
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 215–232

DIRECTED POROSITY ON CONFORMAL
ITERATED FUNCTION SYSTEMS AND WEAK
CONVERGENCE OF SINGULAR INTEGRALS

Vasilis Chousionis

University of Helsinki, Department of Mathematics and Statistics
P.O. Box 68, FI-00014 University of Helsinki, Finland; vasileios.chousionis@helsinki.fi

Abstract. The aim of the present paper is twofold. We study directed porosity in connection
with conformal iterated function systems (CIFS) and with singular integrals. We prove that limit
sets of finite CIFS are porous in a stronger sense than already known. Furthermore we use directed
porosity to establish that truncated singular integral operators, with respect to general Radon
measures µ and kernels K, converge weakly in some dense subspaces of L2(µ) when the support of
µ belongs to a broad family of sets. This class contains many fractal sets like CIFS’s limit sets.

1. Introduction

A set E ⊂ Rn is called porous, or uniformly lower porous, if there exists a
constant c > 0 so that for each x ∈ E and 0 < r < d(E) there exists y ∈ B(x, r)
satisfying

B(y, cr) ⊂ B(x, r) \ E.

Here B(x, r) is the closed ball centered at x with radius r and d(·) denotes diameter.
Dimensional properties of porous sets were studied by Mattila in [M1]. Motivated by
his work different aspects of porosity have been investigated widely in relation with
dimensional estimates and densities. See, e.g., [S], [KS1], [KS2] and [JJKS]. Some
other applications of porosities related with the boundary behavior of quasiconformal
mappings can be found in [KR], [MVu] and [Vä].

Questions regarding porosities arise naturally in fractal geometry. This can be
understood heuristically since many familiar self similar sets in Rn are constructed by
removing pieces out of some n-dimensional set in every step of the iteration process.
The theory of conformal iterated function systems (CIFS), where the limit set is
generated by uniformly contracting conformal maps, was studied systematically by
Mauldin and Urbański in [MU]. This theory extends previous results and allows one
to analyze many more limit sets than the ones emerging from the usual similitude
iterated function systems. The precise assumptions on CIFS are given in Section 2.

Over the past several years many authors have studied the dynamic and geometric
properties of such limits sets, porosity being one of them. See, e.g., [MMU], [MayU],
[U] and [K]. In [U], Urbański gave necessary and sufficient conditions for the limit
set of a CIFS on Rn to be porous. As a consequence if the CIFS is finite and its
limit set has Hausdorff dimension less than n, it is also porous. Furthermore in
the aforementioned paper some interesting applications of porosities in continued
fractions were established.
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If one considers typical examples of (n − 1)-dimensional CIFS’s limit sets, for
example very simple self similar sets like the four corners Cantor set in the plane,
intuitively one expects to find holes spread in many directions. Motivated by this
simple observation we introduce the notion of directed porous sets. For m ∈ N, 0 <
m < n, we denote by G(n, m) the set of all m-dimensional planes in Rn crossing the
origin.

Definition 1.1. Suppose V ∈ G(n,m). A set E ⊂ Rn will be called V -directed
porous at x ∈ E, if there exists a constant c(V )x > 0, such that for all r > 0 we can
find y ∈ V + x satisfying

B(y, c(V )xr) ⊂ B(x, r) \ E.

If E is V -directed porous at every x ∈ E, and c(V ) = inf{sup c(V )x : x ∈ E} > 0, it
will be called V -directed porous.

Recall that a set E ⊂ Rn will be called m-rectifiable for m = 1, . . . , n, if there
exist m-dimensional C1-submanifolds Mi, i ∈ N, such that

H m(E \
∞⋃
i=1

Mi) = 0.

Here H m denotes the m-dimensional Hausdorff measure. Sets intersecting m-rect-
ifiable sets in a set of zero H m measure are called m-purely unrectifiable. More
information about rectifiability and related topics can be found in [M2].

In Section 2, we show that limit sets of finite CIFS have very strong porosity
properties, extending Urbański’s result in the following sense.

Theorem 1.2. Let E ⊂ Rn, n ≥ 2, be the limit set of a given finite CIFS. If E
is m-purely unrectifiable then it is V -directed porous for all V ∈ G(n,m).

In [K], Käenmäki studied the geometric structure of CIFS’s limit sets. He proved
that if E is a limit set of a given CIFS with dimH E = t, where dimH stands for
Hausdorff dimension, and l ∈ N, 0 < l < n, then either

(i) H t(E ∩M) = 0 for every l-dimensional C1-submanifold of Rn, or,
(ii) E lies in some l-dimensional affine subspace or l-dimensional geometric sphere

when n > 2, and in some analytic curve when n = 2.
Combining the previous rigidity result with Theorem 1.2 we derive the following
corollary.

Corollary 1.3. Let E ⊂ Rn, n ≥ 2, be the limit set of a given finite CIFS. If
dimH E ≤ m where m ∈ N, 0 < m < n, then E is V -directed porous at every x ∈ E
for all, except at most one, V ∈ G(n,m).

