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Abstract. We prove that in variable exponent spaces Lp(·)(Ω), where p(·) satisfies the log-
condition and Ω is a bounded domain in Rn with the property that Rn\Ω has the cone property,
the validity of the Hardy type inequality∥∥∥∥

1
δ(x)α

∫

Ω

ϕ(y)
|x− y|n−α

dy

∥∥∥∥
p(·)

5 C‖ϕ‖p(·), 0 < α < min
(

1,
n

p+

)
,

where δ(x) = dist(x, ∂Ω), is equivalent to a certain property of the domain Ω expressed in terms of
α and χΩ.

1. Introduction

We consider the Hardy inequality of the form

(1)
∥∥∥∥

1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥
p(·)

5 C‖ϕ‖p(·), 0 < α < min

(
1,

n

p+

)
,

within the frameworks of Lebesgue spaces with variable exponents p(x), p+= sup
x∈Ω

p(x),

where δ(x) = dist(x, ∂Ω). We refer to [8, 9, 18] for Hardy type inequalities. The
multidimensional Hardy inequality of the form

(2)
∫

Ω

|u(x)|pδ(x)−p+a dx 5 C

∫

Ω

|∇u(x)|pδ(x)a dx, u ∈ C1
0(Ω),

appeared in [23] for bounded domains Ω ⊂ Rn with Lipschitz boundary and 1 <
p < ∞ and a > p− 1. This inequality was generalized by Kufner [17, Theorem 8.4]
to domains with Hölder boundary, and after that by Wannebo [40] to domains with
generalized Hölder condition. Hajłasz [10] and Kinnunen and Martio [12] obtained a
pointwise inequality

|u(x)| 5 δ(x)M |∇u|(x),

where M is a kind of maximal function depending on the distance of x to the
boundary. This pointwise inequality combined with the knowledge of boundedness
of Hardy–Littlewood maximal operator implies a “local version near the boundary”
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of Hardy’s inequality. This approach was used in the paper of Hajłasz [10] in the
case of classical Lebesgue spaces.

Within the frameworks of variable exponent Lebesgue spaces, the Hardy inequal-
ity in one variable was first obtained in [15], and later generalized in [7], where the
necessary and sufficient conditions for the validity of the Hardy inequality on (0,∞)
were obtained under the assumption that the log-condition on p(x) is satisfied only
at the points x = 0 and x = ∞, see also [19, 20].

For the multidimensional versions of Hardy inequality of form (1) with δ(x)α

replaced by |x− x0|α, x0 ∈ Ω, we refer to [32, 33]. Harjulehto, Hästö and Koskenoja
in [11] obtained the estimate∥∥∥∥

u(x)

δ(x)1−a

∥∥∥∥
p(·)

5 C‖∇u(x)δ(x)a‖p(·), u ∈ W
1,p(·)
0 (Ω),

making use of the approach of [10], under the assumption that a is sufficiently small,
0 5 a < a0.

Basing on some ideas and results of fractional calculus, in Theorem 12 we show
that the problem of the validity of inequality (1) is equivalent to a certain property
of Ω expressed in terms of α and χΩ, see Definition 9 and Theorem 12. We did not
find mentioning such an equivalence in the literature even in the case of constant p.

Note that the continuing interest to the variable exponent Lebesgue spaces Lp(·)

observed last years was caused by possible applications (elasticity theory, fluid me-
chanics, differential equations, see for example [29]). We refer to papers [16, 35] for
basics on the Lebesgue spaces with variable exponents and to the surveys [6, 13, 34]
on harmonic analysis in such spaces. One of the breakthrough results obtained for
variable p(x) was the statement on the boundedness of the Hardy–Littlewood max-
imal operator in the generalized Lebesgue space Lp(·) under certain conditions on
p(x), see [3] and the further development in the above survey papers. The impor-
tance of the boundedness of the maximal operator is known in particular due to the
fact that many convolution operators occurred in applications may be dominated by
the maximal operator, which is also used in this paper.

