A POWER OF A MEROMORPHIC FUNCTION SHARING A SMALL FUNCTION WITH ITS DERIVATIVE

Jilong Zhang and Lianzhong Yang
Shandong University, School of Mathematics \& System Sciences Jinan, Shandong, 250100, P. R. China; jilongzhang2007@gmail.com
Shandong University, School of Mathematics \& System Sciences Jinan, Shandong, 250100, P. R. China

Abstract

In this paper, we investigate uniqueness problems of meromorphic functions that share a small function with one of their derivatives, and give some results which are related to a conjecture of Brück, and also improve several previous results.

1. Introduction and results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We shall use the standard notations in Nevanlinna value distribution theory of meromorphic functions such as $T(r, f), N(r, f), m(r, f)$ (see e.g., [5, 8]). For any nonconstant meromorphic function f, we denote by $S(r, f)$ any quantity satisfying

$$
\lim _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)}=0
$$

possibly outside of a set of finite linear measure in R_{+}. A meromorphic function $a(z)$ is said to be a small function of f, provided $T(r, a)=S(r, f)$.

We say that two meromorphic functions f and g share a small function a IM (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, then we say that f and g share a CM (counting multiplicities).

The uniqueness theory of entire and meromorphic functions has grown up to an extensive subfield of the value distribution theory, see e.g. the monograph [8] by Yang and Yi. A widely studied subtopic of the uniqueness theory has been to considering shared value problems relative to a meromorphic function f and its derivative $f^{(k)}$. Some of the basic papers in this direction are due to Rubel and Yang [7], Gundersen [3], Mues and Steinmetz [6] and Yang [9]. A much investigated problem in this direction is the following conjecture proposed by Brück [2]:

Conjecture. Let f be a non-constant entire function. Suppose that

$$
\rho_{1}(f):=\underset{r \rightarrow \infty}{\limsup } \frac{\log \log T(r, f)}{\log r}
$$

[^0]is not a positive integer or infinite. If f and f^{\prime} share one finite value a CM, then
$$
\frac{f^{\prime}-a}{f-a}=c
$$
for some non-zero constant c.
The conjecture has been verified in special cases only by now: (1) f is of finite order, see [4], (2) $a=0$, see [2] and (3) $N\left(r, 1 / f^{\prime}\right)=S(r, f)$, see [2]. However, the corresponding conjecture for meromorphic functions fails in general, as shown by Gundersen and Yang [4], while it remains true in the case of $N\left(r, 1 / f^{\prime}\right)=S(r, f)$, see Al-Khaladi [1].

Recently, Yang and the present author [10] considered the case that $F=f^{n}$, where f is a nonconstant meromorphic function, assuming value sharing with F and F^{\prime} :

Theorem A. Let f be a nonconstant entire function, $n \geq 7$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Theorem B. Let f be a nonconstant meromorphic function and $n \geq 12$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Subsequently, the present author [13] improved Theorem A and B and gave the following theorems.

Theorem C. Let f be a nonconstant entire function and $n \geq 6$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Theorem D. Let f be a nonconstant meromorphic function and $n \geq 7$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
In this paper, we improve Theorem C and D by obtaining the following results:
Theorem 1.1. Let f be a nonconstant entire function, n, k be positive integers and $a(z)$ be a small meromorphic function of f such that $a(z) \not \equiv 0, \infty$. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 C M$ and $n>k+1$, then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.

Theorem 1.2. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function of f such that $a(z) \not \equiv 0, \infty$. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 C M$ and

$$
\begin{equation*}
n>k+1+\sqrt{k+1}, \tag{1.1}
\end{equation*}
$$

then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
From Theorem 1.1 and 1.2, we can deduce the following two corollaries.
Corollary 1.3. Let f be a nonconstant entire function and $n \geq 3$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Corollary 1.4. Let f be a nonconstant meromorphic function and $n \geq 4$ be an integer. Denote $F=f^{n}$. If F and F^{\prime} share $1 C M$, then $F=F^{\prime}$, and f assumes the form

$$
f(z)=c e^{\frac{1}{n} z}
$$

where c is a nonzero constant.
Remark. Obviously, Corollary 1.3 and Corollary 1.4 improve Theorem C and Theorem D respectively.