The motivation for this paper comes from the theory of singular integral oper-
ators with respect to general measures. Given a Radon measure µ on Rn and a
µ-measurable kernel K : Rn \ {0} → R that satisfies the antisymmetry condition

K(−x) = −K(x) for all x ∈ Rn,

the singular integral operator T associated with K and µ is formally given by

T µ,K(f)(x) =

∫
K(x− y)f(y) dµy.
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Since the above integral does not usually exist when x ∈ spt µ, the truncated singular
integral operators T µ,K

ε , ε > 0;

T µ,K
ε (f)(x) =

∫

|x−y|>ε

K(x− y)f(y) dµy,

are considered. Often for simplicity we will denote T µ,K
ε by Tε. Using this convention

one defines the maximal operator T ∗,

T ∗(f)(x) = sup
ε>0

|Tε(f)(x)|,

and the principal values of T (f) at every x ∈ Rn which, if they exist, are given by

p. v. T (f)(x) = lim
ε→0

Tε(f)(x).

In the classical setting, when µ = L n, the Lebesgue measure in Rn, and K is
a standard Calderón–Zygmund kernel, cancelations and the denseness of smooth
functions in L1 force the principal values to exist almost everywhere for L1-functions.
One could naturally ask if the L2(µ)-boundedness of T ∗, which means that there exists
a constant C > 0 such that for all f ∈ L2(µ),

∫
T ∗(f)2 dµ ≤ C

∫
|f |2 dµ,

forces the principal values to exist. The answer to the above question is not always
positive, see, e.g., [D] and [C]. Interestingly enough even when µ is an m-dimensional
Ahlfors–David (AD) regular measure in Rn:

C−1rm ≤ µ(B(x, r)) ≤ Crm for x ∈ spt µ, 0 < r < diam(spt µ),

and K is any of the coordinate Riesz kernels:

Rm
i (x) =

xi

|x|m+1
for i = 1, . . . , n,

the question remains open for m > 1. For m = 1, it has positive answer by Tolsa,
see [T1], even for more general measures. Previous results by Mattila, Melnikov and
Verdera, see [MM] and [MMV], dealt with the affirmative in the case of AD-regular
measures.

Recently, in [MV], Mattila and Verdera proved that, for general measures and
kernels, the L2(µ)-boundedness of T ∗ implies that the operators Tε converge weakly
in L2(µ). This means that there exists a bounded linear operator T : L2(µ) → L2(µ)
such that for all f, g ∈ L2(µ),

(1.1) lim
ε→0

∫
Tε(f)(x)g(x) dµx =

∫
T (f)(x)g(x) dµx.

Furthermore they showed that

(1.2) T (f)(z) = lim
r→0

1

µ(B(z, r))

∫

B(z,r)

∫

Rn\B(z,r)

K(x− y)f(y) dµy dµx

for µ a.e. z. One of the main points in their proof is that L2(µ)-boundedness forces
the limits

(1.3) lim
ε→0

∫
Tε(f)(x)g(x) dµ



218 Vasilis Chousionis

to exist when f, g are finite linear combinations of characteristic functions of balls.
We will denote this dense subspace of L2(µ) by XB(Rn).

Recall that if E ⊂ Rn is H m-measurable with H m(E) < ∞ and µ = H mbE,
the restriction of H m on E, by the works of Mattila and Preiss [MP], Mattila and
Melnikov [MM], Verdera [Ve] and Tolsa [T2], the principal values

lim
ε→0

∫

Rn\B(x,ε)

Rm
i (x− y) dµy

exist µ almost everywhere if and only if the set E is m-rectifiable.
With the last two paragraphs in mind one might ask if weak limits like in (1.3)

might exist if we remove the strong L2-boundedness assumption even when the mea-
sures are supported in some purely unrectifiable sets. Before stating the main results
of Section 3 we give some basic notation. Let

(1.4) Q(Rn) = {A(x, r) : x ∈ Rn, r > 0 and A(x, r) =
n∏

i=1

[xi − r/2, xi + r/2)}

and denote by XQ(Rn) the dense subspace of L2(µ), in the same manner as XB(Rn),
while instead of balls we take cubes from Q(Rn).

Theorem 1.4. Let µ be a finite Radon measure on Rn, n ≥ 2, satisfying

(1.5) µ(B(x, r)) ≤ Crn−1 for all x ∈ spt µ and r > 0.

Let K : Rn \ {0} → R be an antisymmetric kernel, satisfying for all x ∈ Rn,

(1.6) |K(x)| ≤ CK |x|−(n−1) ,

where CK is a constant depending on the kernel K.
(i) If spt µ is V i-directed porous for i = 1, . . . , n, where V i = {x ∈ Rn : xi = 0}

are the usual coordinate planes of Rn, the truncated singular integral oper-
ators T µ,K

ε converge weakly in XQ(Rn).
(ii) If spt µ is V -directed porous for all V ∈ G(n, n− 1), the truncated singular

integral operators T µ,K
ε converge weakly also in XB(Rn).

As an immediate consequence of Theorems 1.2 and 1.4 we obtain the following
corollary.

Corollary 1.5. Let E ⊂ Rn, n ≥ 2, be a (n − 1)-purely unrectifiable limit set
of a given finite CIFS. If µ = H n−1bE and K : Rn \ {0} → R is a kernel as in
Theorem 1.4, the limits

lim
ε→0

∫
Tε(f)(x)g(x) dµ

exist for f, g ∈ XQ(Rn) and f, g ∈ XB(Rn).

We conclude the introductory part with the following two remarks.