Note also that the study of pointwise multipliers in the spaces of Riesz potentials
is in fact an open question in case of variable p(x). Meanwhile, the topic of pointwise
multipliers (in particular, in the case of characteristic functions χΩ) in spaces of
differentiable functions, is of importance in the theory of partial differential equations
and other applications, see for instance [28].

The study of pointwise multipliers of spaces of Riesz or Bessel potentials in
the case of constant p may be found in [21, 22, 36], see also [28] for the pointwise
multipliers in the case of more general spaces. We refer also, in the case of constant
p as well, to recent papers [37, 38] on the study of characteristic functions χΩ(x) as
pointwise multipliers.

2. Preliminaries

2.1. On Lebesgue spaces with variable exponent. The basics on variable
Lebesgue spaces may be found in [16, 30], but we recall here some necessary defini-
tions. Let Ω ⊂ Rn be an open set. For a measurable function p : Ω → [1,∞), we
put

p+ = p+(Ω) := ess sup
x∈Ω

p(x) and p− = p−(Ω) := ess inf
x∈Ω

p(x).
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In the sequel we use the notation

(3) P(Ω) := {p ∈ L∞(Ω) : 1 < p− 5 p(x) 5 p+ < ∞}.
The generalised Lebesgue space Lp(·)(Ω) with variable exponent is introduced as

the set of all functions ϕ on Ω for which

%p(·)(ϕ) :=

∫

Ω

|ϕ(x)|p(x) dx < ∞.

Equipped with the norm

‖ϕ‖Lp(·)(Ω) := inf
{

λ > 0 : %p(·)
(ϕ

λ

)
5 1

}
,

this is a Banach space. The modular %p(·)(f) and the norm ‖f‖p(·) are related to each
other by

(4) ‖f‖σ
p(·) 5 %p(·)(f) 5 ‖f‖θ

p(·),

where σ =





ess inf
x∈Ω

p(x), ‖f‖p(·) = 1,

ess sup
x∈Ω

p(x), ‖f‖p(·) 5 1
and θ =





ess inf
x∈Ω

p(x), ‖f‖p(·) 5 1,

ess sup
x∈Ω

p(x), ‖f‖p(·) = 1.

By w-Lip(Ω) we denote the class of all exponents p ∈ L∞(Ω) satisfying the (local)
logarithmic condition

(5) |p(x)− p(y)| 5 C

− ln |x− y| , |x− y| 5 1

2
, x, y ∈ Ω.

By p′(·) we denote the conjugate exponent, given by
1

p(x)
+

1

p′(x)
≡ 1.

2.2. Hardy–Littlewood maximal operator. As usual, the Hardy–Littlewood
maximal operator of a function ϕ on Ω ⊆ Rn is defined as

(6) Mϕ(x) = sup
r>0

1

|B̃(x, r)|

∫

B̃(x,r)

|ϕ(y)| dy, B̃(x, r) = B(x, r) ∩ Ω.

We use the notation

(7) P(Ω) :=
{
p : 1 < p− 5 p+ 5 ∞, ‖M f‖Lp(·)(Ω) 5 C‖f‖Lp(·)(Ω)

}
.

Proposition 1. [3, Theorem 3.5] If Ω is bounded, p ∈ P(Ω) ∩ w-Lip(Ω), then
p ∈ P(Ω).

2.3. Potential and hypersingular integral operators.

Definition 2. For a function ϕ on Rn, the Riesz potential operator Iα is defined
by

(8) Iαϕ(x) =
1

γn(α)

∫

Rn

ϕ(y) dy

|x− y|n−α
= ϕ ∗ kα(x),

where the normalizing constant factor has the form γn(α) =
2απn/2Γ(α

2 )
Γ(n−α

2 )
. The kernel

kα(x) = |x|α−n

γn(α)
is referred to as the Riesz kernel.

Definition 3. The space Iα
(
Lp(·)) = Iα

(
Lp(·)(Rn)

)
, 0 < α < n

p+
, called the

space of Riesz potentials, is the space of functions f representable as f = Iαϕ with
ϕ ∈ Lp(·), equipped with the norm ‖f‖Iα(Lp(·)) = ‖ϕ‖Lp(·) .
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Definition 4. The hypersingular integral operator Dα of order α, known also
as the Riesz derivative, is defined by

(9) Dαf = lim
ε→0

Dα
ε f = lim

ε→0

1

dn,`(α)

∫

|y|>ε

(
∆`

yf
)
(x)

|y|n+α
dy,

where α > 0 and ` > α (see [31, p. 60], for the value of the normalizing constant
dn,`(α)).

