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Abstract. We study the Neumann problem for the Poisson equation in a domain where two
boundary components are tangential at a single point, such that a geometrical irregularity of the
rotational cusp type is formed. We derive necessary and sufficient conditions for the existence of a
solution with a finite Dirichlet integral.

1. Formulation of the problem

Since the pioneering paper [4] by Kondratiev much attention is devoted to elliptic
boundary value problems in domains with irregular boundaries. An almost complete
theory has been created in case of conical corner points and edges, see for example
the key works [4], [11], [12], [19] and [5], [26], [13], [14], respectively, and also the
monographs [2], [21], [6]. Other geometrical irregularities, common in everyday life
and engineering practise, have been considered as well. The papers [10], [27] and [6]
contain studies near cusp tips of peak-shaped domains, using reduction to conical
domains and to differential operators with strongly perturbed coefficients.

There are nevertheless many types of irregularities, also interesting for applied
sciences, which have not yet been deeply studied. We mention cuspidal edges and
rotational cusps, the latter being the subject of the present paper. It is not difficult
to imagine the applications of such geometrical forms in mechanics and even more
applied problems in metal or woodworking machinery; think about drill tips, milling
inserts, incisal surfaces etc. Evidently, the solvability and Fredholm properties of such
elliptic problems are open, though there exist results on asymptotics of solutions (see
e.g. [16]).

Let Ω be a domain in the Euclidean space Rn, which is Lipschitz everywhere else
except at the origin O of the Cartesian coordinate system x = (y, z) ∈ Rn−1 ×R1.
We assume that in a cylindrical neighbourhood U = Bn−1

R × (−d, d) of O, where
Bn−1

R := {y ∈ Rn−1 : |y| < R}, and R > 0, d > 0, a point x = (y, z) ∈ U belongs to
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the domain Ω, if and only if z satisfies the inequalities

−H−(y) < z < H+(y).(1.1)

Here the functions H± are in the space H1,∞(Bn−1
R ), i.e., the gradients ∇yH± are

bounded functions almost everywhere on the ball. In addition, H := H+ + H− > 0
for r ∈ (0, R] and

H(y) = r1+γ(H0(θ) + O(rδ)), r → 0,(1.2)

where H0 is a smooth function of class C2, positive on the unit sphere Sn−2 ⊂ Rn−1,
while r = |y| and θ = r−1y ∈ Sn−2 are spherical coordinates, and γ, δ are positive
exponents.

Classical geometrical forms described by the relations (1.1), (1.2) are balls kiss-
ing each other from inside or from outside (see Figure 1), and also the well known
hydrodynamical problem on the ellipsoid sitting on the halfspace, see Figure 2. In
these cases we have γ = 1. There exist more complicated geometries: for example,
the Figure 3 designates a surface of revolution, tangent to the cylindrical cone. If
a ball is kissing a paraboloid from inside (see in Figure 4) such that the curvatures
of both bodies coincide at the origin O, the exponent γ turns out to be 3. Yet a
different case, where γ may not be a constant at the origin, is designated in Figure 5.
If the cylindrical surface is circular, then γ = 1 as before, but for a ball of radius
R0 > 0 and the parabolic cylinder with maximal curvature R−1

0 the domain is no
more described by the relations (1.1), (1.2): one has γ = 3 along the trace (the
generating parabola) and and γ = 1 along the axis (the line perpendicular to the
traces), hence, there does not exist a positive function H0. In the sequel γ is called
the exponent of tangency of the surfaces Γ± = {x ∈ U : z = ±H±(y)}.

We consider the following Neumann problem for the Poisson equation in the
domain Ω:

−∆xu(x) = f(x), x ∈ Ω, ∂νu(x) = g(x), x ∈ ∂Ω \ O.(1.3)

Here ∂ν is the outward normal derivative, and the compability conditions on the data
will be given later. It is clear that the following conditions, in an appropriate sense,
should be satisfied: ∫

Ω

f(x) dx +

∫

∂Ω

g(x) dsx = 0,(1.4)

where dsx is the (n − 1)-dimensional surface measure. We shall study the question
of the existence of solutions to problem (1.3) in the Sobolev space H1(Ω). Also
the following simplified problem appears often in applications: given a function G,
continuous or smooth near the origin O, find a solution to (1.3) with a finite Dirichlet
integral, for the data

f = 0 on Ω ∩U , g = 0 on Γ−, g = G on Γ+.(1.5)