Remark 1.6. The kernels satisfying the assumptions of Theorem 1.4 belong to a
quite broad class; (n− 1)-dimensional Riesz kernels being one representative. Notice
that we do not even require them to be continuous. In [CM], it was proved, with
different techniques, that weak convergence in XQ(Rn) and in XB(Rn) holds for
much more general measures if we restrict the kernels to a smaller but still large and
widely used family.
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Remark 1.7. One cannot hope of replacing the function spaces XB(Rn) and
XQ(Rn) with L2(µ) in Theorem 1.4. This follows because as it was remarked in
[MV], by the Banach–Steinhaus Theorem, the weak convergence in L2(µ) implies
that the operators Tε are uniformly bounded in L2(µ) and singular integral operators
associated with 1-dimensional Riesz kernels and 1-purely unrectifiable measures are
not bounded in L2(µ).

2. Directed porosity on conformal iterated function systems

We begin by describing the setting of CIFS, as introduced in [MU]. Let I be a
countable set with at least two elements and let

I∗ =
⋃
m≥1

Im and I∞ = IN.

If w = (i1, i2, . . .) ∈ I∗ ∪ I∞ and n ∈ N, does not exceed |w|, the length of w, we
denote w|n = (i1, . . . , in).

Choose Ω to be some open, bounded and connected subset of Rn and let {ϕi}i∈I ,
ϕi : Ω → Ω, be a family of injective maps such that for every i ∈ I there exists some
0 < si < 1 such that

(2.1) |ϕi(x)− ϕi(y)| ≤ si |x− y| .
Functions satisfying (2.1) are called contractive. We will further assume that the
mappings ϕi are uniformly contractive, that is, s = sup{si : i ∈ I} < 1, and
conformal. Conformality here stands for |ϕ′i|n = |Jϕi|, where J is the Jacobian and
the norm in the left side is the usual “sup-norm” for linear mappings. This definition
is usually referred as 1-quasiconformality, see, e.g., [Vä]. By Theorem 4.1 of [R]
conformal maps on subsets of Rn, n ≥ 2, are C∞. Assume also that there exists
a compact set X ⊂ Ω such that int(X) 6= ∅ with the property that ϕi(X) ⊂ X
for all i ∈ I. Notice that for Ω = Rn, n ≥ 3, conformal, contractive mappings
are similitudes, which means that equality holds in (2.1). We will call a family of
functions {ϕi}i∈I , as described above, a conformal iterated function system (CIFS)
if it satisfies the following property.

Open set condition (OSC). There exists a non-empty open set U ⊂ X (in the
relative X−topology) such that ϕi(U) ⊂ U for every i ∈ I and ϕi(U) ∩ ϕj(U) = ∅
for every pair i 6= j ∈ I.

For w = (i1, . . . , im) ∈ Im, denote ϕw = ϕi1 ◦ . . . ◦ ϕim and notice that

d(ϕw(X)) ≤ smd(X).

Now define the mapping π : I∞ → X such that

π(w) =
⋂
m≥1

ϕw|m(X).

The limit set of the CIFS is defined as,

E = π(I∞) =
⋃

w∈I∞

⋂
m≥1

ϕw|m(X).

We will be interested in finite CIFS, where Ω ⊂ Rn, n ≥ 2. The following im-
portant property of these function systems follows from smoothness of the mappings
ϕi, for a proof see [MU], Lemma 2.2.
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Bounded distortion property (BDP). There exists some K ≥ 1 such that

|ϕ′
w(x)| ≤ K|ϕ′

w(y)| for w ∈ I∗ and x, y ∈ Ω,

Finally we state two properties of CIFS that are going to be used often in the
proofs. In both properties constants depend only on the initial CIFS parameters.
The first one is a direct consequence of BDP and the connectedness of Ω. Since
finite CIFS are controlled Moran constructions, it follows by [KV] that (CIFS 2) is
equivalent to the OSC.

(CIFS 1). There exists some constant D ≥ 1 such that

D−1‖ϕ′
w‖ ≤ d(ϕw(E)) ≤ D‖ϕ′

w‖ for w ∈ I∗.

Here ‖ϕ′w‖ = supx∈Ω |ϕ′w(x)|.
(CIFS 2). Denote

I(x, r) = {w ∈ I∗ : ϕw(E) ∩B(x, r) 6= 0 and d(ϕw(E)) ≤ r < d(ϕw||w|−1
(E))},

where ϕ0 = id. There exist a positive number N ∈ N and a constant C > 0, such
that for every x ∈ Rn and every 0 < r ≤ 1

(i) card(I(x, r)) ≤ N , where card(·) denotes cardinality,
(ii) Cr ≤ d(ϕw(E)) ≤ r for w ∈ I(x, r),
(iii) E ∩B(x, r) ⊂ ⋃

w∈I(x,r)

ϕw(E).

The main result of this section reads as follows.

Theorem 2.1. Let E ⊂ Rn, n ≥ 2, be the limit set of a given finite CIFS such
that every conformal map F : Ω → Rn satisfies

(2.2) F (Ω ∩B(x, r) ∩ (V + x)) ∩ Ec 6= ∅ for all x ∈ Rn, r > 0 and V ∈ G(n,m).

Then E is V -directed porous for all V ∈ G(n,m).

Notice that Theorem 1.2 follows immediately from Theorem 2.1 since m-purely
unrectifiable sets satisfy (2.2). The main step in proving Theorem 2.1 is the following
Lemma.

Lemma 2.2. Let E ⊂ Rn be the limit set of a given CIFS such that (2.2) holds
for every conformal map F : Ω → Rn. Then for every V ∈ G(n,m) and every β > 0
there exists some a(β) > 0 such that for every x ∈ Rn, 0 < r ≤ 1, w ∈ I(x, r), y ∈
x + V and s ≥ βd(ϕw(E)) satisfying

B(y, s) ⊂ B(x, r),

there exists z ∈ x + V and l ≥ a(β)s such that

B(z, l) ⊂ B(y, s)\ϕw(E).

