Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 131-143

NEUMANN LAPLACIAN ON A DOMAIN WITH TANGENTIAL COMPONENTS IN THE BOUNDARY

Serguei A. Nazarov, Jan Sokolowski and Jari Taskinen

Russian Academy of Sciences, Institute of Problems of Mechanical Engineering
V.O., Bolshoi pr., 61, 199178, St. Petersburg, Russia; serna 'at' snark.ipme.ru

Université Henri Poincaré Nancy 1, Département de Mathematiques
B.P. n. 239, 54506 Vandoeuvre les Nancy Cédex, France; Jan.Sokolowski 'at' iecn.u-nancy.fr

University of Helsinki, Department of Mathematics and Statistics
P.O. Box 68, 00014 Helsinki, Finland; Jari.Taskinen 'at' helsinki.fi

Abstract. We study the Neumann problem for the Poisson equation in a domain where two boundary components are tangential at a single point, such that a geometrical irregularity of the rotational cusp type is formed. We derive necessary and sufficient conditions for the existence of a solution with a finite Dirichlet integral.

2000 Mathematics Subject Classification: Primary 35J25; Secondary 46E35, 35J20.

Key words: Poisson equation, Neumann problem, nonsmooth boundary, rotational cusp.

Reference to this article: S.A. Nazarov, J. Sokolowski and J. Taskinen: Neumann Laplacian on a domain with tangential components in the boundary. Ann. Acad. Sci. Fenn. Math. 34 (2009), 131-143.

Full document as PDF file

Copyright © 2009 by Academia Scientiarum Fennica