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Abstract. The term integrable asymptotically conformal at a point for a quasiconformal map
defined on a domain is defined. Furthermore, we prove that there is a normal form for this kind
attracting or repelling or super-attracting fixed point with the control condition under a quasicon-
formal change of coordinate which is also asymptotically conformal at this fixed point. The change
of coordinate is essentially unique. These results generalize König’s Theorem and Böttcher’s The-
orem in classical complex analysis. The idea in proofs is new and uses holomorphic motion theory
and provides a new understanding of the inside mechanism of these two famous theorems too.

1. Introduction

Two of the fundamental theorems in complex dynamical systems are König’s
Theorem and Bötthcher’s Theorem in classical complex analysis which were proved
back to 1884 [22] and 1904 [8], respectively, by using some well-known methods
in complex analysis. These theorems say that an attracting or repelling or super-
attracting fixed point of an analytic map can be written into a normal form under a
suitable conformal change of coordinate. These theorems become two fundamental
results in the recent study of the dynamics of a polynomial or a rational map.

However, it becomes more and more clear in recent years that only conformal
changes of coordinate are not enough in the study of many problems in dynamics and
in geometry, for examples, in the study of monotonicity of the entropy function for
the family |x|3 + t [31], in the study of deep points and differentiability in hyperbolic
3-manifolds [29, pp. 32–34] (see also the end of §3), and in the study of quasicon-
formal structures on a 4-manifold [11]—in these studies, quasiconformal changes of
coordinate are appealed. The quasiconformal changes of coordinate may still have
asymptotical conformality property just at one point but definitely not conformal.
(It is a big difference between asymptotically conformal and conformal, see definition
in Section 2.)

During the study of complex dynamical systems, a subject called holomorphic
motions becomes more and more interesting and useful. The subject of holomorphic
motions over the open unit disk shows some interesting connections between classical
complex analysis and problems on moduli. This subject even becomes an interesting
branch in complex analysis [4, 6, 15, 27, 33, 39].

In this paper, we will use holomorphic motions over the open unit disk to study
the quasiconformal changes of coordinate which are aymptotically conformal at one
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point. The paper is organized as follows. In Section 2, we give an overview about
holomorphic motions and quasiconformal mapping theory. In Section 3, we define
an asymptotically conformal fixed point. Moreover, we define an integrable asymp-
totically conformal fixed point. We then define an attracting or repelling integrable
asymptotically conformal fixed point and the control condition. In Section 4, we
prove one of our main theorems in this paper:

Theorem 1. Let f be a quasiconformal homeomorphism defined on a neigh-
borhood about 0. Suppose 0 is an attracting or repelling integrable asymptotically
conformal fixed point of f with the control condition (1). Then there is a quasi-
conformal homeomorphism φ : ∆δ → φ(∆δ) ⊂ U from an open disk of radius δ > 0
centered at 0 into U which is asymptotically conformal at 0 such that

φ−1 ◦ f ◦ φ(z) = λz, z ∈ ∆δ.

The conjugacy φ−1 is unique up to multiplication of a constant.

To present our idea clearly, we first use the same idea in the proof of above
theorem to give a new proof of König’s Theorem in classical complex analysis in
Section 3. Then we prove Theorem 1 in the same section.

We define an asymptotically conformal super-attracting fixed point in Section 3.
In Section 5, we prove the other main theorem in this paper:

Theorem 2. Let g(z) = f(zn) be a quasiregular map defined on a neighbor-
hood about 0 for n ≥ 2. Suppose 0 is a super-attracting integrable asymptoti-
cally conformal fixed point of g. Then there is a quasiconformal homeomorphism
φ : ∆δ → φ(∆δ) ⊂ U from an open disk of radius δ > 0 centered at 0 into U which is
asymptotically conformal at 0 such that

φ−1 ◦ g ◦ φ(z) = zn, z ∈ ∆δ.

The conjugacy φ−1 is unique up to multiplication by (n− 1)th-roots of the unit.

Again, we will first give a new proof of Böttecher’s Theorem in classical complex
analysis in Section 5. Then we prove Theorem 2 in the same section.

Our proofs in this paper use the “holomorphic motion technique”, which we first
used in [20]. Another place we used the “holomorphic motion technique” is in the
study of the Fatou linearization and the quasiconformal rigidity for parabolic germs
in [21].

Acknowledgment. I would like to thank Professor Weiyuan Qiu and my students
Zhe Wang and Haifeng Chu to help me to clarify several arguments and to fix mis-
takes and typos in this paper. I would like also to thank Professor Sudeb Mitra who
explained to me several points in the development of the measurable Riemann map-
ping theorem and holomorphic motions. This work is partially done when I visited
the Academy of Mathematics and System Science and the Morningside Center of
Mathematics at the Chinese Academy of Sciences in Beijing, China. I would like to
thank these institutions for their hospitality.

2. Holomorphic motions and quasiconformal maps

In the study of complex analysis, the measurable Riemann mapping theorem
plays an important role. Consider the Riemann sphere Ĉ. A measurable function
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µ on Ĉ is called a Beltrami coefficient if there is a constant 0 ≤ k < 1 such that
‖µ‖∞ ≤ k, where ‖ · ‖∞ means the L∞-norm of µ on Ĉ. The equation

Hz = µHz

is called the Beltrami equation with the given Beltrami coefficient µ. The measur-
able Riemann mapping theorem says that the Beltrami equation has a solution H
which is a quasiconformal homeomorphism of Ĉ whose quasiconformal dilatation is
less than or equal to K = (1 + k)/(1 − k). The study of the measurable Riemann
mapping theorem has a long history since Gauss considered in 1820’s the connection
with the problem of finding isothermal coordinates for a given surface. As early as
1938, Morrey [34] systematically studied homeomorphic L2-solutions of the Beltrami
equation (see [23, 24]). But it took almost twenty years until in 1957 Bers [5] observed
that these solutions are quasiconformal (refer to [25, p. 24]). Finally the existence
of a solution to the Beltrami equation under the most general possible circumstance,
namely, for measurable µ with ‖µ‖∞ < 1, was shown by Bojarski [7]. In this gen-
erality the existence theorem is sometimes called the measurable Riemann mapping
theorem (refer to [18, p. 10]).