It is known (see e.g., [8], [9], Chapter 14, and Section 6 of this paper), that the
analogous Dirichlet problem in the two dimensional case

−∆xu(x) = f(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω \ O,(1.6)

has a negative answer, if G(O) 6= 0. This is so since the inclusion u ∈ H1(Ω) means
that in a sense the difference u(y,H+(y)) − u(y,H−(y)) admits the null limit for
y → 0.
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Figure 1. Figure 2.

Figure 3. Figure 4. Figure 5.

In the paper we derive the criterium

γ < n(1.7)

for the existence of bounded energy solutions to problem (1.3) under conditions (1.4),
(1.5) and G(O) 6= 0. If γ ≥ n, then, for any solution of (1.3) with the right-hand
sides given above, the Dirichlet integral diverges. As a consequence we find that the
Neumann and Dirichlet problems (with (1.5)) behave in substantially different ways:
for the geometrical forms of Figures 1 and 2 and for the most interesting dimensions
n = 2 and n = 3, the solution of the Neumann problem enjoys a finite energy, but
this is not true for the Dirichlet problem.

The results on the solvability of the Neumann problem, Proposition 3.1 in Section
3, follow from a weighted inequality given by Lemma 2.1. These results assure the
sufficiency of the condition (1.7) in the case of data (1.5). The next two sections
are devoted to the verification of the necessary condition. In Section 5 we choose
appropriate test functions in the integral identity for problem (1.3), and this leads
to the conclusion that for G(O) 6= 0 there is no solution with the finite Dirichlet
integral.

In the beginning of Section 4 we give explanations for the existence of the con-
straints (1.7), based on asymptotic constructions designed in [16].

In Section 6 we discuss possible generalizations and mention some open problems.
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2. Weighted trace inequalities

The main result of this section is the verification of the following statement, with
the scheme borrowed from [25]. The result is used for the analysis of the variational
formulation of Neumann problem (1.3). We mention the book [15] for plenty of
similar and much more general results on trace inequalities. We also mention that a
result similar to ours in a more special case was recently obtained in [1].

Lemma 2.1. The following weighted inequality is valid:

c‖ρ−1u; L2(Ω)‖+ c‖ρ(γ−1)/2u; L2(∂Ω)‖ ≤ ‖u; H1(Ω)‖,(2.1)

where ρ(x) = |x|, and the constant c is independent of u ∈ H1(Ω).

Proof. Since r ≥ r0 > 0 on Ω \ U , we may assume without loss of generality
that the support of the function u is included in the set Ω ∩ U . We represent the
function u in the form

u(y, z) = ū(y) + u⊥(y, z),

H+(y)∫

−H−(y)

u⊥(y, z) dz = 0 for almost all y ∈ Bn−1
R .

(2.2)

By orthogonality condition (2.2), the Poincaré inequality holds on the interval Υ(y) =
(−H−(y), H+(y)) with the length H(y). Denoting ∂z := ∂/∂z we can thus write

∫

Ω∩U

|∂zu(x)|2 dx =

∫

Bn−1
R

∫

Υ(y)

|∂zu⊥(y, z)|2 dz dy

≥ π2

∫

Bn−1
R

∫

Υ(y)

H(y)−2|u⊥(y, z)|2 dz dy

≥ C

∫

Ω∩U

r−2(1+γ)|u⊥(x)|2dx, C > 0.

(2.3)

The standard method of verification of the trace inequalities (see, e.g., [7]) leads to

I0 :=
∑
±

∫

Γ±

ρ−1−γ|u⊥(x)|2 dsx

≤ c
∑
±

∫

Bn−1
R

H(y)−1|u⊥(y,±H±(y)|2 dy

≤ c

∫

Ω∩U

(|∂zu⊥(y, z)|2 + H(y)−2|u⊥(y, z)|2) dy dz.

