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Abstract. The classical Teichmüller problem asks one to identify the deformation of a disk
which holds the boundary fixed, moves the origin to a given point and which minimises the maxi-
mal conformal distortion. The minimiser exists and is quasiconformal—Teichmüller identified the
extremal. Here we study the same problem, but instead of the maximal conformal distortion we
consider the mean conformal distortion. In this setting many of the usual tools of quasiconformal
mappings are lost. In surprising contrast to this classical case, we show that there cannot be a
minimiser. However we give asymptotically sharp bounds for the minimal mean distortion and
conjectured extrema. These exhibit quite different behaviour to that observed for the maximal con-
formal distortion and lend themselves to possibly modeling other phenomena in material science,
for instance tearing. The key tools for the proofs of the main results are based on our recent joint
work with Astala, Iwaniec and Onninen.

1. Introduction

In the last few years researchers have considered analogues of extremal problems
in the theory of quasiconformal mappings, both in the plane and in space, with a
view to minimising more general functionals than the maximal distortion for more
general sorts of mappings. For instance in [5] the boundary value problem for self
mappings of the disk with finite distortion was investigated. Fascinating connections
between minimisers of mean distortion and harmonic functions were discovered and
subsequently connections to the Nitsche conjecture (1962) were found [4, 6] when
investigating mappings between annuli which minimise mean distortion. This novel
phenomena (non-existence of expected minima outside a range of moduli) may per-
sist in other situations, depending on curvature and topology. This circle of ideas has
applications in theoretical materials science and critical phase phenomena, as distor-
tion functionals are natural measures of change in a system and address fundamental
questions relating microstructure and length scales.

In this note we study another classical problem—Teichmüller’s problem, see
[16, 1]. Thus we consider a domain Ω and points z1, z2 ∈ Ω and seek the homeomor-
phic mapping of finite distortion f : Ω → Ω with f |∂Ω = Identity and f(z1) = z2

which minimises some integral average of distortion. The classical problem has found
applications in the theory of homogeneity of domains as introduced in [10] and more
recently in the homogeneity constants of surfaces, see [7]. Surprisingly we see a
completely different phenomena to that observed classically.

2000 Mathematics Subject Classification:
Key words: Quasiconformal, mean distortion, Teichmüller.
Research supported in part by the Marsden Fund (NZ).



234 Gaven J. Martin

2. The problem

Let Ω ⊂ C be a planar domain. A homeomorphism f : Ω → Ω of Sobolev class
W 1,1

loc (Ω) has finite distortion if the Jacobian determinant J(z, f) is non-negative and
there is a distortion function K(z, f), finite almost everywhere, such that

‖Df(z)‖2 ≤ K(z, f) J(z, f).

These mappings are generalisations of quasiconformal homeomorphism and have
found considerable recent application in geometric function theory [3, 11, 12].

The function K has far better convexity properties than the more usual linear
distortion K (defined by the inequality |Df(z)|2 ≤ K(z, f) J(z, f)) and is more suited
to minimisation problems. In terms of the complex derivatives fz and fz we have

‖Df‖2 = |fz|2 + |fz|2, |Df |2 = |fz|+ |fz|
and so

K(z, f) =
|fz|2 + |fz|2
|fz|2 − |fz|2 , K(z, f) =

|fz|+ |fz|
|fz| − |fz| ,

then K = K +
√

K2 − 1 is increasing so that ‖K‖∞ and ‖K‖∞ have the same
minimisers.

We consider the following problem of minimising mean distortion:

Problem. For 0 ≤ r < 1, let

(1) MT (r) = inf

{
1

π

∫∫

D

K(z, f) dz

}

where the infimum is taken over all mapping f : D → D of finite distortion such that
f has a homeomorphic extension to D and

• f |∂D → ∂D is the identity mapping,
• f(0) = r.

We have postponed a remark concerning the hypothesised existence of boundary
values to Section 8.

2.1. The classical result. Before giving our main result we state the classical
result for the maximal distortion ‖K‖∞. There are two reasons for this; from it we
obtain trivial bounds on the mean distortion which will show that there must be
different minimisers; and also we get to introduce some special functions we’ll have
to analyse later.

Let K be the complete elliptic integral of the first kind,

(2) K (r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

, µ(r) =
π

2

K (
√

1− r2)

K (r)
.