If one only considers a normalized solution in the Beltrami equation (a solution
fixes 0, 1, and ∞), then H is unique, which is denoted as Hµ. The solution Hµ

is expressed as a power series made up of compositions of singular integral opera-
tors applied to the Beltrami equation on the Riemann sphere. In this expression,
if one considers µ as a variable, then the solution Hµ depends on µ analytically.
This analytic dependence was emphasized by Ahlfors and Bers in their 1960 pa-
per [2] and is essential in determining a complex structure for Teichmüller space
(refer to [1, 18, 25, 26, 35]). Note that when µ ≡ 0, H0 is the identity map. A
1-quasi-conformal map is conformal. Twenty years later, due to the development
of complex dynamics, this analytic dependence presents an even more interesting
phenomenon called holomorphic motions as follows.

Let ∆r = {c ∈ C | |c| < r} be the disk centered at 0 and of radius r > 0. In
particular, we use ∆ to denote the unit disk. Given a Beltrami coefficient µ 6≡ 0,
consider a family of Beltrami coefficients cµ/‖µ‖∞ for c ∈ ∆ and the family of
normalized solutions H

cµ
‖µ‖∞ . Note that H

cµ
‖µ‖∞ is a quasiconformal homeomorphism

whose quasiconformal dilatation is less than or equal to (1+ |c|)/(1− |c|). Moreover,
H

cµ
‖µ‖∞ is a family which is holomorphic on c. Consider a subset E of Ĉ and its image

Ec = H
cµ

‖µ‖∞ (E). One can see that Ec moves holomorphically in Ĉ when c moves in
∆. That is, for any point z ∈ E, z(c) = H

cµ
‖µ‖∞ (z) traces a holomorphic path starting

from z as c moves in the unit disk. Although E may start out as smooth as a circle
and although the points of E move holomorphically, Ec can be an interesting fractal
with fractional Hausdorff dimension for every c 6= 0 (see [17]).

Surprisingly, the converse of the above fact is true too. This starts from the
famous λ-lemma of Mañé, Sad, and Sullivan [28] in complex dynamical systems. Let
us start to understand this fact by first defining holomorphic motions.

Definition 1. (Holomorphic motions) Let E be a subset of Ĉ. Let

h(c, z) : ∆r × E → Ĉ

be a map. Then h is called a holomorphic motion of E parametrized by ∆r if
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(1) h(0, z) = z for z ∈ E;
(2) for any fixed c ∈ ∆r, h(c, ·) : E → Ĉ is injective;
(3) for any fixed z, h(·, z) : ∆r → Ĉ is holomorphic.

For example, for a given Beltrami coefficient µ,

H(c, z) = H
cµ

‖µ‖∞ (z) : ∆× Ĉ → Ĉ

is a holomorphic motion of Ĉ parametrized by ∆.
Note that even continuity does not directly enter into the definition; the only re-

striction is in the c direction. However, continuity is a consequence of the hypotheses
from the proof of the λ-lemma of Mañé, Sad, and Sullivan [28, Theorem 2]. Moreover,
Mañé, Sad, and Sullivan prove in [28] that

Lemma 1. (λ-Lemma) A holomorphic motion h(c, z) : ∆×E → Ĉ of a set E ⊂
Ĉ parametrized by ∆ can be extended to a holomorphic motion H(c, z) : ∆×E → Ĉ
of the closure E of E parametrized by the same ∆.

Furthermore, Mañé, Sad, and Sullivan show in [28] that H(c, ·) : E → Ĉ satisfies
the Pesin property. In particular, when E is a closed domain, this property can be
described as the quasiconformal property. A further study of this quasiconformal
property is given by Sullivan and Thurston [39] and Bers and Royden [6]. In [39],
Sullivan and Thurston prove that there is a universal constant a > 0 such that
any holomorphic motion of any set E ⊂ Ĉ parametrized by the open unit disk
∆ can be extended to a holomorphic motion of Ĉ parametrized by ∆a. In [6],
Bers and Royden show, by using classical Teichmüller theory, that this constant
actually can be taken to be 1/3. Moreover, in the same paper, Bers and Royden
show that in any holomorphic motion H(c, z) : ∆ × Ĉ → Ĉ, H(c, ·) : Ĉ → Ĉ is a
quasiconformal homeomorphism whose quasiconformal dilatation less than or equal
to (1 + |c|)/(1 − |c|) for c ∈ ∆. In the both papers [39, 6], they expect a = 1. This
was eventually proved by Slodkowski in [38].

Theorem 3. (The Holomorphic Motion Theorem) Suppose h(c, z) : ∆×E → Ĉ

is a holomorphic motion of a closed subset E of Ĉ parameterized by the unit disk ∆.
Then there is a holomorphic motion H(c, z) : ∆× Ĉ → Ĉ which extends h(c, z) : ∆×
E → Ĉ. Moreover, for any fixed c ∈ ∆, H(c, ·) : Ĉ → Ĉ is a quasiconformal
homeomorphism whose quasiconformal dilatation

K(H(c, ·)) ≤ 1 + |c|
1− |c| .

The Beltrami coefficient of H(c, ·) given by

µ(c, z) =
∂H(c, z)

∂z
/
∂H(c, z)

∂z

is a holomorphic function from ∆ into the unit ball of the Banach space L∞(C) of
all essentially bounded measurable functions on C.

Chirka gives a nice proof of Slodkowski’s theorem by using some results in func-
tional analysis. The reader can find a complete proof of the above holomorphic mo-
tion theorem in [16] following the ideas in Chirka’s proof [10] and in Bers–Royden’s
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proof [6]. Moreover, some property of infinitesimal holomorphic motions is discussed
in [16].

Holomorphic motions of a set E ⊂ Ĉ parametrized by a connected complex man-
ifold with a base point can be also defined. They have many interesting relationships
with the Teichmüller space T (E) of a closed set E of the Riemann sphere Ĉ (refer
to [33]).

In addition to the references we mentioned above, there is a partial list of refer-
ences [3, 4, 12, 13, 14, 15, 27, 30, 36] about holomorphic motions and Teichmüller
theory. The reader who is interested in holomorphic motions may refer to those
papers and books.

3. Integrable asymptotically conformal fixed points

Let f be a quasiconformal homeomorphism defined on a domain U in the Rie-
mann sphere Ĉ. Suppose p is a point in the U . Let ∆t(p) denote the disk of radius
t > 0 centered at p. Let µf (z) = fz/fz be the complex dilatation of f on U . Sup-
pose t0 > 0 is a number such that ∆t0(p) ⊂ U . Then for any 0 < t ≤ t0, let
ωf,p(t) = ‖µf |∆t(p)‖∞, where ‖ · ‖∞ means the L∞ norm.

