Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 437-446
University of Jyväskylä, Department of Mathematics and Statistics
P.O. Box 35 (MaD), FI-40014 University of Jyväskylä,
Finland; juhaleh 'at' maths.jyu.fi
Abstract. We establish necessary conditions for domains \Omega \subset Rn which admit the pointwise (p,\beta)-Hardy inequality
|u(x)| \le C d\Omega(x)1-\beta/pM2d_\Omega(x),q (|\nabla u|d\Omega\beta/p)(x), u \in C0\infty(\Omega),
where 1 < q < p, d\Omega(x) = dist(x,\partial\Omega), and MR,q is a maximal operator. In particular, the complement of such a domain must have, even locally, Hausdorff dimension strictly greater than n - p + \beta.
2000 Mathematics Subject Classification: Primary 46E35, 26D15, 28A78.
Key words: Pointwise Hardy inequality, maximal function, Hausdorff content, Hausdorff dimension, Minkowski dimension.
Reference to this article: J. Lehrbäck: Necessary conditions for weighted pointwise Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 34 (2009), 437-446.
Copyright © 2009 by Academia Scientiarum Fennica