Proof. Without loss of generality assume that E ⊂ B(0, 1). We will prove
Lemma 2.2 in the case where V is some m-coordinate plane, say V = {x ∈ Rn : xi = 0
for i = m+1, . . . , n}. The general statement follows after appropriate rotations of the
set E. Let Vx = x+V for x ∈ Rn. By way of contradiction, suppose that Lemma 2.2
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does not hold. Then there exists some constant β > 0 such that for every j ∈ N
there exist sequences

{xj}j∈N ∈ B(0, 1),

{rj}j∈N ∈ (0, 1],

{wj}j∈N ∈ I∗ such that wj ∈ I(xj, rj) for every j ∈ N,

{yj}j∈N ∈ B(0, 1) ∩ Vxj
,

{sj}j∈N ∈ (0, 1],

satisfying for all j ∈ N the following three conditions.
(C1) B(yj, sj) ⊂ B(xj, rj).
(C2) sj ≥ βd(ϕwj

(E)).
(C3) For every z ∈ Vxj

the condition

B(z, l) ⊂ B(yj, sj)\ϕwj
(E)

implies l < 1
j
sj.

By passing to an appropriate subsequence, if necessary, we find y ∈ B(0, 1) such that

yj → y.

>From now on we will denote Vxj
= Vyj

by Vj. Let Ψj : Rn → Rn be defined for
z ∈ Rn as,

Ψj(z) = ‖ϕ′
wj
‖−1(z − yj) + yj.

We are going to use the following properties of Ψj:
(Ψ1) For all pairs z, w ∈ Rn

|Ψj(w)−Ψj(z)| = ‖ϕ′
wj
‖−1|w − z|.

(Ψ2) For every δ > 0, and Vj(δ) = {x ∈ Rn : d(x, Vj) < δ},
Ψj(Vj) = Vj and Ψj(Vj(δ)) = Vj(δ‖ϕ′

wj
‖−1).

(Ψ3) For every r > 0 and every z ∈ Vj,

Ψj(B(z, r)) = B(Ψj(z), ‖ϕ′
wj
‖−1r).

Denote for j ∈ N,

(2.3) Pj = Vj(2sjj
−1) ∩ ϕwj

(E) ∩B(yj, sj)

and

(2.4) Tj = Ψj(Pj).

By (C3), for every z ∈ Vj ∩B(yj, sj)

(2.5) B(yj, sj) ∩B(z, 2sjj
−1) ∩ ϕwj

(E) 6= ∅.
Using (2.5) we can also show that for all q ∈ Vj ∩ B(yj, ‖ϕ′

wj
‖−1sj) and every r ≥

2‖ϕ′
wj
‖−1j−1sj,

(2.6) B(q, r) ∩ Tj 6= ∅.
To see this, let

q̃ = (‖ϕ′
wj
‖(q1 − y1

j ) + y1
j , . . . , ‖ϕ

′
wj
‖(qm − ym

j ) + ym
j , ym+1

j , . . . , yn
j ),
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where q = (q1, . . . , qm, ym+1
j , . . . , yn

j ) ∈ Vj ∩ B(yj, ‖ϕ′
wj
‖−1sj). Then Ψj(q̃) = q and

for i = 1, . . . ,m,

|q̃i − yi
j| = ‖ϕ′

wj
‖|qi − yi

j| ≤ ‖ϕ′
wj
‖‖ϕ′

wj
‖−1sj.

This implies that q̃ ∈ Vj ∩B(yj, sj). Therefore, by (2.5), we get

B(yj, sj) ∩B(q̃, 2sjj
−1) ∩ ϕwj

(E) 6= ∅.
Consequently

Ψj(Vj(2sjj
−1) ∩B(yj, sj) ∩ ϕwj

(E) ∩B(q̃, 2sjj
−1))) 6= ∅

and by (Ψ3)
B(q, 2‖ϕ′

wj
‖−1sjj

−1) ∩Ψj(Pj) 6= ∅.
Hence

B(q, r) ∩ Tj 6= ∅ for r ≥ 2‖ϕ′
wj
‖−1j−1sj.

Next we will show that there exists some constant B > 0 such that for every
j ∈ N, large enough,

(2.7) B−1 ≤ d(Tj) ≤ B.

To prove (2.7) let pj,qj ∈ Vj ∩B(yj, sj) such that

pj = (y1
j − (sj − sjj

−1), y2
j , . . . , y

n
j )

and
qj = (y1

j + (sj − sjj
−1), y2

j , . . . , y
n
j ).

Recalling (2.5) we notice that for every

e ∈ B(yj, sj) ∩B(pj, 2sjj
−1) ∩ ϕwj

(E)

and
d ∈ B(yj, sj) ∩B(qj, 2sjj

−1) ∩ ϕwj
(E),

we have

|e− d| ≥ |pj − qj| − |pj − e| − |qj − d| ≥ 2sj − 6sjj
−1 ≥ sj

2
,

for j ≥ 4. Hence

d(Pj) = d(Vj(2sjj
−1) ∩ ϕwj

(E) ∩B(yj, sj)) ≥ sj

2
where j ≥ 4.

By (C2) we also deduce that

d(Pj) ≤ d(ϕwj
(E)) ≤ β−1sj.