(2.4)

We remark that by our assumptions, the boundary Jacobian on the surfaces Γ±
is bounded from above and below, and the quantities r1+γ, ρ1+γ, and H(y) are
infinitesimal and of the same order, when x → O from inside of Ω.
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We have∫

Ω∩U

|∇yu(x)|2 dx =

∫

Bn−1
R

H(y)|∇yū(y)|2 dy +

∫

Ω∩U

|∇yu⊥(x)|2 dx

+ 2

∫

Bn−1
R

∇yū(y) ·
∫

Υ(y)

∇yu⊥(y, z) dz dy =: I1 + I2 + I3.

(2.5)

The dot “·” denotes the inner product in Rn−1. We apply the following one dimen-
sional Hardy inequality (see [3] )

R∫

0

rα−1|U(r)|2 dr ≤ 4

α2

R∫

0

rα+1|∂rU(r)|2 dr(2.6)

with the exponent α = n− 2 + γ > 0; it is valid, if U(R) = 0. It follows that

I1 ≥ c

∫

Bn−1
R

r−1+γ|ū(y)|2 dy ≥ c

∫

Ω∩U

r−2|ū(y)|2 dx, c > 0.(2.7)

For the analysis of the integral I3 we make use of the rule of differentation of integrals
with variable limits and obtain∣∣∣∇y

∫

Υ(y)

u⊥(y, z) dz −
∫

Υ(y)

∇yu⊥(y, z) dz
∣∣∣ ≤

∑
±
|∇yH±(y)| |u⊥(y,±H±(y))|

for almost all y ∈ Bn−1
R . Since the first integral on the left-hand side is null by (2.2),

we have

|I3| ≤ C

∫

Bn−1
R

|∇yū(y)|
∑
±
|∇yH±(y)| |u⊥(y,±H±(y))| dy

≤ C
( ∫

Bn−1
R

H(y)|∇yū(y)|2 dy
)1/2( ∑

±

∫

Γ±

H(y)−1|u⊥(x)|2 dsx

)1/2

≤ εI1 + cε−1I0,

(2.8)

with an arbitrary ε > 0. Assume that ε = 1/4; then from (2.5), (2.4) and (2.8) it
follows that each of integrals I1 and I2 is bounded by the quantity c‖∇xu; L2(Ω∩U )‖.
The estimates (2.3) and (2.7) for the component in decomposition (2.2) lead to the
required relation (2.1). ¤

3. Solvability of the variational problem

Assume that the right-hand sides of problem (1.3) are smooth for the time being
and take the form

f(x) = f0(x)−∇x · f̃(x), g(x) = g0(x) + ν(x) · f̃(x),(3.1)

where f̃ = (f1, . . . , fn) and ν = (ν1, . . . , νn) is the outer unit normal. In such a case
the variational formulation [7] of the Neumann problem (1.3) reads as

(∇xu,∇xv)Ω = (f0, v)Ω + (f̃ ,∇xv)Ω + (g0, v)∂Ω, v ∈ C∞
c (Ω̄ \ O);(3.2)
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here C∞
c (Ω̄ \ O) is the space of infinitely smooth functions which vanish in a neigh-

bourhood of the point O and (· , ·)Ξ denotes the scalar product in the Lebesgue space
L2(Ξ) as well as its extension to the duality pairing between appropriate weighted
spaces. In view of Lemma 2.1, the expression on the right hand side of (3.2) defines
a continuous functional on H1(Ω), if the inclusions

f̃ ∈ L2
2(Ω)n, rf0 ∈ L2

2(Ω), r(1−γ)/2g0 ∈ L2(∂Ω),(3.3)

hold true. In the sequel we understand (3.2) as a generalized (cf. [7]) or variational
formulation of the problem (1.3), even though the functions (3.1) cannot always be
interpreted properly.