The function µ gives us the Grötzch and Teichmüller ring moduli,

γ2(s) =
4

π
µ

(
s− 1

s + 1

)
, s > 1, and τ2(s) =

2

π
µ

(√
1 + s− 1√
1 + s + 1

)
, s > 0,

respectively, [1, §8.56]. We want to note the estimate

(3) µ(x) = log

(
4

x
− x− δ(x)

)

where x3/4 < δ(x) < 2x3 given in [13, p. 62].
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When formulated in terms of K Teichmüller’s theorem states

Theorem 1. Let f : D → D be a quasiconformal map with f(0) = r ≥ 0 and
which extends to the identity on the unit circle. Then

(4) ‖K(z, f)‖∞ ≥ 1

2

(
coth2

(
µ(r)

2

)
+ tanh2

(
µ(r)

2

))
.

This estimate is sharp. If we let d = ρD(0, r) = log 1+r
1−r

denote the hyperbolic distance
between 0 and r, we have the asymptotics

• ‖K(z, f)‖∞ ≈ 8
π4 d2, as d →∞,

• ‖K(z, f)‖∞ ≈ 1 + d2

4
, as d → 0.

The quadratic decay near 0 is a feature of the distortion K and not that of the
linear distortion (which behaves as 1 + d/2 for d near 0).

Our main result here is the following. In the body of the paper explicit formulae
are given for all r ∈ [0, 1], but these are quite complicated—involving dilogarithm
functions and the like.

Theorem 2. The minimal mean distortion function MT (r) defined at (1) for
the Teichmüller problem has the following asymptotics

• as r → 1

2

π2
log

1 + r

1− r
+

17 log 2

4π2
≤ MT (r) ≤ 2

π2
log

1 + r

1− r
+

4

3
− 7 + 8 log 2

2π2

up to an O(1− r) term,
• as r → 0

MT (r) ≤ 1 +

(
20− 8 log(2)

π2
− 7

6

)
r2 + O(r4).

The minimum value MT (r), for r > 0, is never attained for a homeomorphism of
finite distortion.

In terms of the hyperbolic distance d = ρD(0, r) we have
• MT (r) ≈ 2

π2 d, as d →∞,

• MT (r) ≤ 1 +
(

5−2 log(2)
π2 − 7

24

)
d2, as d → 0.

The estimate as d → ∞ is best possible but it is not clear what happens as r → 0.
Notice the constant here 5−2 log(2)

π2 − 7
24

= 0.07447 . . . is less than 1
4
, the constant for

the maximal distortion.

3. Non-existence of minima

The connection between minimisers of mean distortion and harmonic maps is the
focus of our earlier work [5, 4]. We recall the following theorem of [5].

Theorem 3. Let go : S → S be a homeomorphism. Consider the minimisation
problem

inf
g

{
1

π

∫∫

D

Kg(z) |dz|2
}

where the infimum is taken over all homeomorphisms g : D → D of finite distortion
for which g|S = go. Then there is a minimizer if and only if g0 has finite energy,
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this minimiser is unique and attains the minimum value E (go), and g−1 : D → D is
harmonic.

Here, the energy of the boundary values are defined by

E (go) = − 1

2π2

∫∫

S×S

log |go(ζ)− go(η)| dζ dη

In regard to our problem, this has the following consequence.

Theorem 4. If r > 0, the value MT (r) is never attained by a mapping of finite
distortion.

Proof. Suppose that f : D → D is a homeomorpism of finite distortion and does
minimise

∫∫
D

K(z, f) |dz|2 and has f(0) = r > 0 and f |S = Identity. Let z ∈ D\{0},
δ < min{|z|, 1 − |z|} and the disk D = D(z, δ) ⊂ D \ {0}. The image f(D) is not
a round disk but it is a Jordan domain conformally equivalent, say by ϕ, to D.
Let g : D → D be the homeomorphic minimiser of mean distortion with harmonic
inverse which has boundary values ϕ ◦ f : S(z, δ) → S(z, δ). The map g exists since
ϕ ◦ f : D → D is a competitor with finite mean distortion—so the minimum is finite.
Consider the new map

(5) f̂ =

{
f(z), z ∈ D \D,

ϕ−1 ◦ g, z ∈ D.