For the case sharing the small function IM, we have the following results.
Theorem 1.5. Let f be a nonconstant entire function, n, k be positive integers and $a(z)$ be a small meromorphic function of f such that $a(z) \not \equiv 0, \infty$. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 I M$ and $n>2 k+3$, then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z},
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Theorem 1.6. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function of f such that $a(z) \not \equiv 0, \infty$. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 I M$ and

$$
\begin{equation*}
n>2 k+3+\sqrt{(2 k+3)(k+3)} \tag{1.2}
\end{equation*}
$$

then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.

2. Some lemmas

Let F and G be two non-constant meromorphic functions such that F and G share the value 1 IM . Let z_{0} be a 1-point of F of order p, a 1-point of G of order q. We denote by $N_{L}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p>q$; by $N_{E}^{1)}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p=q=1$; by
$N_{E}^{(2}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p=q \geq 2$; each point in these counting functions is counted only once. In the same way, we can define $N_{L}\left(r, \frac{1}{G-1}\right), N_{E}^{1)}\left(r, \frac{1}{G-1}\right)$, and $N_{E}^{(2}\left(r, \frac{1}{G-1}\right)($ see [12]). Particularly, if F and G share 1 CM, then

$$
\begin{equation*}
N_{L}\left(r, \frac{1}{F-1}\right)=N_{L}\left(r, \frac{1}{G-1}\right)=0 . \tag{2.1}
\end{equation*}
$$

With these notations, if F and G share 1 IM , it is easy to see that

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & =N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{F-1}\right) \\
& +N_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{(2}\left(r, \frac{1}{G-1}\right)=\bar{N}\left(r, \frac{1}{G-1}\right) \tag{2.2}
\end{align*}
$$

Lemma 2.1. [11, Lemma 3] Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right), \tag{2.3}
\end{equation*}
$$

where F and G are two nonconstant meromorphic functions. If $H \neq 0$, then

$$
\begin{equation*}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, F)+S(r, G) \tag{2.4}
\end{equation*}
$$

Let p be a positive integer and $a \in \mathbf{C} \bigcup\{\infty\}$. We denote by $N_{p)}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ with the multiplicities less than or equal to p, and by $N_{(p+1}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ with the multiplicities larger than p. And we use $\bar{N}_{p)}\left(r, \frac{1}{f-a}\right)$ and $\bar{N}_{(p+1}\left(r, \frac{1}{f-a}\right)$ to denote the corresponding reduced counting functions (ignoring multiplicities). However, $N_{p}\left(r, \frac{1}{f-a}\right)$ denotes the counting function of the zeros of $f-a$ where m-fold zeros are counted m times if $m \leq p$ and p times if $m>p$. Obviously, $\bar{N}\left(r, \frac{1}{f-a}\right)=N_{1}\left(r, \frac{1}{f-a}\right)$.

Lemma 2.2. [14, Lemma 3] Suppose that f is a nonconstant meromorphic function and k, p are positive integers. Then

$$
\begin{align*}
& N_{p}\left(r, 1 / f^{(k)}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}(r, 1 / f)+S(r, f), \tag{2.5}\\
& N_{p}\left(r, 1 / f^{(k)}\right) \leq k \bar{N}(r, f)+N_{p+k}(r, 1 / f)+S(r, f) \tag{2.6}
\end{align*}
$$

Lemma 2.3. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function of f such that $a(z) \not \equiv 0, \infty$. Suppose that $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value $0 I M$ and H is given by (2.3), where $F=\frac{f^{n}}{a}, G=\frac{\left(f^{n}\right)^{(k)}}{a}$. If $H \neq 0$ and $n>k+1$, then

$$
\begin{equation*}
T(r, f)=O(\bar{N}(r, f)+\bar{N}(r, 1 / f)) \tag{2.7}
\end{equation*}
$$