It is known that given α, one may choose an arbitrary order ` > α of the finite
difference; the hypersingular integral does not depend on ` under this choice, see [31,
Chapter 3].

In [1], the following statement was proved.

Proposition 5. Let p ∈ P(Rn) ∩P(Rn) and 0 < α < n
p+
. Then

DαIαϕ = ϕ, ϕ ∈ Lp(·)(Rn),

where the hypersingular operator Dα is taken in the sense of convergence of Lp(·)-
norm.

The characterization of the space Iα(Lp(·)(Rn)) is given by the following propo-
sition.

Proposition 6. [2, Theorem 3.2] Let 0 < α < n, p ∈ P(Rn) ∩ P(Rn), p+ < n
α

and let f be a locally integrable function. Then f ∈ Iα
(
Lp(·)) if and only if f ∈

Lq(·) with 1
q(·) = 1

p(·) − α
n
, and there exists the Riesz derivative Dαf in the sense of

convergence in Lp(·).

Remark 7. Theorem 3.2 in [2] was stated under the assumption that p(x) sat-
isfies the local log-condition and the decay condition at infinity. The analysis of
the proof of Theorem 3.2 shows that it is valid under the general assumption p ∈
P(Rn)∩P(Rn) (if one takes into account that p ∈ P ∩P(Rn) ⇔ p′ ∈ P ∩P(Rn),
see [5, Theorem 8.1]).

By Propositions 5 and 6, for the norm ‖f‖Iα(Lp(·)) = ‖ϕ‖Lp(·) in the space of Riesz
potentials Iα

(
Lp(·)(Rn)

)
we have the following equivalence

(10) c1 (‖f‖Lq(·) + ‖Dαf‖Lp(·)) 5 ‖f‖Iα(Lp(·)) 5 c2 (‖f‖Lq(·) + ‖Dαf‖Lp(·)) ,

where 1
q(·) = 1

p(·) − α
n
and c1 > 0, c2 > 0 do not depend on f .

2.4. (α, p(·))-property of a domain Ω.

Definition 8. A measurable function g(x) is called a pointwise multiplier in the
space Iα

(
Lp(·)(Rn)

)
, if ‖gIαϕ‖Iα(Lp(·)) 5 C‖ϕ‖Lp(·) .

By equivalence (10), in the case 1 < p+ < n
α
the characteristic function χΩ(x) is

a pointwise multiplier in Iα
(
Lp(·)(Rn)

)
if and only if

(11) ‖Dα(χΩIαϕ)‖Lp(·)(Rn) 5 C‖ϕ‖Lp(·)(Rn) for all ϕ ∈ Lp(·)(Rn).
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We introduce now the following notion related to the property of the character-
istic function χΩ to be a pointwise multiplier, but weaker than that property. Let

EΩf(x) = f̃(x) =

{
f(x), x ∈ Ω

0, x /∈ Ω
be the zero extension of a function f defined on Ω.

Definition 9. We say that the domain Ω has the (α, p(·))-property, if the func-
tion χΩ(x) has the following multiplier property

(12) ‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 C‖ϕ‖Lp(·)(Ω) for all ϕ ∈ Lp(·)(Ω).

Definition 10. Let p ∈ P(Ω) ∩ w-Lip(Ω). For brevity we call an extension
p∗(x) of p(x) to Rn regular, if p∗ ∈ P(Rn) ∩P(Rn), and p+(Rn) = p+(Ω). Such an
extension is always possible, see [4, Theorem 4.2], [26, Lemma 2.2].