Definition 2. We call f asymptotically conformal at p if

ωf,p(t) → 0 as t → 0+.

Furthermore, we call f integrable asymptotically conformal at p if
∫ t0

0

ωf,p(s)

s
ds < ∞.

If f is asymptotically conformal at p, then f maps a tiny circle centered at p to
an ellipse centered at f(p) and, moreover, the ratio of the long axis and the short
axis tends to 1 as the radius of the tiny circle tends to 0. But the map still can fail to
be differentiable at p (refer to [19]). However, following Reshetnyak’s 1978 paper [37,
Theorem 1.1, p. 204]), if f is integrable asymptotically conformal at p, then f is
differentiable and conformal at p, i.e., the limit of (f(z) − f(p))/(z − p) exists as z
goes to p. If, in addition, p is a fixed point of f , that is, f(p) = p, let

λ = lim
z→p

f(z)− f(p)

z − p

and call it the multiplier of f at p. We call p

i) attracting if 0 < |λ| < 1;
ii) repelling if |λ| > 1;
iii) neutral if |λ| = 1.

Correspondingly, we call p an attracting, repelling, or neutral integrable asymptot-
ically conformal fixed point of f . By linear changes of coordinate, we can assume
that p = f(p) = 0. We will keep this assumption without loss of generality.

Let g be a quasiregular map defined on a neighborhood U of 0 fixing 0. Assume
g(z) = f ◦ qn where qn(z) = zn, n ≥ 2, and f is a quasiconformal homeomorphism.
We say g is integrable asymptotically conformal at 0 if f is integrable asymptotically
conformal at 0 with nonzero multiplier

λ = lim
z→0

f(z)

z
.
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In this case, 0 is called a super-attracting integrable asymptotically conformal fixed
point of g.

The following lemma will be useful in our proofs of Theorems 1 and 2.

Lemma 2. Suppose ω(t) is an increasing function of 0 < t ≤ t0. Suppose
∫ t0

0

ω(s)

s
ds < ∞.

Suppose 0 < σ < 1 and C > 0 are two constants. Let

ω̃(t) =
∞∑

n=0

ω(Cσnt)

for all t > 0 such that Ct ≤ t0. Then

ω̃(t) ≤ ω(Ct) +
1

− log σ

∫ Ct

0

ω(s)

s
ds.

Moreover, ω̃(t) → 0 as t → 0+.

Proof. Since ω(t) is increasing for t > 0, we have

ω̃(t) = ω(Ct) +
∞∑

n=1

ω(Cσnt) ≤ ω(Ct) +
∞∑

n=1

∫ n

n−1

ω(Cσxt) dx

= ω(Ct) +

∫ ∞

0

ω(Cσxt) dx.

Let s = Cσxt. Then ds = (log σ)s dx. We have that
∫ ∞

0

ω(Cσxt) dx =
1

− log σ

∫ Ct

0

ω(s)

s
ds. ¤

It is interesting to compare our integrable asympotically conformal at a point
to C1+α-conformal in McMullen’s book [29, p. 32]. A homeomorphism φ(z) from a
neighborhood U of C to another neighborhood V of C is C1+α-conformal at p ∈ U
for some 0 < α ≤ 1 if the complex derivative φ′(p) exists and

φ(z + p) = φ(p) + φ′(p)z + O(|z|1+α)

for all z ∈ C sufficiently small.
For a given Kleinian group Γ preserving the upper-half space H3 such that the

3-manifold M3 = H3/Γ has the bounded geometry, that is, its injectivity radius is
bounded above and below in its convex core. It is proven that any quasiconformal
conjugacy from Γ to another Kleinian group Γ′ is C1+α-conformal at every deep point
in the limit set Λ of Γ (see [29, Theorem 2.18]). This theorem can be thought of as
an extension of Mostow rigidity at every deep point when the limit set is not the
whole sphere.

Suppose φ : U → V is quasiconformal and C1+α-conformal at p for some 0 < α ≤
1. By linear changes of coordinate, we can assume p = 0 and φ(p) = 0. Then

φ(z) = φ′(0)z + O(|z|1+α)

for z ∈ C sufficiently small. Since a quasiconformal homeomorphism is differentiable
almost everywhere, F (z) = O(|z|1+α) is differentiable almost everywhere. Suppose
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F (z) = H(|z|1+α). Then H ′(x) exists for almost every x. Suppose H ′(x) is a bounded
function. At every differentiable point z 6= 0, we have that

∣∣∣∂φ(z)

∂z

∣∣∣ =
∣∣∣∂F (z)

∂z

∣∣∣ ≤ C|z α+1
2 (z)

α−1
2 |

and ∣∣∣∂φ(z)

∂z

∣∣∣ =
∣∣∣φ′(0) +

∂F (z)

∂z

∣∣∣ ≥ |φ′(0)| − C|z α−1
2 (z)

α+1
2 |

where C > 0 is a constant. Since φ′(0) 6= 0, we get that for z ∈ C sufficiently small,

|µφ(z)| =
∣∣∣∂φ(z)

∂z
/
∂φ(z)

∂z

∣∣∣ ≤ C ′|z|α

where C ′ > 0 is another constant. Then

ωφ,0(t) = ‖µφ|∆t‖∞ ≤ C ′tα.

Thus φ is integrable asymptotically conformal at 0.
If φ is quasiconformal in a neighborhood U of 0 fixing 0 and C1+α-conformal at

0 for some 0 < α ≤ 1, then it will automatically satisfy the control condition (1) in
the next section as follows.

Suppose λ = φ′(0) and suppose 0 < |λ| < 1. (If |λ| > 1, then we consider φ−1.)
Choose a constant 0 < a < 1 such that a1+α < |λ| < a. We can choose a δ > 0 such
that ∆δ ⊂ U and such that |φ(z)| ≤ a|z| for any z ∈ ∆δ. Then there is a constant
C0 > 0 such that, for any |z| ≤ δ,

|φn+1(z)− λφn(z)| ≤ C0|φn(z)|1+α ≤ C0|z|1+αan(1+α).

Let 0 < τ = a1+α/|λ| < 1 and C1 = C0δ
α/|λ|. Then

∣∣∣φ
n+1(z)

λn+1z
− φn(z)

λnz

∣∣∣ ≤ C1τ
n.