Combining the two previous estimates we derive

(2.8)
sj

2
≤ d(Pj) ≤ β−1sj.

Now by (2.8), (C2) and (CIFS 1) it follows that

d(Tj) = d(Ψj(Pj)) = ‖ϕ′
wj
‖−1d(Pj)

≥ ‖ϕ′
wj
‖−1 sj

2
≥ β

2
‖ϕ′

wj
‖−1d(ϕwj

(E))

≥ β

2
D−1‖ϕ′

wj
‖−1‖ϕ′

wj
‖
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and, by (CIFS 1),

d(Tj) = ‖ϕ′
wj
‖−1d(Pj) ≤ ‖ϕ′

wj
‖−1d(ϕwj

(E)) ≤ D.

Therefore for all j ∈ N, j ≥ 4,

B−1 ≤ d(Tj) ≤ B

where B = min{D, 2β−1D}. The following fact follows immediately from (CIFS 1),
(C2) and (2.8), since Pj ⊂ ϕwj

(E). We state it separately for the convenience of the
reader. For all j ∈ N, j ≥ 4,

(2.9) βD−1‖ϕ′
wj
‖ ≤ sj ≤ 2D‖ϕ′

wj
‖.

For every j ∈ N the functions Fj : Ω → Rn are defined as

Fj := Ψj ◦ ϕwj
.

Observe that for all j ∈ N

(F1) Fj are conformal,
(F2) Fj are bi-Lipschitz with constants not depending on j.

Property (F2) follows from BDP and the mean value theorem. To see this, for all
z, w ∈ Ω,

K−1|z − w| ≤ ‖ϕ′
wj
‖−1‖(ϕ−1

wj
)
′‖−1|z − w| ≤ ‖ϕ′

wj
‖−1|ϕwj

(z)− ϕwj
(w)|

= |Fj(z)− Fj(w)| ≤ |z − w|.
Using the Ascoli–Arzela theorem we are now able to find some uniformly convergent
subsequence of Fj, which for the sake of simplicity we will keep on denoting by Fj,
such that

Fj → F and F : Ω → Rn is conformal and bi-Lipschitz.
Notice that by standard complex analysis when n = 2, and basic properties of Möbius
maps for n ≥ 3, it follows that the map F−1 : Rn → Ω is also conformal.

Now define

G = {α : N →
∞⋃

j=1

Tj such that α(j) ∈ Tj for all j ∈ N}

and

T = {t ∈ Rn : there exist increasing k : N → N and
α ∈ G such that α(k(j)) → t}.

The set T has the following properties:
(T1) y ∈ T .
Recall that y is the limit of the sequence yj. By (2.6),

B(yj, 2‖ϕ′
wj
‖−1sjj

−1) ∩ Tj 6= ∅ for all j ∈ N.

Therefore, by (2.9), there exists some sequence {tj}j≥4 such that for all j ∈ N, j ≥ 4,

tj ∈ Tj ∩B(yj, 4Dj−1).

Since yj → y, we also get tj → y and consequently y ∈ T .

(T2) B(y, D−1 β

100
) ∩ Vy ⊂ T .
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Suppose that there exists some a ∈ B(y, D−1 β

100
) ∩ Vy such that a /∈ T . Then

there exist r0 < D−1 β

100
and j0 ∈ N such that for all j ≥ j0,

B(a, r0) ∩ Tj = ∅.
Now choose some j1 ∈ N such that for all j ≥ j1,

|yj − y| ≤ D−1 β

100
.

Then for all such j,
B(a, r0) ⊂ B(yj, ‖ϕ′

wj
‖−1sj).

To see this, take b ∈ B(a, r0). By (2.9),

|b− yj| ≤ |b− a|+ |a− y|+ |y − yj| ≤ 3D−1 β

100
≤ ‖ϕ′

wj
‖−1sj.

Choose j2 ∈ N, j2 ≥ j1, such that for all j ≥ j2,

|yj − y| ≤ r0

2
.

If a = (a1, . . . , am, ym+1, . . . , yn) ∈ Vy let ãj = (a1, . . . , am, ym+1
j , . . . , yn

j ) ∈ Vj and
notice that

|ãj − a| ≤ |y − yj|.
Then for j ≥ j2 and r1 =

r0

2
, by triangle inequality,

(2.10) ãj ∈ B(yj, ‖ϕ′
wj
‖−1sj)

and

(2.11) B(ãj, r1) ⊂ B(a, r0).

Hence for j∗ ∈ N big enough satisfying

j∗ ≥ max{j0, j2} and 2‖ϕ′
wj∗
‖−1 sj∗

j∗
≤ r1

we get,
(i) B(a, r0) ∩ Tj∗ = ∅,
(ii) ãj∗ ∈ Vj∗ ∩B(yj∗ , ‖ϕ′

wj∗
‖−1sj∗),

(iii) B(ãj∗ , r1) ⊂ B(a, r0).
Consequently

B(ãj∗ , 2‖ϕ
′
wj∗
‖−1 sj∗

j∗
) ∩ Tj∗ = ∅

which contradicts (2.6).
(T3) T ⊂ F (E).
Let t ∈ T , then there exist some increasing function k(j) : N → N and some

α ∈ G such that

α(k(j)) ∈ Tk(j) ⊂ Ψk(j)(ϕwk(j)
(E)) = Fk(j)(E) and α(k(j)) → t.