Of course K(z, f̂) = K(z, f) on D \D while

(6)
∫∫

D

K(z, f) |dz|2 ≥
∫∫

D

K(z, f̂) |dz|2 =

∫∫

D

K(z, g) |dz|2

by virtue of the fact that g is a minimiser. The map f̂ : D → D is clearly a home-
omorphism as the boundary values match up by construction. However there is a
slight technical problem in showing that f̂ is a mapping of finite distortion, but this
is easily dealt with in exactly the same was as in [11, p. 124]. Next notice that
f̂−1 = g−1 ◦ ϕ−1 is harmonic since g−1 is. Recall the minimiser g is unique as well.
Therefore, unless f = f̂ on D we have found a mapping with strictly smaller mean
distortion. This is not the case as f is chosen to be a minimiser. Therefore this
process has not changed f and so f−1 is harmonic near z. As z ∈ D\{0} is arbitrary
we find that f−1 : D \ {r} → D \ {0} is harmonic. We can’t carry this process out at
z = 0 since this would change the problem—we could no longer guarantee f(0) = r.
However the following Lemma 1 of [8, p. 403] shows that f−1 : D → D is harmonic.
But the boundary values of f−1 are the identity and so by uniqueness for the Poisson
problem f−1 = Identity which is a contradiction. Thus there is no minimiser f . ¤

Lemma 1. If h is harmonic in the punctured disc D \ {0} and satisfies

lim inf
r↓0

∫ 2π

0
|h(reiθ)| dθ

− log r
= 0,

then h has a harmonic extension to D.

Lemma 1 shows any minimising sequence must develop quite a strong singularity
near the origin. Theorem 4 begs the question as to what the minimum value might
be. One could even expect that the minimum value is always 1, given by a sequence
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degenerating to the identity whose (large) distortion is supported on a set of small
measure. We show this is not the case by giving an asymptotically sharp lower bound.
However first we need to have at hand some conformal mappings.

4. Conformal mapping

Let H denote the upper half plane and D+ the upper half-disk,

H = {z ∈ C : =(z) > 0}, D+ = {z ∈ D : =(z) > 0}.
From Nehari [15, §8 p. 209] we see that the conformal mapping ϕ : H → D+ has

the form

(7) ϕ(z) =
−i
√

z + 1 +
√

z − 1

−i
√

z + 1−√z − 1

and we settle on the formula

(8) ϕ(z) =
1

z

(
1 + i

√
z2 − 1

)
= 1− 2

(
1 + i

√
z + 1

z − 1

)−1

though some care must be taken with branches here and the formula at (7) is more
computationally reliable. The inverse of this map is the conformal map D+ → H is
given by

(9)
2z

1 + z2
.

Next, the map we will need the conformal map Φ: D+ → D,

(10) Φ(w) =

(
1+w
1−w

)2 − i
(

1+w
1−w

)2
+ i

,

and note that Φ(±1) = ±1, Φ(0) = −i. Note that (1 + eit)/(1− eit) = i cot(t/2) and
so on the boundary of D+ we have the map described by

Φ(eit) = −i +
2

cos(t)− i
, 0 ≤ t ≤ π,

Φ(t) = −i +
4t

1− 2it + t2
, −1 ≤ t ≤ 1.

5. Lower bounds for the mean distortion

Consider the two continua E = [−1, 0] and F = {eiθ : −π
2
≤ θ ≤ π

2
}. Let Γ be

the family of all curves in the disk joining the two continua E and F in D,

(11) Γ = Γ(E, F ;D)

This is half the planar Mori ring [1, p. 172]. Since dist(E, F ) ≥ 1, the function
ρ(z) ≡ 1 is an admissible Borel density for the curve family Γ. Let f : D → D be
a mapping of finite distortion with f(0) = r and f |∂D = Identity. Then f(F ) = F
while f(E) is a continua joining −1 and r. The curve family fΓ consists of all curves
joining these two continua. The linear fractional transformation (z − r)/(1 − rz)
conformally maps the curve family E to a curve joining −1 to 0 and F to the arc {eiθ :
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|θ| ≤ arctan
(
−1−r2

2r

)
} whose endpoints are i−r

1−ir
and − i+r

1+ir
. The symmetrisation

principle (or the extremal property of the Mori ring [1, Theorem 8.54]) tells us that

(12) Mod(fΓ) ≥ Mod(Γ′)

where Γ′ consists of all curves joining the continuum [−1, 0] to F . We want to
compute Mod(Γ′). First note that

√· maps D \ [−1, 0] conformally onto −iD+ and
F to the arc

{
eiθ : |θ| ≤ 1

2
arctan

( − 1−r2

2r

)}
. It follows from the formula at (9) that

the map

(13)
2iz

1− z2

takes this half disk to the upper half-plane. The interval [−i, i] is mapped to [−1, 1]

while the circular arc, connecting the point
√

i−r
1−ir

and its complex conjugate is
mapped to the complement (in R) of the interval [−α, α], where

(14) α =
√

2

√
1 + r2

1 + r
.

