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Abstract. We give sharp integrability conditions on the distortion function of a homeomor-
phism f of finite distortion, under which f induces a composition operator between two Sobolev
spaces.

1. Introduction

It is well-known that the composition operator Tf : Tf (u) = u◦f maps W 1,n
loc (Ω2)

into W 1,n
loc (Ω1) if f : Ω1 → Ω2 is a quasiconformal mapping ([11, 15, 20]). Here

quasiconformality requires that f be a homeomorphism with f ∈ W 1,1
loc (Ω;Rn) and

that

(1.1) |Df(x)|n ≤ KJf (x) a.e.

for some constant K ≥ 1. Recently, the class of more general homeomorphisms of
finite distortion, for which one allows K above to depend on x has been under intense
study [1, 2, 5, 7, 8, 9, 10, 13, 16]. To be more precise, we say that a homeomorphism
f ∈ W 1,1

loc (Ω;Rn) is of finite distortion if (1.1) holds for f with some measurable
function K(x) ≥ 1 which is finite almost everywhere. In these studies, one typically
assumes some integrability condition on the distortion function K. It is then natural
to inquire if a suitable integrability condition on K would still guarantee that Tf

maps W 1,n
loc (Ω2) into W 1,p

loc (Ω1) for some 1 ≤ p ≤ n. Our first result gives a precise
integrability criteria for f to induce such a composition operator.

Theorem 1.1. Let f : Ω1 → Ω2 be a homeomorphism of finite distortion K and
let p ∈ [1, n]. Then Tf maps W 1,n

loc (Ω2) into W 1,p
loc (Ω1) if K ∈ L

p
n−p

loc (Ω1). Moreover,
given ε > 0, one can find Ω1, Ω2 and a homeomorphism f : Ω1 → Ω2 of finite
distortion K so that K ∈ L

p
n−p

loc (Ω1) but Tf (W
1,n
loc (Ω2)) 6⊂ W 1,p+ε

loc (Ω1).
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Let us make a couple of comments on the claim of Theorem 1.1. First of all,
Tf (u) could in principle depend on the choice of the representative for u. However,
this turns out not to be the case: Tf (u) belongs to W 1,p

loc (Ω1) for each (representative
of) u ∈ W 1,n

loc (Ω1) and Tf (u) = Tf (û) a.e. in Ω1 if û is some other representative of
u. Secondly, our proof in fact gives the estimate

‖∇Tf (u)‖Lp(G) ≤ ‖K‖1/n

Lp/(n−p)(G)
‖∇u‖Ln(f(G))

for G ⊂⊂ Ω1 and u ∈ W 1,n
loc (Ω2).

By applying Theorem 1.1 to the projections (x1, · · · , xn) 7→ xj, one concludes
that f ∈ W 1,p

loc (Ω1,R
n) under the assumptions of Theorem 1.1. Alternatively, this

conclusion can also be easily deduced by means of the Hölder inequality, applying the
distortion inequality (1.1) and the local integrability of the Jacobian of a Sobolev-
homeomorphism. In the proof of Theorem 1.1 we actually show that this conclusion
is essentially sharp by constructing, for each given ε > 0, a homeomorphism f
of finite distortion K so that Kp/(n−p) is locally integrable but |Df |p+ε fails to be
locally integrable. Thus, it may happen that T (W 1,q

loc (Ω2)) 6⊂ W 1,p+ε
loc (Ω1) for each

q ≥ n under the assumptions of Theorem 1.1.
Suppose then that we consider a homeomorphism f whose regularity is better

then what guaranteed by Theorem 1.1. One could expect that Tf (W
1,n
loc (Ω2)) ⊂

W 1,p+ε
loc (Ω1) for some ε > 0 depending on the regularity of f. This turns out not to

be the case. For example, given ε > 0 and p ≥ 1, one can find a homeomorphism
f with finite distortion K so that both K1/(n−1) and |Df |p are locally integrable
but T (W 1,n

loc (Ω2)) 6⊂ W 1,1+ε
loc (Ω1). On the other hand, our next result shows that the

target space can be improved on, provided we consider the image of W 1,q
loc (Ω2) for

some q > n.

Theorem 1.2. Suppose that Ω1, Ω2 ⊂ Rn, n ≥ 2, are domains. Let p ∈ [1,∞),
q ∈ (n,∞) and s ∈ [1,∞). Suppose that s(q − p)− p(q − n) ≥ 0 and set

(1.2) a =
ps

s(q − p)− p(q − n)
.

Suppose that f ∈ W 1,s
loc (Ω1, Ω2) is a homeomorphism of finite distortion such that

K ∈ La
loc(Ω1). Then Tf maps W 1,q

loc (Ω2) into W 1,p
loc (Ω1). Moreover, given ε > 0,

s ≥ p, q and a ≥ 1/(n − 1) as above, one can find Ω1, Ω2 and a homeomorphism
f : Ω1 → Ω2 of finite distortion K so that K ∈ La

loc(Ω1) and f ∈ W 1,s
loc (Ω1, Ω2) but

Tf (W
1,q
loc (Ω2)) 6⊂ W 1,p+ε

loc (Ω1).