Lemma 11. Let p ∈ P(Ω) ∩ w-Lip(Ω). If χΩ is a pointwise multiplier in the
space Iα

(
Lp∗(·)(Rn)

)
under any regular extension p∗(x) of p(x) to Rn, then the

domain Ω has the (α, p(·))-property.
Proof. We have to check condition (12), given that ‖χΩf‖Iα(Lp∗(·)(Rn)) 5 C·

‖f‖Iα(Lp∗(·)(Rn)) under some regular extension of the exponent. We have

‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 ‖Dα(χΩIαEΩϕ)‖Lp∗(·)(Rn).

Since the extension p∗(x) is regular, equivalence (10) is applicable so that

‖Dα(χΩIαEΩϕ)‖Lp(·)(Ω) 5 C‖χΩIαEΩϕ‖Iα(Lp∗(·)(Rn))

5 C‖EΩϕ‖Lp∗(·)(Rn) = C‖ϕ‖Lp(·)(Ω),

which completes the proof. ¤

3. The main result

Theorem 12. Let Ω be a bounded domain in Rn, p ∈ P(Ω) ∩ w-Lip(Ω) and
0 < α < min

(
1, n

p+

)
. If the domain Ω has the (α, p(·))-property, then the Hardy

inequality

(13)
∥∥∥∥

1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥
p(·)

5 C‖ϕ‖p(·)

holds. If the exterior Rn\Ω has the cone property, then the (α, p(·))-property is
equivalent to the validity of the Hardy inequality (13).

4. Proof of Theorem 12

4.1. The principal idea of the proof. The proof of Theorem 12 is based on
the observation that the weight 1

δ(x)α in fact is equivalent to the integral

aΩ(x) :=

∫

Rn\Ω

dy

|x− y|n+α
, x ∈ Ω.

Namely, the following statement is valid, see [25, Proposition 3.1].
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Proposition 13. For an arbitrary domain Ω there exists a constant c1 > 0 (not
depending on Ω, c1 = 1

α
|Sn−1|) such that aΩ(x) 5 c1

[δ(x)]α
. If the exterior Rn\Ω has

the cone property, then there exists a constant c2 = c2(Ω) such that 1
[δ(x)]α

5 c2aΩ(x).

We will prove the following version of Theorem 12.

Theorem 14. Let Ω be a bounded domain in Rn, p ∈ P(Ω) ∩ w-Lip(Ω) and
0 < α < min

(
1, n

p+

)
. Then the Hardy type inequality

(14)
∥∥∥∥aΩ(x)

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥
p(·)

5 C‖ϕ‖p(·)

holds if and only if the domain Ω has the (α, p(·))-property.
Theorem 12 will immediately follow from Theorem 14 in view of Proposition 13.

4.2. On a hypersingular integral related to Ω. As in [25], we define the
hypersingular integral (fractional derivative) of order 0 < α < 1, related to the
domain Ω, as the hypersingular integral over Rn of the extension EΩf :

DΩf(x) := rΩDαEΩf(x) =
1

dn,1(α)

∫

Rn

f(x)− f̃(y)

|x− y|n+α
dy, x ∈ Ω,

where rΩ stands for the restriction on Ω. Splitting the integration in the last integral
to that over Ω and Rn\Ω, we can easily see that

(15) aΩ(x)f(x) = dn,1(α)DαEΩf(x)−
∫

Ω

f(x)− f(y)

|x− y|n+α
dy, x ∈ Ω.

The proof of Theorem 14 will be based on representation (15) and certain known
facts from the theory of hypersingular integrals [31].

4.3. Auxiliary functions. Although we will use the auxiliary functions defined
below only in the case ` = 1, we give them for an arbitrary integer ` as they are
presented in [31]. By

(
∆`

hf
)
(x) :=

∑`
k=0(−1)k

(
`
k

)
f(x − kh) we denote the non-

centered difference of a function f defined on Rn. We need the non-centered difference

(16) ∆`,α(x, h) :=
(
∆`

hkα

)
(x)

of the Riesz kernel kα(x) and single out the case of the step h = e1 = (1, 0, . . . , 0):

(17) k`,α(x) := ∆`,α(x, e1) =
1

γn(α)

∑̀

k=0

(−1)k

(
`

k

)
|x− ke1|α−n.

We will also use the function

(18) K`,α(|x|) =
1

dn,`(α)|x|n
∫

|y|<|x|

k`,α(y) dy.