Then the map z 7→ (α − 1)(z − 1)/(2z + 2α) is conformal, preserves R, maps the
interval [−1, 1] to [−1, 0] and the complement of [−α, α] to the ray

[(α− 1)2/4α,∞] =

[
(1 + r −√2

√
1 + r2)2

4
√

2(1 + r)
√

1 + r2
,∞

]
.

By conformality, the modulus Mod(Γ′) is equal to the modulus of all curves joining
these two intervals in the upper half-plane. By subadditivity this is exactly half the
modulus of all curves joining these continua in C and this latter modulus is precisely
the modulus of the Teichmüller ring, τ2(t) at the point

(15) tr =
(1 + r −√2

√
1 + r2)2

4
√

2(1 + r)
√

1 + r2
.

Lemma 2. Let E ′ be a continuum in the disk joining −1 to r > 0 and let F ′

be the semicircle with endpoint ±i. If Γ′ consists of all curves joining E ′ to F ′ in D,
then

(16) Mod(Γ′) ≥ 1

2
τ2(tr) =

π

4
µ

(√
1 + tr − 1√
1 + tr + 1

)

where tr is defined at (15).

5.1. Q-homeomorphisms. We now need to recall some modulus estimates
for mappings of finite distortion. We will take these from [14] where the theory was
developed using curve families instead of the analytic approach of [3, 2, 11].

Let Ω be a domain in C. A mapping f : Ω → C is called a Q-homeomorphism if
for every family of paths Γ in Ω we have

(17) Mod(fΓ) ≤
∫∫

Ω

Q(z)ρ2(z) |dz|2

for all admissible functions ρ for the curve family Γ. Recall that ρ is admissible
means

∫
γ
ρ(s) ds ≥ 1 for all curves γ ∈ Γ. In [14, Theorem 2.19] it is shown that if
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f ∈ W 1,2
loc (Ω) and K(z, f) ∈ L1

loc(Ω), then (17) holds with Q(z) = K(z, f), the linear
distortion.

5.2. Lower bounds. In the situation as described in the previous subsection we
note that for the curve family Γ as defined at (11) the function ρ(z) ≡ 1 is admissible.
Thus we may put together the estimates of (12), (16) and (17) to get

(18)
1

2
τ2(tr) ≤ Mod(fΓ) ≤

∫∫

D

K(z, f) |dz|2

We now apply Jensen’s inequality with the convex function t 7→ 1
2
(t + t−1), now

requiring the left hand side to be at least 1, to give us a lower bound.

Corollary 1. Let f : D → D be a W 1,2
loc (D) homeomorphism of finite distortion

which extends continuously to the identity on S and has f(0) = r > 0. Then

(19)
τ2(tr)

4π
+

π

τ2(tr)
≤ 1

π

∫∫

D

K(z, f) |dz|2.
The lower bound here is really only any good if r is not near 0. The difficulty

being our choice of ρ ≡ 1 as the admissible function is suboptimal. Thus we want
to discuss here the asymptotic behaviour as r → 1 (and so tr → 0). It is the term
1
4π

τ2(tr) that we must study.
In terms of µ, we note the oscillating series expansion of

√
1+tr−1√
1+tr+1

and a slight
refinement of (3) leads to the estimate

τ2(tr)

4π
=

1

2π2
µ

(√
1 + tr − 1√
1 + tr + 1

)
≈ 1

2π2
µ




√
1 + 1

256
(1− r)4 − 1

√
1 + 1

256
(1− r)4 + 1




≈ 2

π2
log

1 + r

1− r
+

17 log 2

4π2
=

2

π2
ρD(0, r) +

17 log 2

4π2

where we have also used the expansion tr = 1
256

(1− r)4 + 1
128

(1− r)5 + · · · . Thus,

(20)
2

π2
ρD(0, r) +

17 log 2

4π2
+ O(1− r) ≤ 1

π

∫∫

D

K(z, f) |dz|2

We compare this linear bound as d = ρD(0, r) → ∞ as r → 1 with the implicit
quadratic bound (since the L1 mean is smaller than the L∞ bound) of Theorem 1 of
8
π4 d

2. We will see this linear bound is best by example.

6. Minimisers

In this section we give a formula for the mean distortion of a natural family of
candidate examples which have asymptotically correct behaviour—that is it matches
the lower bounds established in the previous section. Although at this point we know
there is no minimiser, it is reasonable to believe that the symmetry of the problem
across the real axis is reflected in minimising sequences. We also note that on a
convex region in D we decrease the mean distortion by replacing the map with an
inverse harmonic function.