Above, the mapping property of Tf means that each u ∈ W 1,q
loc (Ω2) has a repe-

sentative û so that Tf (û) ∈ W 1,p
loc (Ω1). In fact, this will always be the case for the

continuous representative û and actually for every representative when a ≥ 1/(n−1).
When a < 1/(n − 1), this is not necessarily the case. Indeed, then there is a Lip-
schitz mapping f of finite distortion K with Ka ∈ L1

loc(Ω1) and so that f maps a
compact Cantor-type set of positive volume to a set of volume zero (cf. [10]). By
defining u = χf(E) we see that Tf (u) may fail even to be in W 1,1

loc (Ω1).
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The sharpness of our formula is only claimed for a ≥ 1/(n− 1). We do however
expect this assumption to be superfluous. The asserted examples are constructed
relying on a general scheme initiated in [7] and further refined in [8].

Notice that we have not considered the action of the composition operator Tf

on W 1,p
loc (Ω2) for 1 ≤ p < n. There is a simple reason for this: in this case one can

easily give examples of quasiconformal f (so, K ∈ L∞(Ω1)) so that Tf (W
1,p
loc (Ω2)) /∈

W 1,1
loc (Ω1).
Our motivation for the study of the composition operator Tf partially arose

from the following question: when is the composition of two homeomorphisms of
finite distortion also of finite distortion? For the consequences of our work on this
problem we refer the reader to Section 6 below.

2. Preliminaries

2.1. Notation. The euclidean norm of x ∈ Rn is denoted by ‖x‖. We use the
notation sgn for the sign function, i.e. sgn(t) = 1 if t > 0 and sgn(t) = −1 if t < 0.
Given two functions h, g : Ω → R we write h ∼ g if there is constant A ≥ 1 such
that 1

A
f(x) ≤ g(x) ≤ Af(x) for every x ∈ Ω.

We say that a mapping f : Ω → Rn is Lipschitz continuous (or Lipschitz for
short) if there is a constant L > 0 such that ‖f(x) − f(y)‖ ≤ L‖x − y‖ for all
x, y ∈ Ω.

A mapping f : : Ω → Rn is said to satisfy the Lusin condition (N) if Ln(f(A)) =
0 for every A ⊂ Ω such that Ln(A) = 0. Analogously, f is said to satisfy the Lusin
condition (N−1) if Ln(f−1(A)) = 0 for every A ⊂ Rn such that Ln(A) = 0.

2.2. Area formula. Let f ∈ W 1,1
loc (Ω;Rn) be a homeomorphism and let η be a

non-negative Borel-measurable function on Rn. Without any additional assumption
we have

(2.1)
∫

Ω

η(f(x))|Jf (x)| dx ≤
∫

Rn

η(y) dy.

This follows from the area formula for Lipschitz mappings and from the fact that
Ω can be exhausted up to a set of measure zero by sets, the restriction to which of
f is Lipschitz continuous (see [3, Theorem 3.1.4 and Theorem 3.1.8]).

2.3. Differentiability of radial functions. The following lemma can be
verified by an elementary calculation.

Lemma 2.1. Let ρ : (0,∞) → (0,∞) be a strictly monotone, differentiable
function. Then for the mapping

f(x) =
x

‖x‖ρ(‖x‖), x 6= 0,

we have for almost every x

Df(x) ∼ max
{ρ(‖x‖)
‖x‖ , |ρ′(‖x‖)|

}
, Jf (x) ∼ ρ′(‖x‖)

(ρ(‖x‖)
‖x‖

)n−1

.
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2.4. Adjugate. The adjugate adj B of an invertible square matrix B is defined
by the formula

B adj B = I det B,

where det B denotes the determinant of B and I is the identity matrix. The operator
adj is then continuously extended to Rn×n.

2.5. Auxiliary inequality. Let α > 0. Then

(2.2) ab ≤ C(α) exp(2a
1
α ) + b logα(e + b)

for every a > 0 and b > 0. Indeed, if the second term is not bigger than the left-hand
side, then a > logα(e + b), which implies that

ab ≤ a exp(a
1
α ) ≤ C(α) exp(2a

1
α ).

2.6. Lorentz space. If f : Ω → R is a measurable function, we define its
distributional function m(·, f) by

m(σ, f) = Ln({x : |f(x)| > σ}), σ > 0,

and the non-increasing rearrangement f ? of f by

f ?(t) = inf{σ : m(σ, f) ≤ t}.
The Lorentz space Ln−1,1(Ω) is defined as the class of all measurable functions
f : Ω → R for which ∫ ∞

0

t
1

n−1 f ?(t)
dt

t
< ∞,

and the local space Ln−1,1
loc (Ω) is then obtained as usual. For an introduction to

Lorentz spaces see e.g. [17]. Recall that, for n = 2, we have L1,1
loc(Ω) = L1

loc(Ω) and
that ⋂

p>n−1

Lp
loc(Ω) ⊂ Ln−1,1

loc (Ω) ⊂ Ln−1
loc (Ω).