Proof. Since $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 IM, then F and G share 1 IM possibly except at the zeros and poles of $a(z)$. By the definition of H, we have

$$
\begin{align*}
N(r, H) \leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+N_{L}\left(r, \frac{1}{F-1}\right) \\
& +N_{L}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, f), \tag{2.8}
\end{align*}
$$

where $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the counting function corresponding to the zeros of F^{\prime} which are not the zeros of F and $F-1$, and correspondingly for G^{\prime}.

From (2.2), (2.4) and (2.8), we obtain

$$
\begin{align*}
\bar{N} & \left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
= & 2 N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{G-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \tag{2.9}\\
\leq & \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+3 N_{L}\left(r, \frac{1}{F-1}\right) \\
& +3 N_{L}\left(r, \frac{1}{G-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right) .
\end{align*}
$$

Noting that

$$
\begin{aligned}
& N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{F-1}\right) \leq T(r, F)+O(1)
\end{aligned}
$$

(2.9) yields

$$
\begin{align*}
& \bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
& \leq \bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}(r, F)+N_{L}\left(r, \frac{1}{F-1}\right) \tag{2.10}\\
& \quad+2 N_{L}\left(r, \frac{1}{G-1}\right)+T(r, F)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)+O(1)
\end{align*}
$$

From the second fundamental theorem, we have

$$
\begin{align*}
& T(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, F) \tag{2.11}\\
& T(r, G) \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \tag{2.12}
\end{align*}
$$

Combining with (2.10), (2.11) and (2.12), we get

$$
\begin{aligned}
T(r, F)+T(r, G) \leq & N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}(r, f)+N_{L}\left(r, \frac{1}{F-1}\right) \\
& +2 N_{L}\left(r, \frac{1}{G-1}\right)+T(r, F)+S(r, f),
\end{aligned}
$$

which means

$$
\begin{aligned}
T\left(r,\left(f^{n}\right)^{(k)}\right) \leq & N_{2}\left(r, \frac{1}{f^{n}}\right)+N_{2}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+3 \bar{N}(r, f) \\
& +N_{L}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{aligned}
$$

From above inequality and (2.5), we have

$$
\begin{align*}
T\left(r, f^{n}\right) \leq & N_{2}\left(r, \frac{1}{f^{n}}\right)+N_{2+k}\left(r, \frac{1}{f^{n}}\right)+3 \bar{N}(r, f) \tag{2.13}\\
& +N_{L}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{align*}
$$

By the definition, we have

$$
\bar{N}\left(r, \frac{1}{G}\right)=N_{1}\left(r, \frac{1}{G}\right) \leq N_{1}\left(r, \frac{1}{\left(f^{n}\right)^{(k)}}\right)+S(r, f) .
$$

From this and (2.6), we get

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{G}\right) & \leq N_{1+k}\left(r, \frac{1}{f^{n}}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) \tag{2.14}
\end{align*}
$$

Noting that $n>k+1$, we get from (2.14)

$$
\begin{align*}
N_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{F}{F^{\prime}}\right) \leq N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, f) \tag{2.15}\\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}(r, f)+S(r, f), \\
N_{L}\left(r, \frac{1}{G-1}\right) & \leq N\left(r, \frac{G}{G^{\prime}}\right) \leq N\left(r, \frac{G^{\prime}}{G}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+S(r, f) \tag{2.16}\\
& \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+(k+1) \bar{N}(r, f)+S(r, f)
\end{align*}
$$