Thus {hn(z) = φn(z)/(λnz)}∞n=0 is a uniform Cauchy sequence of continuous functions
defined on ∆δ. Furthermore, hn(0) = 1 for all n ≥ 0. Thus there is a constant C > 0
such that

C−1 ≤ |hn(z)| =
∣∣∣φ

n(z)

λnz

∣∣∣ ≤ C

for all z ∈ ∆δ and all n ≥ 0 as long as δ small enough. Therefore, if φ(z) is quasi-
conformal and C1+α-conformal at 0, then it satisfies all assumptions in Theorem 1.

4. Linearization for integrable asymptotically conformal
attracting or repelling fixed points

One of the main results in this article is Theorem 1, which says that if f is a
quasiconformal homeomorphism on a neighborhood U of 0 and 0 is an attracting
or repelling integrable asymptotically conformal fixed point with the multiplier λ,
0 < |λ| < 1 or |λ| > 1 and with the control condition, then f can be written as a
linear map z → λz under some quasiconformal change of coordinate which is also
asymptotically conformal at 0. We only need to consider the attracting case because
that in the repelling case, we can consider f−1. In the attracting case, we say f
satisfies the control condition if there are constants δ > 0 and C > 0 such that

(1) C−1 ≤
∣∣∣f

n(z)

λnz

∣∣∣ ≤ C



34 Yunping Jiang

for all z ∈ ∆δ ⊂ U and all n ≥ 0.
The result generalizes the famous König’s Theorem in classical analysis. There-

fore, to present a clear idea about how we get Theorem 1, we first use the same idea
to give another proof of König’s Theorem, which is first given in [20]. The idea of the
new proof follows the viewpoint of holomorphic motions. For the classical proof of
König’s Theorem, the reader may refer to König’s original paper [22] or most recent
books [9, 32]. Actually from the technical point of views, our proof is more compli-
cate and uses a sophistical result. But from the conceptual point of views, our proof
gives some inside mechanism for the linearization of an attracting or a repelling fixed
point.

Theorem 4. (König’s Theorem) Let f(z) = λz +
∑∞

j=2 ajz
j be an analytic

function defined on ∆r0 , r0 > 0. Suppose 0 < |λ| < 1 or |λ| > 1. Then there is a
conformal map φ : ∆δ → φ(∆δ) for some 0 < δ < r0 such that

φ−1 ◦ f ◦ φ(z) = λz.

The conjugacy φ−1 is unique up to multiplication of a constant.

A new proof of Theorem 4. We only need to prove it for 0 < |λ| < 1. In the
case of |λ| > 1, we can consider f−1.

First, we can find a 0 < δ < r0 such that

|f(z)| < |z|, z ∈ ∆δ

and f is injective on ∆δ. For every 0 < r ≤ δ, let

Sr = {z ∈ C | |z| = r}
and

Tr = |λ|Sr = {z ∈ C | |z| = |λ|r}.
Denote E = Sr ∪ Tr. Define

φr(z) =

{
z, z ∈ Sr;

f( z
λ
), z ∈ Tr.

It is clear that
φ−1

r ◦ f ◦ φr(z) = λz

for z ∈ Sr.
Now write φr(z) = zψr(z) for z ∈ Tr, where

ψ(z) = 1 +
∞∑

j=1

aj+1

λj+1
zj.

Define

hr(c, z) =

{
z, z ∈ Sr

zψ( δcz
r

), z ∈ Tr

: ∆× E → Ĉ.

Note that

hr(c, z) = zψ
(czδ

r

)
=

r

cδ
f
(czδ

rλ

)
, z ∈ Tr, c 6= 0.

For each fixed z ∈ E, it is clear that h(c, z) is a holomorphic function of c ∈ ∆.
For each fixed c ∈ ∆, the restriction h(c, ·) to Sr and Tr, respectively, are injective.
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Now we claim that their images do not cross either. That is because for any z ∈ Tr,
|z| = |λ|r and |czδ|/|rλ| ≤ δ, so

|h(c, z)| =
∣∣∣ r

cδ

∣∣∣
∣∣∣f

(czδ

rλ

)∣∣∣ <
∣∣∣ r

cδ

∣∣∣
∣∣∣czδ
rλ

∣∣∣ = r.

Therefore, h(c, z) : ∆×E → Ĉ is a holomorphic motion because we also have h(0, z) =
z for all z ∈ E. From Theorem 3, h can be extended to a holomorphic motion
H(c, z) : ∆ × Ĉ → Ĉ, and moreover, for each fixed c ∈ ∆, H(c, ·) : Ĉ → Ĉ is
a quasiconformal homeomorphism whose quasiconformal dilatation is less than or
equal to (1 + |c|)/(1 − |c|). Now take cr = r/δ and consider H(cr, ·). We have
H(cr, ·)|E = φr. Let

Ar,j = {z ∈ C | |λ|j+1r ≤ |z| ≤ |λ|jr}.
We still use φr to denote H(cr, ·)|Ar,0.

For an integer k > 0, take r = rk = δ|λ|k. Then
∆δ = ∪∞j=−kAr,j ∪ {0}.

Extend φr to ∆δ, which we still denote as φr, as follows.

φr(z) = f j(φr(λ
−jz)), z ∈ Ar,j, j = −k, · · · ,−1, 0, 1, · · · ,

and φr(0) = 0. Since φr|E is a conjugacy from f to λz, φr is continuous on ∆δ. Since
f is conformal, φr is quasiconformal whose quasiconformal dilatation is the same as
that of H(cr, ·) on Ar,0. So the quasiconformal dilatation of φr on ∆δ is less than or
equal to (1 + cr)/(1− cr). Furthermore,

f(φr(z)) = φr(λz), z ∈ ∆δ.

Since f−1(z) = λ−1z(1 + O(z)), f−k(z) = λ−kz
∏k−1

i=0 (1 + O(λ−iz)). Because
|λ|−krk = δ, the range of φrk

on ∆δ is a Jordan domain bounded above from ∞ and
below from 0 uniformly on k. In addition, 0 is fixed by φrk

and the quasiconformal
dilatations of the φrk

are uniformly bounded. Therefore, the sequence {φrk
}∞k=1 is in

a compact set in the space of all quasiconformal homeomorphisms on ∆δ (see [1]).
Let φ be a limiting map of this family. Then we have

f(φ(z)) = φ(λz), z ∈ ∆δ.