The following lemmata can be found in [31, §3.2.1].

Lemma 15. The function ∆`,α(x, h), may be represented via its particular case
k`,α(x) in terms of rotations:

(19) ∆`,α(x, h) = |h|α−nk`,α

( |x|
|h|2 rot−1

x h

)
,
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where rotx η, η ∈ Rn, denotes any rotation in Rn which transforms Rn onto itself so
that rotx e1 = x

|x| .

Lemma 16. The function k`,α(x) satisfies the condition

(20) |k`,α(x)| 5 c(1 + |x|)α−n−` when |x| = ` + 1.

Lemma 17. Let ` > <α > 0. Then

(21)
∫

Rn

k`,α(y) dy = 0.

Moreover, in the case when ` is odd and the difference defining k`,α(x) is non-centered,

(22)
∫

|y− `
2
e1|<N

k`,α(y) dy = 0

for any N > 0.

Lemma 18. The function K`,α(|x|), 0 < α < 1 has the bound

(23) |K`,α(|x|)| 5 C|x|α−n as |x| 5 1.

4.4. Proof of Theorem 14. Let ϕ ∈ Lp(·)(Ω) and ϕ̃ = EΩϕ(x). Substituting

f(y) := Iαϕ̃ =
1

γn(α)

∫

Ω

ϕ(t)

|t− y|n−α
dt, y ∈ Rn,

into (15), we have

(24) aΩ(x)Iα
Ωϕ(x) = DαχΩIαEΩϕ(x)−Aϕ(x), x ∈ Ω,

where
Aϕ =

∫

Ω

Iαϕ̃(x)− Iαϕ̃(y)

|x− y|n+α
dy = lim

ε→0
Aεϕ(x)

and
Aεϕ(x) =

∫

y∈Ω
|x−y|>ε

Iαϕ̃(x)− Iαϕ̃(y)

|x− y|n+α
dy.

The (α, p(·))-property of Ω, by the definition of this property and equivalence
in (10), is nothing else but the boundedness in Lp(·)(Ω) of the operator DαχΩIαEΩ.
Thus, in the case of bounded domains Ω, the required equivalence of the Hardy
inequality to the (α, p(·))-property will follow from (24), if the operator A is bounded.

Lemma 19. Let 0 < α < 1 and Ω be a bounded domain. The operators Aε are
uniformly dominated by the maximal operator:

(25) |Aεϕ(x)| 5 CMϕ(x), x ∈ Ω,

for any ϕ ∈ L1(Ω), where C > 0 does not depend on x and ε. Consequently, the
operator A is bounded in the space Lp(·)(Ω) whenever p ∈ P(Ω).

Proof. We make use of the known representation

Iαϕ̃(x)− Iαϕ̃(x− y) =

∫

Rn

∆1,α(ξ, y)ϕ̃(x− ξ) dξ
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for the differences of the Riesz potential, see [31, formula (3.64)], and get

Aεϕ(x) =

∫

y∈Ωx

|y|>ε

dy

|y|n+α

∫

Rn

ϕ̃(x− ξ)∆1,α(ξ, y) dξ

=

∫

Rn

ϕ̃(x− ξ) dξ

∫

y∈Ωx

|y|>ε

∆1,α(ξ, y)

|y|n+α
dy,

(26)

where Ωx = {y ∈ Rn : x − y ∈ Ω}, the interchange of the order of integration being
easily justified by Fubini’s theorem whenever ε > 0. By (19) we then have