By H1(Ω)⊥ we denote the subspace of the Sobolev space, which contains the
functions with null mean value ∫

Ω

u(x) dx = 0.(3.4)

The left hand side of (3.2) can be taken for the scalar product in H1(Ω)⊥. Indeed,
it is sufficient to verify that for each function u ∈ H1(Ω)⊥ the following inequality
holds true (we shall give a proof for the convenience of the reader, though the result
is included in the theory presented, e.g., in [15]):

‖u; L2(Ω)‖ ≤ C‖∇xu; L2(Ω)‖.
We define

u(x) = a + v(x),

∫

Ω(δ)

v(x) dx = 0,

where Ω(δ) = Ω \ B̄n
δ and δ > 0 is small enough. According to (3.4) we have

|a| ≤ (mesnΩ)−1

∫

Ω

|v(x)| dx ≤ c‖v; L2(Ω)‖,

i.e., it is sufficient to estimate the latter norm. The domain Ω(δ) has Lipschitz
boundary, which ensures, owing to the Poincaré inequality, that

‖v; L2(Ω(δ))‖ ≤ cδ‖∇xv; L2(Ω(δ))‖ = cδ‖∇xu; L2(Ω(δ))‖ ≤ cδ‖∇xu; L2(Ω)‖.
We define a cut-off function χ : Ω̄ → [0, 1] to be equal to one for x ∈ Ω∩U , r < R/2
and to null in the exterior of Ω ∩U . Multiplying v by χ we obtain, for δ = R/2,

‖r−1χv; L2(Ω)‖ ≤ c‖∇x(χv); L2(Ω)‖
≤ cδ(‖∇xv; L2(Ω)‖+ ‖v; L2(Ω(δ))‖) ≤ Cδ‖∇xu; L2(Ω)‖.

Here, Lemma 2.1 is applied. In the proof of the lemma it was established that for a
function u with the support in the set Ω ∩U , the norm ‖u; H1(Ω)‖ can be replaced
by the quantity ‖∇xu; L2(Ω)‖ in the inequality (2.1). It remains to note that

‖v; L2(Ω)‖ ≤ ‖χv; L2(Ω)‖+ ‖v; L2(Ω(δ))‖ ≤ C‖∇xu; L2(Ω)‖. ¤
By the Riesz representation theorem for continuous functionals on a Hilbert

space, the following assertion holds true.
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Proposition 3.1. Assume that the conditions (3.3) and
∫

Ω

f0(x) dx +

∫

∂Ω

g0(x) dsx = 0(3.5)

are satisfied. Then the variational problem (3.2) admits a unique solution u ∈
H1(Ω)⊥ and the inequality

‖u; H1(Ω)‖ ≤ c
(
‖f̃ ; L2

2(Ω)n‖+ ‖rf0; L
2
2(Ω)‖+ ‖r(1−γ)/2g0; L

2(∂Ω)‖
)
,

is valid, and the constant c is independent of functions (3.3).

Remark 3.2. The identity (3.5) is just a substitute for (1.4), since for smooth
functions the two identities are equivalent, by the representation (3.1). The inclusion
(3.3) implies the convergence of the integrals in (3.5), since the integrals on the
right-hand sides of the following relations

∫

Ω

|f0(x)| dx ≤ ‖rf0; L
2(Ω)‖

( ∫

Ω

r−2 dx
)1/2

,

∫

∂Ω

|g0(x)| dsx ≤ ‖r(1−γ)/2g0; L
2(Ω)‖

( ∫

∂Ω

rγ−1 dsx

)1/2

converge on Ω and ∂Ω, respectively.

Remark 3.3. The condition (3.3) does not seem necessary at the first glance,
since for smooth functions u in the class H1(Ω), the traces of normal derivatives
on the smooth surfaces Γ± are also smooth. However, they need not belong to
the weighted space indicated by (3.3). In fact, we can get better results using the
following observation, changing the function f̃ in (3.1). Indeed, dealing with the
traces g± of the function g0 at Γ± and taking into account the formula for the normal
vector

ν±(y) = (1 + |∇yH±(y)|2)−1/2(∇yH±(y),±1), x ∈ Γ±,(3.6)

we replace f̃ by the vector function F with the components

Fk(x) = f̃k(x) + χ(y)(1 + |∇yH(y)|2)−1/2 ∂H

∂yk

(y)g−(y), k = 1, . . . , n− 1,

Fn(x) = f̃n(x)− χ(y)(1 + |∇yH(y)|2)−1/2g−(y),

and note that now g′′− = 0 in a neighbourhood of the point O ∈ Γ−. In other words,
it is sufficient to require that the difference g+ − g− belongs to the weighted space
(compare with [24], Lemma 4.2.).