Therefore there exists a sequence {ej}∞j=1 ∈ E such that Fk(j)(ej) = α(k(j)). Since
the limit set E is compact there exists some subsequence of {ej}∞j=1 converging to
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some point e ∈ E. To simplify notation assume that ej → e. Finally because the
convergence Fk(j) → F is uniform, we also deduce that

α(k(j)) = Fk(j)(ej) → F (e),

which implies that t = F (e).
Properties (T2) and (T3) imply

F−1(B(y, D−1 β

100
) ∩ Vy) ⊂ F−1(T ) ⊂ E.

Since F−1 is conformal, this contradicts (2.2), finishing the proof of Lemma 2.2. ¤
Proof of Theorem 2.1. Let x ∈ Rn and 0 < r < 1. For I(x, r) ⊂ I∗, N ∈ N as

in (CIFS 2) we get

I(x, r) = {w1, . . . , wm} for some m ≤ N and d(ϕwi
(E)) ≤ r for i = 1, . . . , m.

Applying Lemma 2.2 for b = 1, as r ≥ d(ϕw1(E)), there exist z1 ∈ Vx and l1 ≥ 0 such
that

B(z1, l1) ⊂ B(x, r)\ϕw1(E) and l1 ≥ a(1)r.

As
r ≥ d(ϕw2(E))

we also get
l1 ≥ a(1)d(ϕw2(E)).

Denote a1 := a(1). Again Lemma 2.2 implies that there exist z2 ∈ Vx and l2 ≥ 0
satisfying

B(z2, l2) ⊂ B(z1, l1)\ϕw2(E) ⊂ B(x, r) and l2 ≥ a(a1)l1.

As before
l2 ≥ a(a1)a(1)r ≥ a(a1)a1d(ϕw3

(E)).

In the same manner denote a2 := a(a1)a1. There exist z3 ∈ Vx and l3 ≥ 0 such that

B(z3, l3) ⊂ B(z2, l2)\ϕw3
(E)

and
l3 ≥ a(a2)l2 ≥ a(a2)a(a1)a1r = a(a2)a2d(ϕw4

(E)).

Repeating the same arguments, after m steps, we finally get that there exist some
zm ∈ Vx ∩B(x, r), lm > 0 such that

B(zm, lm) ⊂ B(zm−1, lm−1)\ϕwm(E)

and
lm ≥ a(am−1)lm−1 ≥ a(am−1) · · · a(a1)a1r.

Therefore
B(zm, C∗r) ⊂ B(x, r)\

⋃

w∈I(x,r)

ϕw(E) = B(x, r)\E

where C∗ = a(am−1)am−1 = a(am−1) · · · a(a1)a1 is a constant depending only on the
CIFS’s initial parameters. ¤
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3. Geometric criteria for weak convergence

We begin this section with an auxiliary result necessary to prove Theorem 1.4.

Theorem 3.1. Let µ be a finite Radon measure in Rn and K : Rn \ {0} → R
an antisymmetric kernel satisfying (1.5) and (1.6) respectively.

(i) The truncated singular integral operators Tε associated to µ and K converge
weakly in XQ(Rn) if for any V ∈ TA(n, n − 1) = {V i

w : i = 1, . . . , n and
w ∈ Rn},
(a) µ(V ) = 0,
(b) there exists some positive number aV < 1 such that

(3.1)
∞∑

k=0

µ(Sk(aV , V ))k < ∞,

where Sk(aV , V ) = {x ∈ Rn :
∞∑

j=k+1

aj
V ≤ d(x, V ) <

∞∑
j=k

aj
V }.

(ii) The truncated singular integral operators Tε, associated to µ and K converge
weakly in XB(Rn) if for any sphere C = SR

x , centered at x of radius R,
(a) µ(C) = 0,
(b) there exists some positive number aC < min{1, R} such that

(3.2)
∞∑

k=0

µ(Sk(aC , C))k < ∞,

where Sk(aC , C) = {x ∈ B(x,R) :
∞∑

j=k+1

aj
C ≤ d(x,C) <

∞∑
j=k

aj
C}.

Proof. We give the proof only for (i) since the proof of (ii) is almost identical.
Denote E = spt µ and without loss of generality assume that E ⊂ B(0, 1/2) and
µ(E) ≤ 1. Let

f =
l∑

i=1

aiχQi
and g =

m∑
j=1

bjχPj

where ai, bj ∈ R and Qi, Pj ∈ Q(Rn). For 0 < δ < ε,
∣∣∣∣
∫

Tε(f)(x)g(x) dµx−
∫

Tδ(f)(x)g(x) dµx

∣∣∣∣

=

∣∣∣∣∣
∫

(Tε(f)(x)− Tδ(f)(x))
m∑

j=1

bjχPj
(x) dµx

∣∣∣∣∣

=

∣∣∣∣∣
m∑

j=1

bj

∫

Pj

∫

B(x,ε)\B(x,δ)

K(x− y)f(y) dµy dµx

∣∣∣∣∣

≤
m∑

j=1

l∑
i=1

|bjai|

∣∣∣∣∣∣∣

∫

Pj

∫

Qi

δ<|x−y|<ε

K(x− y) dµy dµx

∣∣∣∣∣∣∣
.
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By the antisymmetry of K and Fubini’s Theorem we have
∣∣∣∣∣∣∣