For these reasons we consider a mappings g : D+ → D+ which have harmonic
inverses, are the identity on the semi-circle and are some as yet undefined self home-
omorphism h of the interval [−1, 1]. We get candidates for minimising sequences by
by by reflecting g across the real line. We will seek to minimise the mean distortion
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by good choices of h. Post composing g with a conformal map D+ → D means we
can use our explicit formulas for the mean distortion.

Indeed, if there is a minimising sequence {fi} for the problem (1) which maps the
interval [−1, 1] to itself, then replacing fi by the inverses of the harmonic extension of
f−1

i on the upper and lower disks and using the compactness properties, the harmonic
version of the Hurwitz theorem and other results found in [9] one can see that the
inverses of modified minimising sequence will converge to a mapping of the disk to
itself which is a homeomorphism away from a subinterval of [−1, 1] (the limit will
be monotone). Thus we expect that a minimising sequence “converges” to a map
f which is a homeomorphism (with harmonic inverse) away from the origin and
f(D \ {0}) = D \ [a, b]. Presumably [a, b] = [0, r].

6.1. The minimisation problem. Suppose we have a homeomorphism f : ∂D+

→ ∂D of the form

(21) f(z) =

{
Φ(z), |z| = 1,

Φ(h(z)), −1 ≤ z ≤ 1,

where Φ: D+ → D is defined at (10) and h : [−1, 1] → [−1, 1] is an increasing
homeomorphism, h(±1) = ±1 . We want to compute the conformal energy of the
map f as a function of h and choose h to minimise this conformal energy. Γ will
denote the obvious parameterisation of the boundary of D+ into the upper circle
C+ = {eit : 0 ≤ t ≤ π} and the interval [−1, 1].

Then

ED+(f) = − 1

π2

∫∫

Γ×Γ

log |f(ζ)− f(η)| dζ dη

= − 1

π2

∫ π

0

∫ π

0

log |Φ(eit)− Φ(eis)| eit dt e−is ds

− 1

π2

∫ π

0

∫ 1

−1

log |Φ(eis)− Φ(h(t))| dt (−ie−is) ds

− 1

π2

∫ 1

−1

∫ π

0

log |Φ(eit)− Φ(h(s))| ieit dt ds

− 1

π2

∫ 1

−1

∫ 1

−1

log |Φ(h(t))− Φ(h(s))| dt ds

= − 1

π2

∫ π

0

∫ π

0

log

∣∣∣∣
2

cos(t)− i
− 2

cos(s)− i

∣∣∣∣ ei(t−s) dt ds

+
2

π2

∫ 1

−1

∫ π

0

log |Φ(eit)− Φ(h(s))| sin(t) dt ds

− 1

π2

∫ 1

−1

∫ 1

−1

log |Φ(h(t))− Φ(h(s))| dt ds.

We compute the constant term (that is independent of h) to be

− 1

π2

∫ π

0

∫ π

0

log

∣∣∣∣
2

cos(t)− i
− 2

cos(s)− i

∣∣∣∣ ei(t−s)dt ds =
4π + π2 − 4− 8 log(2)

2π2
.
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We substitute the values of Φ (see (10)) to obtain the two integrals

I1 =
2

π2

∫ 1

−1

∫ π

0

log

∣∣∣∣
2

cos(t)− i
− 4h(s)

1− 2ih(s) + h2(s)

∣∣∣∣ sin(t) dt ds,

I2 = − 1

π2

∫ 1

−1

∫ 1

−1

log

∣∣∣∣
4h(t)

1− 2ih(t) + h2(t)
− 4h(s)

1− 2ih(s) + h2(s)

∣∣∣∣ dt ds.

Notice that if h(s) = s, we have

I1 =
1

π2

(
4− 4

√
2π + π2 + 8 log(2)

)
,(22)

I2 =
−1

2π2

(
4 + π(4− 8

√
2 + π) + 8 log(2)

)
.(23)

Summing these three terms gives us

Corollary 2. With h(s) = s we have ED+(f) = 1.