Finally, let G be a continuous function such that G(O) 6= 0 and let (1.5) hold
true. Then r(1−γ)/2G ∈ L2(Bn−1

R ), if and only if γ < n. As a consequence of the
above considerations we obtain the following result.

Proposition 3.4. The condition γ < n is sufficient for the existence of a solution
u ∈ H1(Ω) with the data satisfying (1.5) and (1.4).
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4. Asymptotic structure of solutions

In view of the formulae (1.1), (1.2), the domain Ω becomes thin in the direction
of the z–coordinate in the vicinity of the point O. It is to be expected that the
solution of the Neumann problem is, in the vicinity of O, a perturbation of a function
depending on y only. This can indeed be seen from the representation (4.1) combined
with (4.17), (4.18), and (4.19).

We are going to apply the asymptotic ansatz known in the theory of elliptic
problems in thin domains (see, e.g. [20], for further details). Such an analysis is
required for the description of solutions at the point of tangency for smooth connected
components of the boundary (cf. [22, 16, 17] for some problems in mathematical
physics). Indeed, we are going to look for the asymptotic solution of problem (1.3)
with data (1.5) in the form

u(x) = v(y) + H(y)V (y, ζ),(4.1)

where v and V are functions to be determined, and ζ = H(y)−1z is the fast variable.
Replacing the solution u in (1.3) by the ansatz (4.1) and taking into account the
formula (3.6) for the normal, we obtain

∆xu(x) = ∆yv(y) + H(y)−1∂2
ζV (y, ζ) + . . . ,(4.2)

∂ν±u(y,±H±(y) = ±∂ζV
(
y,

1

2
± 1

2

)
−∇yH±(y) · ∇yv(y) + . . . .(4.3)

We denote by . . . the terms which are not substantial for the present formal asymp-
totical analysis and can thus be neglected here. Now, we observe that the terms in
(4.3) are of the same order (for y → 0) as the function G in (1.5), and conclude that
the discrepancies of the solution (4.1) in the problem (1.3) are small provided the
following relations are satisfied:

−∂2
ζV (y, ζ) = H(y)∆yv(y), ζ ∈ (0, 1),

∂ζV (y, 1) = ∇yH+(y) · ∇yv(y) + G(O),

−∂ζV (y, 0) = ∇yH−(y) · ∇yv(y).

(4.4)

These form a Neumann boundary value problem for an ordinary differential equation
on the line segment. Since

1∫

0

H(y)∆yv(y) dζ+∇yH+·∇yv(y)+G(O)+∇yH−·∇yv(y) = ∇y ·H(y)∇yv(y)+G(O),

the compability condition for the problem is the equality

−∇y ·H(y)∇yv(y) = G(O),(4.5)

which we consider as a degenerate partial differential equation in the punctured space
Rn−1 \ O. Myltiplying (1.5) by r−1−γ and taking into account the relation (1.2), we
obtain the differential operator

L0(y,∇y) = −r−1−γ∇y · r1+γH0(θ)∇y,(4.6)

which, in a sense, is the main part of the operator −∇y ·H(y)∇y at the point y = 0.
In the spherical coordinates, the operator takes the form r−2L (θ,∇θ, r∂r), where ∇θ

stands for the spherical gradient, and can be considered in the framework of elliptic
boundary value problems in domains with conical and angular boundary points. We
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apply the theory to construct the power solutions rλΨ(θ) of the homogeneous and
nonhomogeneous equations

L0(y,∇y)U(y) = rµ−1−γψ(θ), y ∈ Rn−1 \ {0}.(4.7)

Lemma 4.1. The spectral equation on the sphere

−∇θ ·H0(θ)∇θφ(θ) = ΛH0(θ)φ(θ), θ ∈ Sn−1,(4.8)

admits the infinite sequence of eigenvalues

0 = Λ0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ . . . ≤ Λm ≤ . . . → +∞,(4.9)

which are listed in (4.9) taking into account the multiplicities. The corresponding
eigenfunctions φ0, φ1, φ2, . . . , φm, . . ., where

(mesn−2S
n−2)−1/2 = φ0,(4.10)

are normalized by the orthogonality conditions

(H0φj, φk)Sn−2 = δj,k(4.11)

where j, k = 0, 1, 2, . . . and δj,k is the Kronecker symbol.