∫

Pj

∫

Qi

δ<|x−y|<ε

K(x− y) dµy dµx

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

Pj

∫

Qi∩Pj

δ<|x−y|<ε

K(x− y) dµy dµx +

∫

Pj

∫

Qi\Pj

δ<|x−y|<ε

K(x− y) dµy dµx

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∫

Pj∩Qi

∫

Qi∩Pj

δ<|x−y|<ε

K(x− y) dµy dµx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

Pj\Qi

∫

Qi∩Pj

δ<|x−y|<ε

K(x− y) dµy dµx

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

∫

Pj \Qi

∫

Qi\Pj

δ<|x−y|<ε

K(x− y) dµy dµ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

∫

Pj∩Qi

∫

Qi\Pj

δ<|x−y|<ε

K(x− y) dµy dµ

∣∣∣∣∣∣∣

≤
∫

Qi

∫

Qc
i

δ<|x−y|<ε

|K(x− y)| dµy dµx + 2

∫

Pj

∫

P c
j

δ<|x−y|<ε

|K(x− y)| dµy dµx.

Therefore it is enough to show that for every A ∈ Q(Rn)

(3.3)
∫

A

∫

Ac

|K(x− y)| dµy dµx < ∞.

Since µ(V ) = 0 for every V ∈ TA(n, n− 1) instead of (3.3) it suffices to prove that

(3.4)
∫

A◦

∫

Ac

|K(x− y)| dµy dµx < ∞,

for all A ∈ Q(Rn). Let Gi ∈ TA(n, n − 1), i = 1, . . . , 2n, be the hyperplanes that
contain the 2n sides of A. For any x ∈ A◦ ∩ E and any i = 1, . . . , 2n define the
following distance functions

di(x) = d(x,Gi).

Let Ni(x) > 0, i = 1, . . . , 2n, be such that

2Ni(x)di(x) = 1.

Hence if bNi(x)c is the smallest integer greater than Ni(x)

bNi(x)c ≤ (log 2)−1 log di(x)−1 + 1.

Therefore

E \ A ⊂
2n⋃
i=1

bNi(x)c⋃
j=1

B(x, 2jdi(x)) \B(x, 2j−1di(x)),
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and for all x ∈ A◦ ∩ E,∫

Ac

|K(x− y)| dµy ≤ CK

∫
2n⋃
i=1

bNi(x)c⋃
j=1

B(x,2jdi(x))\B(x,2j−1di(x))

|x− y|−(n−1) dµy

= CK

2n∑
i=1

bNi(x)c∑
j=1

∫

B(x,2jdi(x))\B(x,2j−1di(x))

|x− y|−(n−1) dµy

≤ CK

2n∑
i=1

bNi(x)c∑
j=1

µ (B(x, 2jdi(x)))

2−(n−1)di(x)n−12j(n−1)

≤ CK

2n∑
i=1

bNi(x)c∑
j=1

Cdi(x)n−12j(n−1)

2−(n−1)di(x)n−12j(n−1)

≤ CKC2(n−1)(log 2)−1
( 2n∑

i=1

log di(x)−1 + 2n
)
.

This leads to the following estimate

(3.5)
∫

A◦

∫

Ac

|K(x− y)| dµy dµx ≤ CKC2(n−1)

log 2

( 2n∑
i=1

∫

A◦
log di(x)−1 dµx + 2n

)
.

Notice that for i = 1, . . . , 2n, A◦ can be decomposed as

A ⊂
∞⋃

k=0

Sk(ai, Gi) ∪ A′
i,

where ai = aGi
and A′

i = {x ∈ A : di(x) > si =
∑∞

j=0 aj
i}. Therefore

∫

A◦
log di(x)−1 dµx ≤

∞∑

k=0

∫

Sk(ai,Gi)

log di(x)−1 dµx + log s−1
i .

For x ∈ Sk(aGi
, Gi)

di(x) >

∞∑

j=k+1

aj
i = ak+1

i

1

1− ai

and

log
1

di(x)
≤ log

(
1− ai

ak+1
i

)
= k log

1

ai

+ log
1− ai

ai

.

Hence

(3.6)
∫

A◦
log

1

di(x)
dµx ≤ log

1

ai

∞∑

k=0

µ(Sk(ai, Gi))k + log
1− ai

aisi

.

Using (3.5) and (3.6) we can estimate∫

A◦

∫

Ac

|K(x− y)| dµy dµx

≤ CKC2(n−1)

log 2

(
2n∑
i=1

log
1

ai

∞∑

k=0

µ(Sk(ai, Gi))k +
2n∑
i=1

log
1− ai

aisi

+ 2n

)
.
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Since, by (3.1), for i = 1, . . . , 2n
∞∑

k=0

µ(Sk(ai, Gi))k < ∞,

we have shown (3.4) and the proof of Theorem 3.1(i) is complete. ¤
We can now proceed in the proof of Theorem 1.4.

Proof of Theorem 1.4. Let spt µ = E and without loss of generality assume that
E ⊂ B(0, 1/2). We start by proving (i). For x ∈ Rn, r > 0, i ∈ {1, . . . , n}, q ∈ N
define the following grids,

Gr(x, r, i, q) = {g ∈ A(x, r) : gi = xi and for 1 ≤ j ≤ n, j 6= i,

gj = (xj − r

2
) +

r

2q
(2k − 1) for some k = 1, . . . , q}.

Since E is V i-directed porous for i = 1, . . . , n, as an immediate corollary of Defini-
tion 1.1 there exists some N ∈ N, N ≥ 2, such that for every x ∈ Rn and every
r > 0 there exists some y ∈ V i

x ∩ A(x, r) satisfying

(3.7) A(y, rN−1) ⊂ A(x, r) \ E.