Now we want to consider the integral

I1 =
1

π2

∫ 1

−1

∫ π

0

log

∣∣∣∣
2 + 2h2(s)− 4h(s) cos(t)

(cos(t)− i)(1− 2ih(s) + h2(s))

∣∣∣∣
2

sin(t) dt ds

=
1

π2

∫ 1

−1

∫ π

0

log
∣∣2 + 2h2(s)− 4h(s) cos(t)

∣∣2 sin(t) dt ds

− 1

π2

∫ 1

−1

∫ π

0

log[1 + cos2(t)] sin(t) dt ds

− 1

π2

∫ 1

−1

∫ π

0

log(1 + 6h2(s) + h4(s)) sin(t) dt ds

=
1

π2

∫ 1

−1

∫ π

0

log(1 + h2(s)− 2h(s) cos(t))2 sin(t) dt ds

− 1

π2

∫ 1

−1

log(1 + 6h2(s) + h4(s)) ds

∫ π

0

sin(t) dt

+
8− π + 6 log(2)

π2
.

We can integrate out the t variable in the first integral here so that we are left with

I1 = − 2

π2

∫ 1

−1

log(1 + 6h2(s) + h4(s)) ds +
4 log(2)− 2π

π2

+
2

π2

∫ 1

−1

(
h(s) +

1

h(s)

)
log

1 + h(s)

1− h(s)
+ 2 log(1− h2(s)) ds.

(24)
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Next, the other integral is

I2 = − 1

2π2

∫ 1

−1

∫ 1

−1

log

∣∣∣∣
4h(t)(1 + h2(s))− 4h(s)(1 + h2(t))

(1− 2ih(t) + h2(t))(1− 2ih(s) + h2(s))

∣∣∣∣
2

dt ds

= −8 log 2

π2
− 1

2π2

∫ 1

−1

∫ 1

−1

log |(h(t)− h(s))(1− h(t)h(s))|2 dt ds

+
1

2π2

∫ 1

−1

∫ 1

−1

log(1 + 6h2(t) + h4(t))(1 + 6h2(s) + h4(s)) dt ds

= −8 log 2

π2
− 1

2π2

∫ 1

−1

∫ 1

−1

log |(h(t)− h(s))(1− h(t)h(s))|2 dt ds

+
2

π2

∫ 1

−1

log(1 + 6h2(t) + h4(t)) dt

Adding these together gives us a formula for the conformal energy of f ,

ED+(f) = − 1

π2

∫ 1

−1

∫ 1

−1

log |h(t)− h(s)| dt ds

− 1

π2

∫ 1

−1

∫ 1

−1

log |1− h(t)h(s)| dt ds

+
2

π2

∫ 1

−1

(
h(s) +

1

h(s)

)
log

1 + h(s)

1− h(s)
+ 2 log(1− h2(s)) ds + A

where A is an absolute constant. From Corollary 2 if we put h(t) = t, then ED+(f) = 1
and therefore with Q = [−1, 1]× [−1, 1] we have

Theorem 5.

ED+(f) = − 1

π2

∫∫

Q

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds − 1

π2

∫∫

Q

log

∣∣∣∣
1− h(t)h(s)

1− st

∣∣∣∣ dt ds

+
2

π2

∫ 1

−1

(
h(s) +

1

h(s)

)
log

1 + h(s)

1− h(s)
+ 2 log(1− h2(s)) ds + C

where

C =
12− 16 log(2)

π2
.

We write the energy in this form as there is obvious simplification of the singu-
larity in the first two integrals for linear functions. It is these terms that determine
the asymptotic behaviour for large r. We seek the approriate choice of h to minimise
this.

6.2. A choice of h. To obtain upper bounds for the minimal mean distortion
we need to find examples of homeomorphisms h : [−1, 1] → [−1, 1] with h(0) = r > 0
and compute the value of ED+(f) in Theorem 5. The first natural example to try is

(25) h(t) =

{
(1 + r)t + r, −1 ≤ t ≤ 0,

(1− r)t + r, 0 ≤ t ≤ 1.
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With this map we compute

− 1

π2

∫∫

Q

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds(26)

= − 1

π2

∫ 0

−1

∫ 0

−1

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds− 1

π2

∫ 1

0

∫ 1

0

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds

− 2

π2

∫ 0

−1

∫ 1

0

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds

= − 1

π2

∫ 0

−1

∫ 0

−1

log 1 + r dt ds− 1

π2

∫ 1

0

∫ 1

0

log 1− r dt ds

− 2

π2

∫ 0

−1

∫ 1

0

log

∣∣∣∣
(1 + r)t− (1− r)s

t− s

∣∣∣∣ ds dt

= − 1

π2
log(1− r2)

+
1

π2(1− r2)

(−4r2 log(2) + (1 + r)2 log(1 + r) + (1− r)2 log(1− r)
)
.