Proof. Multiplication of the equation (4.8) by H
−1/2
0 and the changes of variables

φ 7→ H
−1/2
0 φ, Λ 7→ Λ+1 lead to the expression of the positive and selfadjoint operator

−H
−1/2
0 ∇θ ·H0∇θH

−1/2 + 1, for which the general theory applies. From the strong
maximum principle it follows that φ0 is constant and that the first eigenvalue Λ0 is
simple. ¤

Lemma 4.2. Each power solution

U(y) = rλφ(θ)(4.12)

of the homogeneous problem (4.7) has the exponent

λ±m =
1

2

(
2− n− γ ±

√
(2− n− γ)2 + 4Λm

)
(4.13)

and the eigenfunction φ, corresponding to the eigenvalue Λm in equation (4.8). In
addition,

λ+
0 = 0 , λ−0 = 2− n− γ < 0.(4.14)

Proof. The power solutions of the form (4.12) can be obtained by direct compu-
tations and separation of variables from the homogenuous equation (4.7), i.e., with
ψ = 0. ¤

The following statement is well known, see [4], and e.g., [21], Lemma 3.5.11.

Proposition 4.3. If the number µ + 1 − γ is excluded from the set defined
in (4.13), then the equation (4.7) has a unique power-law solution (4.12) with the
exponent λ = µ + 1 − γ. In the case µ + 1 − γ = λ±m, the equation (4.7) gains the
power-logarithmic solutions

rλ±m(c(ψ)φm(θ) ln r + φ(θ)),(4.15)
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which differ by the term crλ±mφm(θ). The constant c(ψ) in (4.15) is null, if and only
if the right hand-side of equation (4.15) satisfies the condition

∫

Sn−2

φm(θ)ψ(θ) dsθ = 0.(4.16)

In the case G(O) 6= 0 in (4.5) the right hand side of the equation (4.7) must be
r−1−γG(O), i.e., µ = 0 and ψ(θ) = G(O). By Proposition 4.3 and Lemma 4.2, the
equation (4.7) has in the case of γ = 1 (see Figures 1 and 2) the logarithmic solution

U(y) = C ln r + ψ(θ).(4.17)

On the other hand, for γ > 0 and γ 6= 1 (see Figure 4), the solution turns out to be
a power solution,

U(y) = r1−γψ(θ)(4.18)

Indeed, for γ > 1 the exponent 1−γ belongs to the segment (λ−0 , λ+
0 ) = (2−n−γ, 0),

free from the numbers (4.13). For γ ∈ (0, 1) the exponent 1 − γ may coincide with
λ+

m, but then necessarily m ≥ 1 and therefore, by (4.7), (4.7), the right-hand side
ψ(θ) = G(O) is orthogonal to the eigenfunction φm. Hence, the condition (4.16) is
satisfied.

We introduce some simplifying assumptions, which will be omitted in the follow-
ing section. First, H(y) = r1+γH0(θ), which implies that in (1.2) the small remainder
is absent, and the expression r1+γL0(y,∇y)v(y) from (4.6) coincides with the right
hand side of (4.5). Second, functions H± are assumed twice continuously differen-
tiable, and moreover, in accordance with Section 1, we require

|∇yH±(y)|+ r|∇2
yH±(y)| ≤ C.

Solutions of the Neumann problem are of the form

V (y, ζ) = −1

2
ζ2H(y)∆yv(y)− ζ∇yH−(y) · ∇yv(y),(4.19)

and the boundary condition for ζ = 1 is verified for such a solution by the fact that
v = U is a solution (of the form (4.17) or (4.18)) to the equation (4.7) for µ = 0 and
ψ(0) = G(O). In the case of G(O) 6= 0, we have

|∇yv(y)| ≥ c0r
−γ, c0 > 0,

|∇y(H(y)V (y, H(y)−1ζ)| ≤ c1.