The quasiconformal dilatation of φ is less than or equal to (1 + crk
)/(1− crk

) for all
k > 0. So φ is a 1-quasiconformal map, and thus is conformal. This is the proof of
the existence.

For the sake of completeness, we also provide the proof of uniqueness but this is
not new and the reader can find it on [9, 32]. Suppose φ1 and φ2 are two conjugacies
such that

φ−1
1 ◦ f ◦ φ1(z) = λz and φ−1

2 ◦ f ◦ φ2(z) = λz, z ∈ ∆δ.

Then for Φ = φ−1
2 ◦ φ1, we have Φ(λz) = λΦ(z). This implies that Φ′(λz) = Φ′(z)

for any z ∈ ∆δ. Thus Φ′(z) = Φ′(λnz) = Φ(0) = 0. So Φ(z) = const and φ−1
2 =

const. · φ−1
1 . ¤

Now let us prove Theorem 1.
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Proof of Theorem 1. We need only to prove this theorem for attracting integrable
asymptotically conformal germs. In the case of repelling integrable asymptotically
conformal germs, we can consider f−1.

Let σ = |λ|. First, we can find a δ > 0 such that ∆δ ⊂ U , f is injective on ∆δ,

|f(z)| < |z|, z ∈ ∆δ,

and the control condition (1) is held on ∆δ.
For every 0 < r ≤ δ, let

Sr = {z ∈ C | |z| = r}
and

Tr = σSr = {z ∈ C | |z| = σr}.
Denote E = Sr ∪ Tr. Define

φr(z) =

{
z, z ∈ Sr;

f( z
λ
), z ∈ Tr.

It is clear that
φ−1

r ◦ f ◦ φr(z) = λz

for z ∈ Sr.
Now write φ(z) = f( z

λ
) defined on ∆r. Suppose φ(r) = τr. Extend φ to Ĉ by

quasiconformal reflection with respect to Sr and φ(Sr) (see [1]). We still denote this
extended map as φ. Let ν = φz/φz be the complex dilatation of the extended φ.
Then

a(r) = ‖ν‖∞ = O(‖µ|∆σ−1r‖∞) = O(ω(σ−1r)).

Consider νc = ca0a(r)−1ν and the unique solution φc = φνc that maps 0, r, and
∞ to 0, τr, and ∞, respectively. Here a0 is a constant independent of r such that
|φc(z)| < r for all |z| ≤ σr and |c| < 1. (Since φc can be written as a power series
in c and ‖νc‖ → 0 uniformly as r → 0 , such an a0 exists.) Then φc holomorphically
depends on c ∈ ∆. Define

φr(c, z) =

{
z, z ∈ Sr;

φc(z), z ∈ Tr.

It is a holomorphic motion from ∆ × E → Ĉ. From Theorem 3, φr(c, z) can be
extended to a holomorphic motion from ∆ × Ĉ → Ĉ, which we still denote by
φr(c, z), such that the quasiconformal dilatation of φr(c, ·) is less than or equal to
(1 + |c|)/(1− |c|). In particular when cr = a−1

0 a(r), φr(cr, z)|E = φr. Let

Ar,j = {z ∈ C | σj+1r ≤ |z| ≤ σjr}.
We still use φr to denote φr(cr, ·)|Ar,0. For an integer k > 0, take r = rk = δσk.
Then

∆δ =
∞⋃

j=−k

Ar,j ∪ {0}.

Extend φr to ∆δ, which we still denote as φr, by

φr(z) = f j(φr(λ
−jz)), z ∈ Ar,j, j = −k, · · · ,−1, 0, 1, · · · ,

and φr(0) = 0. Since φr|E is a conjugacy from f to λz, φr is continuous on ∆δ.
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Next we need to estimate the quasiconformal constant of φr on ∆δ. We will use
the following formula (refer to [1]): If F and G are two quasiconformal maps with the
complex dilatations µF and µG. Then the composition map G ◦ F has the complex
dilatation

(2) µG◦F =
µF + γµG ◦ F

1 + µF γµG ◦ F
, where γ =

F z

Fz

.

Thus
‖µG◦F‖∞ ≤ (‖µF‖∞ + ‖µG ◦ F‖∞)(1− ‖µF‖∞‖µG ◦ F‖∞)−1.

Let ω(t) = ωf,0(t). Suppose C > 0 is the constant in the control condition (1).
Suppose, in the beginning of the proof, we pick δ small such that ω(Cδ) < 1. From
Lemma 2,

K0 = ω̃(δ) =
∞∑

n=0

ω(Cσnδ) < ∞

is a convergent series. Thus the product

K1 =
∞∏

n=0

(
1− ω(Cσnδ)

)−1

< ∞

is also convergent.
Let µ(z) = µφr(z) for z ∈ ∆δ. Remember that r = σkδ. For z ∈ Ar,0, |µ(z)| ≤ cr.

For z ∈ Ar,−j, 1 ≤ j ≤ k, φr(z) = f−j(φr(λ
jz)). Let gi(z) = f−j+i(φr(λ

jz)) for
0 ≤ i ≤ j. Let w = λjz. Then σr ≤ |w| ≤ r. This implies that |φr(w)| ≤ r and

|gi(z)| ≤ Cσ−j+ir = Cσk−j+iδ

for all 0 ≤ i ≤ j. Note that
|µf−1| = |µf ◦ f−1|.

By the composition formula (2),

|µ(z)| = |µg0(z)| ≤
(
|µg1(z)|+ |µf−1(g1(z))|

)(
1− |µg1(z)||µf−1(g1(z))|

)−1

=
(
|µg1(z)|+ |µf (g0(z))|

)(
1− |µg1(z)||µf (g0(z))|

)−1

≤ |µg1(z)|
(
1− ω(Cσk−jδ)

)−1

+ ω(Cσk−jδ)
(
1− ω(Cσk−jδ)

)−1

.

Inductively, we get

|µgi
(z)| ≤ |µgi+1

(z)|
(
1− ω(Cσk−j+iδ)

)−1

+ ω(Cσk−j+iδ)
(
1− ω(Cσk−j+iδ)

)−1

for 0 ≤ i ≤ j. So

|µ(z)| ≤ cr

j∏

l=1

(
1− ω(Cσk−lδ)

)−1

+

j∑
i=1

ω(Cσk−iδ)
k−i∏

l=k−j

(
1− ω(Cσlδ)

)−1

≤ K1cr + K1

j∑
i=1

ω(Cσk−iδ) ≤ K1(cr + ω̃(δ)) ≤ K1(1 + K0).

