Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 195-214
Uniwersytet Warszawski, Instytut Matematyki
ul. Banacha 2, PL-02-097 Warsaw, Poland; pawelst 'at' mimuw.edu.pl
Politechnika Warszawska, Wydzial Matematyki i Nauk Informacyjnych
Plac Politechniki 1, PL-00-661 Warsaw, Poland; M.Szumanska 'at' mini.pw.edu.pl
RWTH Aachen, Institut für Mathematik
Templergraben 55, D-52062 Aachen, Germany; heiko 'at' instmath.rwth-aachen.de
Abstract. We consider rectifiable closed space curves for which the energy
Ip(\gamma) := \int_\gamma \int_\gamma 1 / infz Rp(x,y,z) dH1(x) dH1(y), p\ge 2,
is finite. Here, R(x,y,z) denotes the radius of the smallest circle passing through x, y, and z. It turns out that Ip is a self-avoidance energy (curves of finite energy have no self-intersections). For p > 2, we study regularizing effects of Ip: we prove that the arclength parametrization \Gamma of a curve \gamma with Ip(\gamma) < \infty is everywhere differentiable, and its derivative, \Gamma', is Hölder continuous with exponent 1 - 2/p. Moreover, we obtain compactness results for classes of curves with uniformly bounded Ip energy, and briefly discuss their variational applications.
2000 Mathematics Subject Classification: Primary 28A75, 49J45, 49Q10, 53A04, 57M25.
Key words: Menger curvature, global curvature, self-avoidance energies, minimizing knots, imbedding theorems.
Reference to this article: P. Strzelecki, M. Szumanska and H. von der Mosel: A geometric curvature double integral of Menger type for space curves. Ann. Acad. Sci. Fenn. Math. 34 (2009), 195-214.
Copyright © 2009 by Academia Scientiarum Fennica