Substituting (2.15) and (2.16) into (2.13), we obtain the conclusion of Lemma 2.3.
Lemma 2.4. Let

$$
\begin{equation*}
V=\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)-\left(\frac{G^{\prime}}{G-1}-\frac{G^{\prime}}{G}\right), \tag{2.17}
\end{equation*}
$$

where F and G are given by Lemma 2.3. If $V=0$ and $n \geq 2$, then $F=G$.
Proof. From $V=0$, we get

$$
\begin{equation*}
1-\frac{1}{F}=B-\frac{B}{G}, \tag{2.18}
\end{equation*}
$$

where B is a non-zero constant. We discuss the following two cases.
Case 1. Suppose that $N(r, f) \neq S(r, f)$. Then there exists a z_{0} which is not a zero or pole of a such that $\frac{1}{f\left(z_{0}\right)}=0$, thus $\frac{1}{F\left(z_{0}\right)}=\frac{1}{G\left(z_{0}\right)}=0$. We get $B=1$ from (2.18).

Case 2. Suppose that $N(r, f)=S(r, f)$. If $B \neq 1$, then $\bar{N}\left(r, \frac{1}{F-\frac{1}{1-B}}\right)=$ $\bar{N}(r, G)=S(r, f)$. From the second fundamental theorem, we have

$$
\begin{aligned}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\frac{1}{1-B}}\right)+S(r, F) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+S(r, f),
\end{aligned}
$$

which is a contradiction since $n \geq 2$. Therefore $B=1$. Thus $F=G$, completing the proof of Lemma 2.4.

Lemma 2.5. Let V be given by (2.17) and suppose that $V \neq 0$. Then

$$
\begin{equation*}
(n-1) \bar{N}(r, f) \leq N(r, V)+S(r, f) \tag{2.19}
\end{equation*}
$$

Proof. We get from (2.17) that

$$
V=\frac{F^{\prime}}{F(F-1)}-\frac{G^{\prime}}{G(G-1)}
$$

Suppose that z_{0} is a pole of f with the multiplicity p such that $a\left(z_{0}\right) \neq 0$ and $a\left(z_{0}\right) \neq \infty$. Then z_{0} is a zero of $\frac{F^{\prime}}{F(F-1)}$ with the multiplicity $n p-1$ and a zero of $\frac{G^{\prime}}{G(G-1)}$ with the multiplicity $n p+k-1$. So z_{0} is zero of V with the multiplicity at least $n-1$. Noting that $m(r, V)=S(r, f)$, we have

$$
(n-1) \bar{N}(r, f) \leq N\left(r, \frac{1}{V}\right)+S(r, f) \leq T(r, V)+S(r, f) \leq N(r, V)+S(r, f)
$$

Lemma 2.6. Assume that the conditions of Lemma 2.5 are satisfied and $n>$ $k+1$.
(1) If F and G share $1 C M$, then

$$
\begin{equation*}
(n-k-1) \bar{N}(r, f) \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.20}
\end{equation*}
$$

(2) If F and G share 1 IM, then

$$
\begin{equation*}
(n-2 k-3) \bar{N}(r, f) \leq(2 k+3) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.21}
\end{equation*}
$$

Proof. (1) From (2.17), we have

$$
N(r, V) \leq \bar{N}\left(r, \frac{1}{G}\right)+S(r, f)
$$

From this, (2.19) and (2.14), we obtain (2.20).
(2) From (2.17), we have

$$
N(r, V) \leq \bar{N}\left(r, \frac{1}{G}\right)+N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) .
$$

Substituting (2.14), (2.15) and (2.16) into above inequality and using (2.19), we obtain (2.21).