In this way, for γ > n the Dirichlet integral of the function (4.1) diverges:
∫

Ω∩U

|∇xu(x)|2 dx ≥ c

∫

Bn−1
R

H(y)
(1

2
c2
0r
−2γ − c2

1

)
dy

≥ c

R∫

0

(1

2
c2
0r

1−γ − c2
1r

1+γ
)
rn−2 dr.

(4.20)

On the other hand, for γ ∈ (0, n) the Dirichlet integral converges.
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5. Necessity of the condition γ < n

We assume that the problem (1.3) admits a generalized solution u ∈ H1(Ω). We
introduce the following test functions for the integral identity (3.2):

vk(x) =

{
0, x ∈ Ω \U ,

2k(n−2+γ)/2σ(2ky), y ∈ Ω ∩U .

Here, k = 1, 2, . . . and σ is a nontrivial function from the space C∞(Rn−1) with
the support in the annulus {y : r ∈ (R/2, R)}. Because of the normalization factor
2k(n−2+γ)/2, one readily verifies that

‖vk; H
1(Ω)‖ ≤ c, k = 1, 2, . . . .

Since the sets suppvk form a sequence diminishing to the point O, the left-hand side
of identity (3.2) tends to zero as k → ∞. Under the condition (1.5) the right hand
side of (3.2) equals to

∫

Bn−1
R

vk(y)G(y, H+(y))(1 + |∇yH+(y)|2)1/2 dy

= 2k(n−2+γ)/22−k(n−1)

∫

Bn−1

2−kR

σ(η)(G(O) + o(1)) dη

= 2k(γ−n)/2
(
G(O)

∫

Rn−1

σ(η) dη + o(1)
)
, k → +∞.

(5.1)

Therefore, for g(O)
∫

σ(η) dη 6= 0 and γ−n ≥ 0 the right hand side of (3.2) admits a
non null limit. The obtained contradiction shows the necessity of the condition (1.7).

Remark 5.1. Small changes in the proof of (5.1) lead to the following result.
In the case of γ + m ≥ n, with an integer m, problem (1.3) is unsolvable in the class
H1(Ω), if some derivative of order k ≤ m of the function y 7→ G(y,H(y)) does not
vanish at y = 0.

6. Conclusions

It is clear that the obtained results remain valid for any scalar, formally self ad-
joint differential operator −∇x ·A∇x, where A is an n×n-matrix valued function, uni-
formly positive definite, with measurable, bounded components almost everywhere
in Ω.

It seems possible that there are different conditions on the tangency exponent
γ (compare to (1.2)) for the existence of bounded energy solutions for elasticity
boundary value problems on non smooth domains with tractions prescribed on the
boundary ∂Ω of elastic body Ω, i.e., with the Neumann boundary conditions. This
view is supported by some known results in the elasticity theory, including, the
weighted Korn inequality and the results on asymptotic structures of the elastic
fields in the vicinity of cuspidal singularities of boundaries (see [22], [23]). The
precise formulation of such conditions remains an open problem.

Changing to some other types of boundary conditions in general leads to new
constraints on the exponent γ. For example, in the case of the Dirichlet boundary
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conditions (1.6), the bounded energy solutions are obtained only for
(6.1) γ < n− 2 .

This is just the reason in two spatial dimensions (see [8], [9], Chapter 14) why the
Dirichlet integral of a solution to (1.6) with data (1.5) is infinite for all γ > 0 for
G(O) 6= 0. This can be justified using the methods of [28] and [8]. We only recall,
that for a smooth function G the asymptotic anszatz (4.1) is simplified and takes
the form u(x) ∼ ζG(O), and the constraint (6.1) for γ comes out from the reasoning
similar to (4.20).

The geometrical form designated in Figure 5 is still a subject for further research.
If, for example, H− = 0, and the surface Γ+ inside of the neighbourhood U is given
by the following equation

y2q
n−1 + P (y1, . . . , yn−2) = 1 ,(6.2)

where P is a homogeneous polynomial of order 2(q+p), and p, q are positive integers,
then our arguments can be used to show that the problem (1.3) along with boundary
conditions (1.5) admits a solution in the class H1(Ω) for 2(q + p) < n− 1, and that
there is no such solution for 2q ≥ n. However, a complete analysis would still require
a new approach.
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