Thus, near r = 1 we have

(27) − 1

π2

∫∫

Q

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds ≈ −1

π2
+

1

π2
log

1 + r

1− r
+ O(1− r),

and near r = 0 we see that (26) behaves like as

(28) − 1

π2

∫∫

Q

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds ≈ 4(1− log(2))

π2
r2 + O(r4).

Next

− 1

π2

∫∫

Q

log

∣∣∣∣
1− h(t)h(s)

1− st

∣∣∣∣ dt ds(29)

= − 1

π2

∫ 1

0

∫ 1

0

log

∣∣∣∣
1− (r + s− rs)(r + t− rt)

1− st

∣∣∣∣ dt ds(30)

− 1

π2

∫ 0

−1

∫ 0

−1

log

∣∣∣∣
1− (r + s + rs)(r + t + rt)

1− st

∣∣∣∣ dt ds(31)

− 2

π2

∫ 0

−1

∫ 1

0

log

∣∣∣∣
1− (r + t− rt)(r + s + rs)

1− st

∣∣∣∣ dt ds(32)

First, (30) is equal to
1

6
+

1

π2
log

1 + r

1− r
+

1

π2(1− r)2

· (2r(1− r) log(1 + r) + log(r2) log(1 + r)− 2Li2(1− r) + Li2(1− r2)
)

and has the expansions

r near 1 ≈ 1

π2
log

1 + r

1− r
+

1

6π2

(
π2 − 3(1 + 6 log(2))

)
+ O(r − 1),

r near 0 ≈
(

4

π2
− 1

3

)
r +

(
13

2π2
− 1

2

)
r2 −

(
2

3
− 62

9π2

)
r3 + O(r4).
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Next, (31) is equal to

1

6
− 1

π2(1 + r)2

(
(r2 − 1) log(1− r)− 2 log(r) log(1− r) + (1 + r)2 log(1 + r)

+ 2Li2(1 + r)− Li2(1− r2)
)

and has the expansions

r near 1 ≈ 1

24
− log(2)

π2
+ O(r − 1),

r near 0 ≈
(

1

3
− 4

π2

)
r +

(
13

2π2
− 1

2

)
r2 +

(
2

3
− 62

9π2

)
r3 + O(r4).

Next, (32) is equal to

1

6
+

4 log(2)

π2
+

2

π2(1− r2)

(
− π2

4
− log(4) + log(1− r)(r(r − 1)− log(r))

+ (r + r2 − log(r)) log(1 + r) + Li2(1− r) + Li2(1 + r)− Li2(1− r2)

)

and has the expansions

r near 1 ≈ 1

6
+

2 log(2)− 2

π2
+ O(r − 1),

r near 0 ≈ −
(

1

6
+

3− 4 log(2)

π2

)
r2 + O(r4).

The third integral can be computed as

2

π2

∫ 0

−1

(
r + s + rs +

1

r + s + rs

)
log

1 + (1 + r)s + r

1− (1 + r)s− r
+ 2 log(1− (r + s + rs)2) ds

=
1

2π2(1 + r)

(
π2 − 12(1 + r) + 16 log(2) + 2(3 + r2 + 2 log(r)) log

1 + r

1− r

+ 8r log(1− r2)− 4Li2(1− r) + 4Li2(1 + r)

)
,

2

π2

∫ 1

0

(
r + s− rs +

1

r + s− rs

)
log

1 + (1− r)s + r

1− (1− r)s− r
+ 2 log(1− (r + s− rs)2) ds

=
1

2π2(1− r)

(
π2 + 4(3r + 4 log(2)− 3) + 2 log(1− r)(3− 4r + r2 + 2 log(r))

− 2(1 + 4r + r2) + 2 log(r)) log(1 + r) + 4Li2(1− r)− 4Li2(1 + r)
)
.

Together these terms behave as

(33)
16 log(2)− 6

π2
+

1

2
+ O(1− r)

near r = 1 and

(34) 1 +
16 log(2)− 12

π2
+

(
1 +

4(4 log(2)− 5)

π2

)
r2 + O(r4)

near r = 0.
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Now adding together all the asymptotic expansions near r = 1 gives

ED+(f) ≈ 2

π2
log

1 + r

1− r
+

(
7

8
+

5− 4 log(2)

2π2

)
+ O(1− r)

=
2

π2
log

1 + r

1− r
+ 0.98742 . . . + O(1− r)

and near r = 0 we have

ED+(f) ≈ 1 +

(
8 log(2)

π2
− 1

6

)
r2 + O(r4)

= 1 + 0.395177 . . . r2 + O(r4).