Lemma 2.7. Let

$$
\begin{equation*}
U=\frac{F^{\prime}}{F-1}-\frac{G^{\prime}}{G-1}, \tag{2.22}
\end{equation*}
$$

where F and G are given by Lemma 2.3. If $U=0$ and $n>k+1$, then $F=G$.
Proof. Suppose to the contrary that $F \neq G$. From $U=0$, we get

$$
\begin{equation*}
F=D G+1-D \tag{2.23}
\end{equation*}
$$

where D is a non-zero constant. We get from (2.23) that $D \neq 1, N(r, f)=S(r, f)$. Suppose that there exists a point z_{0} such that $f\left(z_{0}\right)=0$ and $a\left(z_{0}\right) \neq 0$. Since $n>k+1$, we have $F\left(z_{0}\right)=G\left(z_{0}\right)=0$. So, $D=1$, a contradiction. Therefore $N(r, 1 / f)=S(r, f)$. From the second fundamental theorem, we get from (2.23) and (2.14) that

$$
\begin{aligned}
n T(r, f) & \leq T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F+D-1}\right)+S(r, f) \\
& \leq \bar{N}(r, 1 / f)+\bar{N}(r, f)+\bar{N}(r, 1 / G)+S(r, f) \\
& \leq \bar{N}(r, 1 / G)+S(r, f) \\
& \leq(k+1) \bar{N}(r, 1 / f)+k \bar{N}(r, f)+S(r, f) \\
& \leq S(r, f)
\end{aligned}
$$

a contradiction. The proof of Lemma 2.7 is complete.
Lemma 2.8. Let U be given by Lemma 2.7. If $U \neq 0$ and $n>k+1$, then

$$
\begin{equation*}
(n-k-1) \bar{N}(r, 1 / f) \leq N(r, U)+S(r, f) \tag{2.24}
\end{equation*}
$$

Proof. Suppose that z_{0} is a zero of f with the multiplicity p such that $a\left(z_{0}\right) \neq 0$ and $a\left(z_{0}\right) \neq \infty$. Then z_{0} is a zero of $\frac{F^{\prime}}{F-1}$ with the multiplicity $n p-1$ and a zero of $\frac{G^{\prime}}{G-1}$ with the multiplicity $n p-k-1$. So z_{0} is zero of U with the multiplicity at least $n-k-1$. Noting that $m(r, U)=S(r, f)$, we have

$$
\begin{aligned}
(n-k-1) \bar{N}(r, 1 / f) & \leq N\left(r, \frac{1}{U}\right)+S(r, f) \leq T(r, U)+S(r, f) \\
& \leq N(r, U)+S(r, f)
\end{aligned}
$$

Lemma 2.9. Assume that the conditions of Lemma 2.8 are satisfied.
(1) If F and G share $1 C M$, then

$$
\begin{equation*}
(n-k-1) \bar{N}(r, 1 / f) \leq \bar{N}(r, f)+S(r, f) \tag{2.25}
\end{equation*}
$$

(2) If F and G share 1 IM, then

$$
\begin{equation*}
(n-2 k-3) \bar{N}(r, 1 / f) \leq(k+3) \bar{N}(r, f)+S(r, f) \tag{2.26}
\end{equation*}
$$

Proof. (1) From (2.22), we have

$$
N(r, U) \leq \bar{N}(r, f)+S(r, f)
$$

From this and (2.24), we obtain (2.25).
(2) From (2.22), we have

$$
N(r, U) \leq \bar{N}(r, f)+N_{L}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) .
$$

From this, (2.24), (2.15) and (2.16), we obtain (2.26).
Lemma 2.10. Let F and G be given by Lemma 2.3. If $F=G$ and $n>k+1$, then f assumes the form

$$
f(z)=c e^{\frac{\lambda}{n} z}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Proof. From $F=G$, we have

$$
\begin{equation*}
f^{n}=\left(f^{n}\right)^{(k)} . \tag{2.27}
\end{equation*}
$$

We claim that 0 is a Picard exceptional value of f. In fact, if z_{0} is a zero of f with the multiplicity p, then z_{0} is a zero of f^{n} with the multiplicity $n p$ and a zero of $\left(f^{n}\right)^{(k)}$ with the multiplicity $n p-k$, which is impossible from (2.27). Then from (2.27), we have

$$
f(z)=c e^{\frac{\lambda}{n} z},
$$

where c is a nonzero constant and $\lambda^{k}=1$.
Lemma 2.11. Let H be given by Lemma 2.3 and

$$
\begin{equation*}
\bar{N}(r, f)=\bar{N}(r, 1 / f)=S(r, f) \tag{2.28}
\end{equation*}
$$

If $H=0$, then $F=G$.
Proof. By integration, we get from (2.3) that

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{2.29}
\end{equation*}
$$

where $A(\neq 0)$ and B are constants. From (2.29) we have

$$
\begin{equation*}
G=\frac{(B-A) F+(A-B-1)}{B F-(B+1)} . \tag{2.30}
\end{equation*}
$$

We discuss the following three cases.