For z ∈ Ar,j, 1 ≤ j < ∞, φr(z) = f j(φr(λ
−jz)). Let hi(z) = f j−i(φr(λ

−jz)) for
0 ≤ i ≤ j. Let w = λ−jz. Then σr ≤ |w| ≤ r. This implies that |φr(w)| ≤ r and

|hi(z)| ≤ Cσj−ir = Cσk+j−iδ
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for all 0 ≤ i ≤ j. By the composition formula (2),

|µ(z)| = |µh0(z)| ≤
(
|µh1(z)|+ |µf (h1(z))|

)(
1− |µh1||µf (h1(z))|

)−1

≤ |µh1(z)|
(
1− ω(Cσk+j−1δ)

)−1

+ ω(Cσk+j−1δ)
(
1− ω(Cσk+j−1δ)

)−1

.

Inductively, we get

|µhi
(z)| ≤ |µhi+1

(z)|
(
1−ω(Cσk+j−i−1δ)

)−1

+ ω(Cσk+j−i−1δ)
(
1−ω(Cσk+j−i−1δ)

)−1

.

So

|µ(z)| ≤ cr

j∏

l=1

(
1− ω(Cσk+j−lδ)

)−1

+

j∑
i=1

ω(Cσk+j−iδ)
i∏

l=1

(
1− ω(Cσk+j−lδ)

)−1

≤ K1cr + K1

j∑
i=1

ω(Cσk+j−iδ) ≤ K1(cr + ω̃(σkδ))

= K1(cr + ω̃(r)) ≤ K1(1 + K0).

Let k = K1(1 + K0) and K = (1 + k)/(1 − k). Then {φrk
}∞k=1 is uniformly

K-quasiconformal. Consider Br = ∆δ \∆r = ∪−1
j=−kAr,j and φr(Br) = ∪−1

j=−kφr(Ar,j)
for any r = rk. Both of the annulli have the same inner circle Sr. Thus the ratio
of the modulus of φr(Br) and the modulus of Br is controlled by two constants
from below and above (independent of r but only depends on K). Therefore, the
range of φr on ∆δ is a Jordan domain bounded above from ∞ and below from 0
uniformly in 0 < r = rk ≤ δ. Since, additionally, 0 is fixed by any element in this
sequence, the family {φrk

}∞k=1 is in a compact set in the space of all K-quasiconformal
homeomorphisms on ∆δ (see [1]). Let φ be a limit mapping of this family. Then we
have

f(φ(z)) = φ(λz), z ∈ ∆δ.

Similar to the arguments above, the complex dilatation of φr(z) on disk ∆r̃ is
controlled by K1(cr̃ + ω̃(r̃)) for any r = rk ≤ r̃. So the complex dilatation of φ on
∆r̃ is also controlled by K1(cr̃ + ω̃(r̃)) → 0 as r̃ → 0. Thus φ(z) is asymptotically
conformal at 0 and the proof of existence is completed.

Suppose φ1 and φ2 are two asymptotically conformal conjugacies such that

φ−1
1 ◦ f ◦ φ1(z) = λz and φ−1

2 ◦ f ◦ φ2(z) = λz, z ∈ ∆δ.

Then for Φ = φ−1
2 ◦ φ1, we have Φ(λz) = λΦ(z). This implies that the complex

dilatation µΦ(z) = µΦ(λz), a.e.. This in turn implies that µ = 0 a.e. in ∆δ and thus
Φ is conformal. Furthermore, Φ(z) = az for some a 6= 0. This is the uniqueness. ¤

5. Normal forms for integrable asymptotically conformal
super-attracting fixed points

The other main result in this article is Theorem 2, which says that if g(z) =
f(zn) is a quasiregular map and 0 is an integrable asymptotically conformal super-
attracting fixed point, then g can be written into the normal form z :→ zn under
some quasiconformal change of coordinate which is asymptotically conformal at 0.
The result generalizes the famous Böttcher’s Theorem in classical analysis. Again,
to present a clear idea about how we get Theorem 2, we first use the same idea to
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give another proof of Böttcher’s Theorem, which is first given in [20]. The idea of
the new proof follows the viewpoint of holomorphic motions. For the classical proof
of Böttcher’s Theorem, the reader may refer to Böttcher’s original paper [8] or most
recent books [9, 32]. Actually from the technical point of views, our proof is more
complicate and uses a sophistical result. But from the conceptual point of views, our
proof gives some inside mechanism of the normal form for a super-attracting fixed
point. The idea of the proof is basically the same as that in the previous section, but
the actual proof is little bit different. The reason is that in the previous case, f is a
homeomorphism so we can iterate both forward and backward, but in Theorem 2 or
Böttcher’s Theorem, g is not a homeomorphism.

Theorem 5. (Böttcher’s Theorem) Suppose g(z) =
∑∞

j=n ajz
j, an 6= 0, n ≥ 2,

is analytic on a disk ∆δ0 , δ0 > 0. Then there exists a conformal map φ : ∆δ → φ(∆δ)
for some δ > 0 such that

φ−1 ◦ g ◦ φ(z) = zn, z ∈ ∆δ.

The conjugacy φ−1 is unique up to multiplication by (n− 1)th-roots of the unit.

A new proof of Böttcher’s Theorem. Conjugating by z → bz, we can assume
an = 1, i.e.,

g(z) = zn +
∞∑

j=n+1

ajz
j.

We use ∆∗
r = ∆r \ {0} to mean a punctured disk of radius r > 0. Write

g(z) = zn(1 +
∞∑

j=1

aj+nz
j).

Assume 0 < δ1 < min{1/2, δ0/2} is small enough such that

1 +
∞∑

j=1

aj+nz
j 6= 0 and

1

n

√
|1 +

∑∞
j=1 aj+nzj|

≥ 1

2
, z ∈ ∆2δ1 .

Then g : ∆∗
2δ1
→ g(∆∗

2δ1
) is a covering map of degree n.

Let 0 < δ < δ1 be a fixed number such that g−1(∆δ) ⊂ ∆δ1 . Since

z → zn : ∆∗
n
√

δ
→ ∆∗

δ and g : g−1(∆∗
δ) → ∆∗

δ

are both of covering maps of degree n, the identity map of ∆δ can be lifted to a
holomorphic diffeomorphism

h : ∆∗
n
√

δ
→ g−1(∆∗

δ),

i.e., h is a map such that the diagram

∆∗
n
√

δ

h−→ g−1(∆∗
δ)

↓ z → zn ↓ g

∆∗
δ

id−→ ∆∗
δ
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commutes. We pick the lift so that

h(z) = z
(
1 +

∞∑
j=2

bjz
j−1

)
= zψ(z).