Aεϕ(x) =

∫

Rn

ϕ̃(x− ξ) dξ

∫

y∈Ωx

|y|>ε

k1,α

(
|ξ|
|y|2 rot−1

ξ y
)

|y|2n
dy =

∫

Rn

ϕ̃(x− ξ)

|ξ|n dξ

∫

z∈Ω(x,ξ)

|z|< |ξ|
ε

k1,α(z) dz

=

∫

Rn

ϕ̃(x− εξ)

|ξ|n dξ

∫

z∈Ω(x,εξ)
|z|<|ξ|

k1,α(z) dz =

∫

Rn

ϕ̃(x− εξ)Vε(x, ξ) dξ,(27)

where

Ω(x, ξ) =

{
z ∈ Rn : |ξ| rotξ

z

|z|2 ∈ Ωx

}

and we denoted
Vε(x, ξ) =

1

|ξ|n
∫

z∈Ω(x,εξ)
|z|<|ξ|

k1,α(z)dz

for brevity. We split Aεϕ(x) in the following way

(28) Aεϕ(x) =

(∫

|ξ|<2

+

∫

|ξ|>2

)
ϕ̃(x− εξ)Vε(x, ξ)dξ =: J1,εϕ(x) + J2,εϕ(x).

For J1,εϕ(x) we have

|J1,εϕ(x)| 5
∫

|ξ|<2

|ϕ̃(x− εξ)| dξ

|ξ|n
∫

|z|<|ξ|

|k1,α(z)| dz

5 C

∫

|ξ|<2

|ϕ̃(x− εξ)|
|ξ|n−α

dξ = C |ϕ̃| ∗ ψε(x),

(29)

where ψ(ξ) =

{
|ξ|α−n, |ξ| < 2,

0, |ξ| = 2,
and ψε(x) = ε−nψ(x/ε).

When |ξ| > 2, the key moment in the estimation is the usage of property (22) of
the Riesz kernel:

Vε(x, ξ) =
1

|ξ|n




∫

B(0,|ξ|)∩Ω(x,εξ)

−
∫

|z− e1
2 |<|ξ|−1


 k1,α(z) dz =

1

|ξ|n
∫

Θ(x,ε)

k1,α(z) dz,
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where

Θ(x, ε) = {z : z ∈ B(0, |ξ|) ∩ Ω(x, εξ)} \
{

z :
∣∣∣z − e1

2

∣∣∣ < |ξ| − 1
}

.

Since Θ(x, ε) is embedded in the annulus |ξ| − 3
2

5 |z| 5 |ξ|, we have

|Vε(x, ξ)| 5 1

|ξ|n
∫

|ξ|− 3
2
5|z|5|ξ|

|k1,α(z)| dz

and by (20)

(30) |Vε(x, ξ)| 5 C

|ξ|n

∣∣∣∣∣|ξ|
α−1 −

(
|ξ| − 3

2

)α−1
∣∣∣∣∣ 5 C

|ξ|n+2−α
.

The estimation of J2,εϕ(x) is then given by

(31) |J2,εϕ(x)|
(30)
5 C |ϕ̃| ∗ φε(x),

where φ(ξ) =

{
2α−n−2, |ξ| < 2,

|ξ|α−n−2, |ξ| = 2,
and φε(x) = ε−nφ(x/ε).

Since the kernels ψ, φ are radially decreasing and integrable, we can use the well
known estimation of convolutions with such kernels via the maximal function, which
yields

(32) Ji,εϕ(x) 5 CM (|ϕ|), i = 1, 2,∀ε > 0,

and implies (25) after gathering (28), (29), (31) and (32). This completes the proof.
¤

4.5. Corollaries. As a corollary of Theorem 12 we obtain an estimate in
classical Lp(Ω) spaces, but first we need the following definition.

Definition 20. Let Ω be an open set in Rn. We say that Ω satisfies the Strichartz
condition if there exist a coordinate system in Rn and an integer N > 0 such that
almost every line parallel to the axes intersects Ω in at most N components.

Lemma 21. [24, 36], [27, p. 244] The characteristic function χΩ of a domain Ω
satisfying the Strichartz condition is a pointwise multiplier in the space Iα (Lp(Rn))
when 1 < p < 1/α.

Corollary 22. The Hardy inequality
∥∥∥∥∥∥

1

δ(x)α

∫

Ω

ϕ(y)

|x− y|n−α
dy

∥∥∥∥∥∥
p

5 C‖ϕ‖p, 1 < p < 1/α

holds for any bounded open set Ω ⊂ Rn satisfying the Strichartz condition.

Proof. By Lemma 11 and Lemma 21 we have that Ω has the (α, p(·))-property
and then the results follows from Theorem 12. ¤
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