>From (3.7) we also deduce that there exist some M ∈ N, M ≥ 4, in fact we can
even choose M = 2N , such that for every x ∈ Rn, every r > 0 and every i = 1, . . . , n
there exists some g(x,r,i) ∈ Gr(x, r, i, M) such that

(3.8) A(g(x,r,i), rM
−1) ⊂ A(x, r)\E.

By Theorem 3.1 it is enough to show that for every x ∈ Rn and every i = 1, . . . , n
∞∑

k=0

µ(Sk(M
−1, V i

x))k < ∞.

Thus we need to estimate the measure µ of the strips V i
x(2−1M−k). The idea is to

cover V i
x(2−1M−k)∩E∩A(x, 1) with cubes from Q(Rn) of sidelength M−k with their

centers in Gr(x, 1, i,Mk). The use of the specific grids allows us to count the covering
cubes easily. Note that in order to cover V i

x(2−1M−k)∩A(x, 1) with cubes in Q(Rn),
of sidelength M−k and with centers in V i

x we first cover V i
x ∩ A(x, 1) with cubes

{Qj}j∈J in Q(Rn−1). Then the required cubes needed to cover V i
x(2−1M−k)∩A(x, 1)

will be

Pj = {(y1, . . . , yi, ..yn) ∈ Rn : (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Qj and

yi ∈ [xi − 2−1M−k, xi + 2−1M−k)}.
See Figures A and B for an illustration.

For x ∈ Rn, r > 0 and i = 1, . . . , n, denote

Gr∗(x, r, i, M) = Gr(x, r, i, M) \ {g(x,r,i)}.
Fix some x ∈ Rn, r > 0 and i = 1, . . . , n, then by (3.8)

V x
i (r(2M)−1) ∩ E ∩ A(x, r) ⊂

⋃

y∈Gr∗(x,r,i,M)

A(y, rM−1)

and
card(Gr∗(x, r, i, M)) = Mn−1 − 1.
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Figure A. Figure B.

Notice that the cardinality of the grid Gr∗(x, r, i,M) depends only on its thickness,
i.e., only on M .

In the same manner for y ∈ Gr∗(x, r, i,M) the cubes A(y, rM−1) satisfy

V x
i (r2−1M−2) ∩ E ∩ A(y, rM−1) ⊂

⋃

h∈Gr∗(y,rM−1,i,M)

A(h, rM−2).

Therefore

V x
i (r2−1M−2) ∩ E ∩ A(x, r) ⊂

⋃

{h∈Gr∗(y,rM−1,i,M):y∈Gr∗(x,r,i,M)}
A(h, rM−2)

and

card({h ∈ Gr∗(y, rM−1, i, M) : y ∈ Gr∗(x, r, i, M)}) = (Mn−1 − 1)2.

Notice that

{h ∈ Gr∗(y, rM−1, i, M) : y ∈ Gr∗(x, r, i, M)} ⊂ Gr(x, r, i,M2).

Inductively we conclude that for all x ∈ Rn, r > 0, i ∈ {1, . . . , n} and k ∈ N there
exist sets of cubes

Qk(x, r, i) ⊂ Q(Rn),

consisting of cubes A(g, r
Mk ) with g ∈ Gr(x, r, i,Mk) satisfying

(i) V x
i (r2−1M−k) ∩ E ∩ A(x, r) ⊂ ⋃{Q : Q ∈ Qk(x, r, i)},

(ii) card(Qk(x, r, i)) = (Mn−1 − 1)k.
Properties (i) and (ii) imply that for all x ∈ Rn, r > 0, i = 1, . . . , n and k ∈ N

µ(V i
x(2−1M−k) ∩ A(x, 1)) ≤

∑

Q∈Qk(x,1,i)

µ(Q)

≤ card(Qk(x, 1, i))C(
√

nM−k)n−1

= C(
√

n)n−1(1−M1−n)k.

For every x ∈ Rn and every i = 1, . . . , n there exist y1
(x,i) and y2

(x,i) such that

Sk(M
−1, V i

x) = V i
y1
(x,i)

(2−1M−k) ∪ V i
y2
(x,i)

(2−1M−k)

and
Sk(M

−1, V i
x) ∩ E ⊂ A(y1

(x,i), 1) ∪ A(y2
(x,i), 1).
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Therefore we deduce that
∞∑

k=0

µ(Sk(M
−1, V i

x))k =
∞∑

k=0

µ(V i
y1
(x,i)

(2−1M−k) ∩ A(y1
(x,i), 1))k

+
∞∑

k=0

µ(V i
y2
(x,i)

(2−1M−k) ∩ A(y2
(x,i), 1))k

≤ 2C(
√

n)n−1

∞∑

k=0

(1−M1−n)kk.

This concludes the proof of (i) since
∞∑

k=0

(1−M1−n)kk < ∞.

For the proof of (ii) notice that since E is V -directed porous for all V ∈ G(n, n− 1)
we can define the function, Θ: G(n, n− 1) → (0, 1), as

Θ(V ) = c(V )

where c(V ) are the numbers appearing in Definition 1.1. By compactness of G(n, n−
1), see, e.g. [M2], and continuity of Θ, we deduce that that Θ attains some minimal
value c depending only on the set E. Using this observation, Theorem 3.1 (ii) and
exactly the same arguments as in (i), adapted to spheres, we obtain (ii). ¤
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