From
g(h(z)) = zn, z ∈ ∆∗

n
√

δ
,

we get

|h(z)| = |z|
n

√
|1 +

∑
j=1 an+j(h(z))j|

≥ |z|
2

.

For any

0 < r ≤ min
{(1

2

) n
(n−1)

, δn
}

,

let Sr = {z ∈ C | |z| = r} and Tr = {z ∈ C | |z| = n
√

r}. Consider the set E = Sr∪Tr

and the map

φr(z) =

{
z, z ∈ Sr

zψ(z), z ∈ Tr.

Define

hr(c, z) =





z, z ∈ Sr

zψ
(

cz
n
√

r

)
, z ∈ Tr

: ∆× E → Ĉ.

Note that

zψ
( cz

n
√

r

)
=

n
√

r

c
h
( cz

n
√

r

)
, z ∈ Tr, c 6= 0.

This implies that

|hr(c, z)| =
n
√

r

|c| h
( cz

n
√

r

)∣∣∣ ≥
n
√

r

|c|
|cz|
2 n
√

r
≥

n
√

r

2
> r, z ∈ Tr.

So images of Sr and Tr under hr(c, z) do not cross each other.
Now let us check hr(c, z) is a holomorphic motion. First hr(0, z) = z for z ∈ E.

For fixed x ∈ E, hr(c, z) is holomorphic on c ∈ ∆. For fixed c ∈ ∆, hr(c, z) restricted
to Sr and Tr, respectively, are injective. But the images of Sr and Tr under hr(c, z)
do not cross each other. So hr(c, z) is injective on E. Thus

hr(c, z) : ∆× E → Ĉ

is a holomorphic motion. By Theorem 3, it can be extended to a holomorphic motion

Hr(c, z) : ∆× Ĉ → Ĉ.

And moreover, for each c ∈ ∆, Hr(c, ·) is a quasiconformal map whose quasiconformal
dilatation satisfies

K(Hr(c, ·)) ≤ 1 + |c|
1− |c| .

Now consider Hr( n
√

r, ·). It is a quasiconformal map with quasiconformal constant

Kr ≤ 1 + n
√

r

1− n
√

r
.
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Let
Ar,j = {z ∈ C | nj√

r ≤ |z| ≤ nj+1√
r}, j = 0, 1, 2, · · · .

Consider the restriction φr,0 = Hr( n
√

r, ·)|Ar,0. It is an extension of φr, i.e., φr,0|E =
φr.

Let Ãr,0 be the annulus bounded by Sr and g−1(Sr) and define Ãr,j = g−j(Ãr,0),
j ≥ 0. Since z → zn : Ar,1 → Ar,0 and g : Ãr,1 → Ãr,0 are both covering maps of
degree n, so φr,0 can be lifted to a quasiconformal map φr,1 : Ar,1 → Ãr,1, i.e., the
following diagram

Ar,1
φr,1−→ Ãr,1

↓ z → zn ↓ g

Ar,0
φr,0−→ Ãr,0

commutes. We pick the lift φr,1 such that it agrees with φr,0 on Tr. The quasiconfor-
mal dilatation of φr,1 is less than or equal to Kr.

For an integer k > 0, take r = rk = δnk . Inductively, we can define a sequence of
Kr-quasiconformal maps {φr,j}k

j=0 such that

Ar,j
φr,j−→ Ãr,j

↓ z → zn ↓ g

Ar,j−1
φr,j−1−→ Ãr,j−1

commutes and φr,j and φr,j−1 agree on the common boundary of Ar,j and Ar,j−1.
Note that

∆δ = ∆r ∪
k⋃

j=0

Ar,j.

Now we can define a quasiconformal map, which we still denote by φr as follows.

φr(z) =

{
z, z ∈ ∆r;

φr,j, z ∈ Ar,j, j = 0, 1, · · · , k.

The quasiconformal dilatation of φr on ∆δ is less than or equal to Kr and

g(φr(z)) = φr(z
n), z ∈

k⋃
j=1

Ar,j.

Since g(z) = zn(1 + O(z)), gk(z) = znk ∏k−1
i=0 (1 + O(zni

)). Because nk√
rk = δ,

the range of φrk
on ∆δ is a Jordan domain bounded above from ∞ and below from

0 uniformly in k. In addition, 0 is fixed by φrk
and the quasiconformal dilatations of

the φrk
are uniformly bounded in k. Therefore, the sequence {φrk

}∞k=1 is in a compact
set in the space of all quasiconformal homeomorphisms on ∆δ (see [1]). Let φ be a
limiting map of this family. Then we have

g(φ(z)) = φ(zn), z ∈ ∆δ.

Since the quasiconformal dilatation of φ is less than or equal to (1+ n
√

rk)/(1− n
√

rk)
for all k > 0, it follows that φ is a 1-quasiconformal map, and thus conformal. This
is the proof of the existence.

Suppose φ1 and φ2 are two conjugacies such that

φ−1
1 ◦ g ◦ φ1(z) = zn and φ−1

2 ◦ g ◦ φ2(z) = zn, z ∈ ∆δ.
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For

Φ(z) = φ−1
2 ◦ φ1(z) =

∞∑
j=1

ajz
j,

we have Φ(zn) = (Φ(z))n. This implies an
1 = a1 and aj = 0 for j ≥ 2. Since a1 6= 0,

we have an−1
1 = 1 and φ−1

2 = a1φ
−1
1 . This is the uniqueness. ¤

We now prove Theorem 2. The proof follows almost the same footsteps of those
of Theorem 1 and Theorem 5.

Proof of Theorem 2. Let g = f ◦ qn, n ≥ 2. Conjugating by z → bz, we can
assume f ′(0) = lim|z|→0 f(z)/z = 1.

We use ∆∗
r = ∆r \ {0} to mean a punctured disk of radius r > 0. There is a

0 < δ1 < 1 such that g : ∆∗
2δ1
→ g(∆∗

2δ1
) is a covering map of degree n.