Case 1. Suppose that $B \neq 0,-1$. From (2.30) we have $\bar{N}\left(r, 1 /\left(F-\frac{B+1}{B}\right)\right)=$ $\bar{N}(r, G)$. From (2.28) and the second fundamental theorem, we have

$$
\begin{aligned}
n T(r, f) & \leq T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)+S(r, f) \\
& \leq \bar{N}(r, 1 / f)+\bar{N}(r, F)+\bar{N}(r, G)+S(r, f) \\
& \leq S(r, f),
\end{aligned}
$$

which is impossible.
Case 2. Suppose that $B=0$. From (2.30) we have

$$
\begin{equation*}
G=A F-(A-1) . \tag{2.31}
\end{equation*}
$$

If $A \neq 1$, from (2.31) we can obtain $\bar{N}\left(r, 1 /\left(F-\frac{A-1}{A}\right)\right)=\bar{N}(r, 1 / G)$. By (2.6), (2.28) and the second fundamental theorem, we have

$$
\begin{aligned}
n T(r, f) & \leq T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F-\frac{A-1}{A}}\right)+S(r, f) \\
& \leq S(r, f)
\end{aligned}
$$

which is impossible. Thus $A=1$. From (2.31) we have $F=G$.
Case 3. Suppose that $B=-1$. From (2.30) we have

$$
\begin{equation*}
G=\frac{(A+1) F-A}{F} \tag{2.32}
\end{equation*}
$$

If $A \neq-1$, we obtain from (2.32) that $\bar{N}\left(r, 1 /\left(F-\frac{A}{A+1}\right)\right)=\bar{N}(r, 1 / G)$. By the same reasoning discussed in Case 2, we obtain a contradiction. Hence $A=-1$. From (2.32), we get $F \cdot G=1$, that is

$$
f^{n} \cdot\left(f^{n}\right)^{(k)}=a^{2} .
$$

From above equation and (2.28), we have

$$
\begin{aligned}
2 T\left(r, \frac{f^{n}}{a}\right) & =T\left(r, \frac{f^{2 n}}{a^{2}}\right)=T\left(r, \frac{a^{2}}{f^{2 n}}\right)+O(1) \\
& =T\left(r, \frac{\left(f^{n}\right)^{(k)}}{f^{n}}\right)+O(1)=S(r, f)
\end{aligned}
$$

So $T(r, f)=S(r, f)$, which is impossible. This completes the proof of Lemma 2.11.

3. Proofs of results

Proof of Theorem 1.6. Let H, U and V be given by (2.3), (2.22) and (2.17) respectively.

If $U V=0$, we get $F=G$ from Lemma 2.7 or Lemma 2.4. Then Theorem 1.6 follows by Lemma 2.10. Next, we assume $U V \neq 0$. From (2.21) and (2.26), we have

$$
\begin{aligned}
\left((n-2 k-3)^{2}-(2 k+3)(k+3)\right) \bar{N}(r, f) & \leq S(r, f) \\
\left((n-2 k-3)^{2}-(2 k+3)(k+3)\right) \bar{N}(r, 1 / f) & \leq S(r, f) .
\end{aligned}
$$

Substituting (1.2) into above two inequalities, resulting in

$$
\begin{equation*}
\bar{N}(r, 1 / f)=\bar{N}(r, f)=S(r, f) \tag{3.1}
\end{equation*}
$$

If $H \neq 0$, combining with (3.1) and (2.7) yields

$$
T(r, f)=S(r, f)
$$

which is a contradiction. Hence $H=0$. Theorem 1.6 follows from (3.1), Lemma 2.11 and Lemma 2.10.