At this point we observe that the asymptotic behaviours in terms of the hyperbolic
distance d = ρD(0, r) are

2d

π2
+ 0.987842 as d →∞,

1 + 0.09879 . . . d2 + O(d4) as d → 0.

7. Minimising sequences?

The lower semicontinuity of the integral of the distortion function (in two dimen-
sions) shows that no sequence of minimisers can have uniformly bounded distortion
(i.e. quasiconformal—if suffficiently regular). Thus in order to describe a minimis-
ing sequence we must look to some degenerating behaviour. Some computational
experiments motivate the following examples. Given δ > 0 we set

(35) hδ(t) =





t, −1 ≤ t ≤ −δ,

( r
δ

+ 1)t + r, −δ ≤ t ≤ 0,

(1− r)t + r, 0 ≤ t ≤ 1.

We are interested here in the behviour as δ → 0 and r → 1 of the function

ED+(f) = − 1

π2

∫∫

Q

log

∣∣∣∣
h(t)− h(s)

t− s

∣∣∣∣ dt ds− 1

π2

∫∫

Q

log

∣∣∣∣
1− h(t)h(s)

1− st

∣∣∣∣ dt ds

+
2

π2

∫ 1

−1

(
h(s) +

1

h(s)

)
log

1 + h(s)

1− h(s)
+ 2 log(1− h2(s)) ds + C

where

C =
12− 16 log(2)

π2
.

Following the arguments quite similar to those above, and letting δ → 0 we obtain
the bounds stated in Theorem 2 with the constant term 0.805714 . . . as r → 1. This
is the smallest constant we were able to achieve. However this sequence cannot be
a minimising sequence (at least for r small) for the behaviour as r → 0 is of the
incorrect order, 1 + O(r2−ε) and not 1 + O(r2).
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8. A note concerning boundary values

It is not true that every homeomorphism g : D → D of finite distortion with
∫∫

D

K(z, g) dz < ∞

has a homeomorphic (or even continuous) extension to D. We give a construction
based on the following interesting example. Let

A1 = {z : 0 < |z| < 1} and A2 = {z : 1 < |z| < 1 +
√

2}.
As A1 is the punctured disk and so there is no quasiconformal mapping A1 → A2.
However,

f(z) = (|z|+
√
|z|2 + 1)

z

|z| : A1 → A2

is of finite distortion and using the formulas of [11, p. 220], which give the distortion
functions of radial stretchings such as f , we find

K(z, f) =
1

2

(
|z|√
|z|2 + 1

+

√
|z|2 + 1

|z|

)
,

whence
1

π

∫∫

A1

K(z, f) dz =

∫ 1

0

(
t2√

t2 + 1
+
√

t2 + 1

)
dt =

√
2.

Note that the inverse of f is the harmonic map h : A2 → A1,

(36) h(z) = z − 1/z.

Let us consider the mapping

(37) g1 = f |D(1
2
, 1

2
)

which is a mapping of finite distortion. Notice that for θ ∈ (−π/2, π/2) we have

(38) lim
r→0

g1(re
iθ) = lim

r→0
f(reiθ) = eiθ.

The image domain is a sort of lune. Now there is a conformal mapping ϕ : g1(D(1
2
, 1

2
))

→ D and as g1(D(1
2
, 1

2
)) is a Jordan domain ϕ has a homeomorphic extension to the

boundary. Thus we can further choose ϕ so that the image of the arc {z : z = eiθ :
−π
2
≤ θ ≤ π

2
}, lying in the boundary of g1(D(1

2
, 1

2
)), is the arc {z : z = eiθ : π

2
≤ θ ≤

3π
2
}. We then define a homeomorphism g : D → D by

(39) g(z) = ϕ ◦ g1

(
z + 1

2

)
.

Then K(z, g) = K((z + 1)/2, g1) and so
∫∫

D

K(z, g) |dz|2 = 4

∫∫

D( 1
2
, 1
2
)

K(z, f) |dz|2 < 2
√

2π.

However, the cluster set of the point −1 ∈ ∂D under g is the arc {z : z = eiθ :
π
2
≤ θ ≤ 3π

2
}.
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