Let 0 < δ < δ1 be a fixed number such that g−1(∆δ) ⊂ ∆δ1 . Since

z → zn : ∆∗
n
√

δ
→ ∆∗

δ and g : g−1(∆∗
δ) → ∆∗

δ

are both of covering maps of degree n, the identity map of ∆δ can be lifted to a
homeomorphism

h : ∆∗
n
√

δ
→ g−1(∆∗

δ).

Furthermore, h is a quasiconformal map and integrable asymptotically conformal at
0 such that the diagram

∆∗
n
√

δ

h−→ g−1(∆∗
δ)

↓ z → zn ↓ g

∆∗
δ

id−→ ∆∗
δ

commutes. We pick the lift so that

h′(0) = lim
z→0

h(z)

z
= 1.

These can be seen from the equation

g(h(z)) = zn, z ∈ ∆∗
n
√

δ
.

For any 0 < r ≤ δ, let Sr = {z ∈ C | |z| = r} and Tr = {z ∈ C | |z| = n
√

r}.
Consider the set E = Sr ∪ Tr and the map

φr(z) =

{
z, z ∈ Sr

h(z), z ∈ Tr.

It is clear that
g(φr(z)) = φr(z

n)

for z ∈ Tr.
Extend h to Ĉ by quasiconformal reflection with respect to Sr and φ(Sr) (see [1]).

We still denote this extended map as φ. Let ν = φz/φz be the complex dilatation of
the extended φ. Then

a(r) = ‖ν‖∞ = O(‖µ|∆ n√r‖∞) = O(ω( n
√

r)).

Assume h( n
√

r) = τr. Consider νc = ca0a(r)−1ν and the unique solution φc = φνc that
maps 0, r, and ∞ to 0, τr, and ∞, respectively. Here a0 is a constant independent
of r such that |φc(z)| > r for all |z| = n

√
r and |c| < 1. (Since φc can be written as
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a power series in νc and ‖νc‖ → 0 uniformly as r → 0 , such an a0 exists.) Then φc

holomorphically depends on c ∈ ∆. Define

φr(c, z) =

{
z z ∈ Sr

φc(z), z ∈ Tr.

It is a holomorphic motion from ∆ × E → Ĉ. From Theorem 3, φ(c, z) can be
extended to a holomorphic motion from ∆ × Ĉ → Ĉ, which we still denote by
φ(c, z), such that the quasiconformal dilatation of φ(c, ·) is less than or equal to
(1 + |c|)/(1− |c|). In particular when cr = a−1

0 a(r), φr(cr, z)|E = φr. We still use φr

to denote φr(cr, ·)|Ar,0.
For an integer k > 0, take r = rk = δnk . Let

Ar,j = {z ∈ C | nj√
r ≤ |z| ≤ nj+1√

r}
for 0 ≤ j ≤ k − 1. Then

∆δ = ∆r ∪
k−1⋃
j=0

Ar,j.

Let φr(z) = z for z ∈ ∆r and extend φr to
⋃k−1

j=0 Ar,j by lifting. Then we get a
homeomorphism on ∆δ, which we still denote as φr (refer to the proof of Theorem 1).
Formally we can use the following formula to define φr,

φr(z) = g−j(φr(z
nj

)), z ∈ Ar,j, j = 0, · · · , k − 1,

and φr(z) = z for z ∈ ∆r. Since φr|E is a conjugacy from g to qn(z) = zn, φr is
continuous on ∆δ.

Let ω(t) = ωf,0(t) for 0 < t ≤ δ. Suppose C > 0 is a constant such that

C−1 ≤
∣∣∣f(z)

z

∣∣∣ ≤ C

for z ∈ ∆δ. Suppose, in the beginning of the proof, we pick δ small such that
ω(Cδ) < 1. Let 0 < δ < σ < 1 be a fixed constant. From Lemma 2,

K0 = ω̃(δ) =
∞∑

n=0

ω(Cσnδ) < ∞

is a convergent series. Thus the product

K1 =
∞∏

n=0

(
1− ω(Cσnδ)

)−1

< ∞

is also convergent.
Using the similar argument to that in the proof of Theorem 1, we can obtain

that the complex dilatation µ(z) = µφr(z) over ∆δ can be controlled by

|µ(z)| ≤ K1(cr + ω̃(δ)) ≤ K1(1 + K0)

for z ∈ ∆δ and
|µ(z)| ≤ K1(cr̃ + ω̃(r̃))

for z ∈ ∆r̃ and all r = rk ≤ r̃.
Let k = K1(1 + K0) and K = (1 + k)/(1 − k). Then {φrk

}∞k=1 is uniformly
K-quasiconformal. Consider Br = ∆δ \∆r =

⋃k−1
j=0 Ar,j and φr(Br) =

⋃k−1
j=0 φr(Ar,j)
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for any r = rk. Both of the annulli have the same inner circle Sr. Thus the ratio
of the modulus of φr(Br) and the modulus of Br is controlled by two constants
from below and above (independent of r but only depends on K). Therefore, the
range of φr on ∆δ is a Jordan domain bounded above from ∞ and below from 0
uniformly in 0 < r = rk ≤ δ. Since, additionally, 0 is fixed by any element in
this sequence, the sequence {φrk

}∞k=1 is in a compact set in the space of all K-
quasiconformal homeomorphisms on ∆δ (see [1]). Let φ be a limit mapping of this
family. Then we have

g(φ(z)) = φ(zn), z ∈ ∆δ.

Similar to the arguments in Theorem 1, the complex dilatation of φr(z) on disk
∆r̃ is controlled by K1(cr̃ + ω̃(r̃)) for any r = rk ≤ r̃. So the complex dilatation of φ
on ∆r̃ is also controlled by K1(cr̃ + ω̃(r̃)) → 0 as r̃ → 0. Thus φ(z) is asymptotically
conformal at 0. The proof of existence is completed.

Suppose φ1 and φ2 are two asymptotically conformal conjugacies such that
φ−1

1 ◦ g ◦ φ1(z) = zn and φ−1
2 ◦ g ◦ φ2(z) = zn, z ∈ ∆δ.

Then for Φ = φ−1
2 ◦ φ1, we have Φ(zn) = (Φ(z))n. This implies that the complex

dilatation ‖µΦ(z)‖ = ‖µΦ(zn)‖, a.e. This in turn implies that µ = 0 a.e. in ∆δ

and thus Φ is conformal, and therefore, Φ(z) = az with an−1 = 1. This is the
uniqueness. ¤
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