Proof of Theorem 1.5. Let H, U and V be given by (2.3), (2.22) and (2.17) respectively.

If $U=0$, we get $F=G$ from Lemma 2.7. Then Theorem 1.6 follows from Lemma 2.10. Next, we assume $U \neq 0$. Noting that $n>2 k+3$, we get from (2.26) that $\bar{N}(r, 1 / f)=S(r, f)$.

If $H \neq 0$, then $T(r, f)=S(r, f)$ from (2.7), which is a contradiction. Hence $H=0$. Theorem 1.5 follows from Lemma 2.11 and Lemma 2.10.

If we use (2.20) and (2.25) instead of (2.21) and (2.26) in the proofs of Theorem 1.5 and 1.6 , we can get the proofs of Theorem 1.1 and 1.2 similarly. We omit the details here.

4. Open problem

Let F be as in Corollary 1.4. Suppose that $n \geq 4(\geq 3)$ when f is a meromorphic (entire) function. The two corollaries tell us $F=F^{\prime}$ if F and F^{\prime} share 1 CM . Examples given by [4] show that the conclusion may fail when $n=1$. A natural question is:

Question. Can n in Corollary 1.3 and 1.4 be reduced?

References

[1] Al-Khaladi, A.: On meromorphic functions that share one value with their derivative. Analysis 25, 2005, 131-140.
[2] BrÜCK, R.: On entire functions which share one value CM with their first derivative. - Results Math. 30, 1996, 21-24.
[3] Gundersen, G. G.: Meromorphic functions that share finite values with their derivative. - J. Math. Anal. Appl. 75, 1980, 441-446.
[4] Gundersen, G. G., and L. Z. Yang: Entire functions that share one value with one or two of their derivatives. - J. Math. Anal. Appl. 223, 1998, 88-95.
[5] Hayman, W. K.: Meromorphic functions. - Clarendon Press, Oxford, 1964.
[6] Mues, E., and N. Steinmetz: Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen. - Complex Var. Theory Appl. 6, 1986, 51-71.
[7] Rubel, L. A., and C. C. Yang: Values shared by an entire function and its derivative. Lecture Notes in Math. 599, Springer-Verlag, Berlin, 1977, 101-103.
[8] Yang, C. C., and H. X. Yi: Uniqueness theory of meromorphic functions. - Kluwer Academic Publishers, The Netherlands, 2003.
[9] Yang, L. Z.: Entire functions that share finite values with their derivatives. - Bull. Austral. Math. Soc. 41, 1990, 337-342.
[10] Yang, L. Z., and J. L. Zhang: Non-existence of meromorphic solutions of Fermat type functional equation. - Aequationes Math. (to appear).
[11] Yı, H. X.: Uniqueness theorems for meromorphic functions whose n-th derivatives share the same 1-points. - Complex Var. Theory Appl. 34, 1997, 421-436.
[12] Yi, H. X.: Unicity theorems for entire or meromorphic functions. - Acta Math. Sin. (N.S.) 10, 1994, 121-131.
[13] Zhang, J. L.: Meromorphic functions sharing a small function with their derivatives. - Kyungpook Math. J. (to appear).
[14] Zhang, J. L., and L. Z. Yang: Some results related to a conjecture of R. Brück. - J. Inequal. Pure Appl. Math. 8:1, 2007, Art. 18.

Received 17 April 2008

[^0]: 2000 Mathematics Subject Classification: Primary 30D35, 30D20.
 Key words: Uniqueness theorems, shared value, small function.
 Corresponding author: Jilong Zhang.
 Both of the authors were supported by the NNSF of China (No. 10671109). The first author was also partly supported by the Academy of Finland (grant 210245).

