 2

∫ t

0

g(t− τ) dτ

∫

Ω

a(x)|ut|m+2 dx

+
C(δ)

m + 2

∫ t

0

g(t− τ)

∫

Ω

a(x)|u(t)− u(τ)|m+2 dx dτ

≤ δ(1− l)
m + 1

m + 2

∫

Ω

a(x)|ut|m+2 dx

+
C(δ)

m + 2
‖a‖∞

∫ t

0

g(t− τ)‖∇u(t)−∇u(τ)‖m+2
2 dτ

≤ δ(1− l)
m + 1

m + 2

∫

Ω

a(x)|ut|m+2 dx +
C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2

(g ◦ ∇u)(t).

For the fourth term,
∫

Ω

|u|γu
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

≤ δ

∫

Ω

|u|2(γ+1) dx +
1

4δ

∫

Ω

( ∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)2

dx.

(3.10)

We use (2.1) and (2.3) to obtain

(3.11)
∫

Ω

|u|2(γ+1) dx ≤ Cp‖∇u‖2(γ+1)
2 ≤ Cp

(
2E (0)

l

)γ

‖∇u‖2
2.

By inserting (3.11) in (3.10), we get
∫

Ω

|u|γu
∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx

≤ δCp

(
2E (0)

l

)γ

‖∇u‖2
2 +

Cp(1− l)

4δ
(g ◦ ∇u)(t).
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For the fifth term,

−
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx

≤ δ

∫

Ω

|ut|2 dx +
g(0)

4δ
Cp

∫

Ω

∫ t

0

−g
′
(t− s)|∇u(t)−∇u(s)|2 ds dx.

(3.12)

For the last term,
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx ≤ δ

∫

Ω

u2
t dx +

Cp(1− l)

4δ
(g ◦ ∇u)(t).(3.13)

By combining (3.8)–(3.13), we get

χ′(t) ≤ δ

{
1 + 2(1− l)2 + Cp

(
E (0)

l

)2γ
}

ξ(t)‖∇u‖2
2

+

[(
1

2δ
+2δ+

Cp(k + 1)

4δ

)
(1− l)+

C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2

]
ξ(t)(g ◦ ∇u)(t)

+
g(0)

4δ
Cpξ(t)(−(g′ ◦ ∇u)(t)) +

[
δ

(∣∣∣∣
ξ′(t)
ξ(t)

∣∣∣∣ + 1

)
−

∫ t

0

g(s) ds

]
ξ(t)

∫

Ω

u2
t dx

(3.14)

+ δ(1− l)
m + 1

m + 2
ξ(t)

∫

Ω

a(x)|ut|m+2 dx.

Since
∣∣∣ ξ′(t)

ξ(t)

∣∣∣ ≤ k, the assertion of the lemma is established. ¤

Proof of Theorem 3.2. Since g is positive, continuous, and g(0) > 0 then for any
t0 > 0 we have

(3.15)
∫ t

0

g(s) ds ≥
∫ t0

0

g(s) ds = g0 > 0 ∀t ≥ t0.

Using (3.1), (3.4), (3.7), and (3.15), we obtain

F ′(t) ≤ −
[
1− ε1c(δ)− ε2δ(1− l)

m + 1

m + 2

]
ξ(t)

∫

Ω

a(x)|ut|m+2 dx

−
[
ε2{g0 − δ(k + 1)} − ε1

(
1 +

2kC2
p

l

)]
ξ(t)

∫

Ω

u2
t dx

−
[
ε1l

8
− ε2δ

(
1 + 2(1− l)2 + Cp

(
2E (0)

l

)γ)]
ξ(t)‖∇u‖2

2

− ε1
4− l

4
ξ(t)

∫

Ω

|u|γ+2 dx +

[
1

2
− ε2

g(0)

4δ
CpM

]
(g′ ◦ ∇u)(t)

+

{
ε1(1− l)

2l
+ ε2

[(
1

2δ
+ 2δ +

Cp(k + 1)

4δ

)
(1− l)

+
C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2
]}

ξ(t)(g ◦ ∇u)(t).
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At this point we choose δ so small that
g0 − δ(k + 1)

1 +
2kC2

p

l

>
1

2
g0,

8

l
δ

{
1 + 2(1− l)2 + Cp

(
2E (0)

l

)γ}
<

1

4
g0.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

(3.16)
1

4
g0ε2 < ε1 <

1

2
g0ε2

will make

k1 := ε2{g0 − δ(k + 1 + ‖a‖∞)} − ε1

(
1 +

2kC2
p

l

)
> 0

k2 :=
ε1l

8
− ε2δ

{
1 + 2(1− l)2 + Cp

(
2E (0)

l

)γ}
> 0.

We then pick ε1 and ε2 so small that (3.3) and (3.16) remain valid and

k3 := 1− ε1c(δ)− ε2δ(1− l)
m + 1

m + 2
> 0,

k4 :=

[
1

2
− ε2

g(0)

4δ
CpM

]
−

{
ε1(1− l)

2l
+ ε2

[(
1

2δ
+ 2δ +

Cp(k + 1)

4δ

)
(1− l)

+
C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2
]}

> 0.

Hence[
1

2
− ε2

g(0)

4δ
CpM

]
(g′ ◦ ∇u)(t) +

{
ε1(1− l)

2l
+ ε2

[(
1

2δ
+ 2δ +

Cp(k + 1)

4δ

)
(1− l)

+
C(δ)

m + 2
‖a‖∞

(
2E (0)

l

)m
2
]}

ξ(t)(g ◦ ∇u)(t) ≤ −k4ξ(t)(g ◦ ∇u)(t),

since ξ(t) is nonincreasing. Therefore, we arrive at

F ′(t) ≤ −βξ(t)E (t) ∀t ≥ t0.

This inequality and (3.3) yield

F ′(t) ≤ −βα1ξ(t)F (t) ∀t ≥ t0.

A simple integration leads to

F (t) ≤ F (t0)e
−βα1

∫ t
t0

ξ(s) ds ∀t ≥ t0.

This inequality and (3.3) yields

(3.17) E (t) ≤ F (t0)e
−βα1

∫ t
t0

ξ(s) ds
= Ke

−κ
∫ t

t0
ξ(s) ds ∀t ≥ t0,

which completes the proof. ¤
Similar as in [15], we have the following Remarks.

Remark 3.6. This result generalizes and improves the results of [1]. In partic-
ular, it allows some relaxation functions which satisfy g′ ≤ −agp, 1 ≤ p < 2 instead
of p = 1.
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Remark 3.7. Note that the exponential decay estimate, given in [1] is only a
particular case of (3.17). More precisely, we can obtain exponential decay for ξ(t) ≡ a
and polynomial decay for ξ(t) ≡ a(1 + t)−1, where a > 0 is a constant.

Remark 3.8. Estimate (3.17) is also true for t ∈ [0, t0] by virtue of the continuity
and boundedness of E(t) and ξ(t).
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