3. Proof of the first part of Theorem 1.1

The first part of Theorem 1.1 could be reduced to a result in [18]. However,
the proof there seems to have a gap and thus we, for the sake of completeness,
present a simple proof below. The argument below should also help the reader in
understanding the further reasoning regarding the composition operator.

The inequality in the following lemma is well-known; the proof relies on an
argument due to Hedberg [6].

Lemma 3.1. Let B ⊂ Rn be an open ball and let u ∈ W 1,q(3B), 1 < q < ∞.
Suppose that x, y ∈ B are Lebesgue points of f . Then

|u(x)− u(y)| ≤ C(n)|x− y|(M(|∇u|)(x) + M(|∇u|)(y)
)

where
Mh(x) = sup

B(x,r)⊂3B

1

|B(x, r)|
∫

B(x,r)

|h(z)| dz
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is the Hardy–Littlewood maximal function of h : 3B → R.

Proof of the first part of Theorem 1.1. Fix u ∈ W 1,n
loc (Ω2), and let x0 ∈ Ω1. We

can clearly find a ball B and r > 0 such that 3B ⊂⊂ Ω2 and f(B(x0, r)) ⊂ B. We
want to prove that Tf (u) := u ◦ f ∈ W 1,1(B(x0, r)) and that |Df | ∈ Lp(B(x0, r)).
For λ > 0, set

Fλ ={x ∈ B : M(|∇u|)(x) ≤ λ} ∩ {x ∈ B : x is a Lebesgue point of u}.
In view of Lemma 3.1, we obtain that u is Lipschitz-continuous on Fλ with Lipschitz-
constant Cλ. By the classical McShane extension theorem, there is a Cλ-Lipschitz
function uλ : B → R such that uλ = u on Fλ.

Set gj = uj ◦ f for j ∈ N. Since uj is Lipschitz, we obtain that gj ∈ W 1,1(B(x0,
r)). We want to show that {∇gj}j∈N is a Cauchy sequence in Lp(B(x0, r),R

n).
From |∇u| ∈ Ln(3B), we conclude that M(∇u) ∈ Ln(B), and therefore

(3.1) |B \ Fj| = o(j−n).

Now let i ≤ j. Then∫

B

|∇ui −∇uj|n ≤ C
(∫

B\Fi

|∇ui|n +

∫

Fj\Fi

|∇uj|n +

∫

B\Fj

|∇uj|n
)

≤ o(i−n)in + C

∫

B\Fi

|∇u|n + o(j−n)jn i→∞→ 0.

(3.2)

Set q = n
p
. From the chain rule, the definition of mappings of finite distortion

and Hölder’s inequality we obtain∫

B(x0,r)

|∇gi −∇gj|p ≤
∫

B(x0,r)

|Df(x)|p|∇ui(f(x))−∇uj(f(x))|p dx

≤
∫

B(x0,r)

K(x)
p
n Jf (x)

p
n |∇ui(f(x))−∇uj(f(x))|p dx

≤‖ K
p
n ‖Lq′ (B(x0,r))‖ J

p
n
f |∇ui(f)−∇uj(f)|p ‖Lq(B(x0,r)) .

Since p
n
q′ = p

n−p
and K ∈ L

p
n−p

loc (Ω1), we know that the first norm is finite. Thanks
to (2.1) and (3.2) we have

‖ J
p
n
f |∇ui(f)−∇uj(f)|p ‖q

Lq(B(x0,r)) =

∫

B(x0,r)

Jf (x)|∇ui(f(x))−∇uj(f(x))|n dx

≤
∫

B

|∇ui(y)−∇uj(y)|n dy
i→∞→ 0.

Therefore the sequence {∇gj} is a Cauchy sequence in Lp, and hence we can find
g ∈ Lp(B(x0, r),R

n) such that ∇gj → g in Lp(B(x0, r),R
n).

Since f satisfies the Lusin condition (N−1) [10], according to which f−1 maps
sets of volume zero to sets of volume zero, and |B \Fj| → 0 we obtain that the sets
Aj := B(x0, r) ∩ f−1(Fj) satisfy |Aj| → |B(x0, r)|. Thus we can find j0 such that
|Aj0| > 1

2
|B(x0, r)|. It follows from the definition of gj that gj(x) = u◦f(x) for every
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x ∈ Aj0 and j ≥ j0. Fix i, j ≥ j0. Since gi − gj = 0 on Aj0 and |Aj0| ≥ 1
2
|B(x0, r)|

we can use the Poincaré inequality to obtain
∫

B(x0,r)

|gi − gj| =
∫

B(x0,r)

∣∣∣gi(x)− gj(x)− 1

|Aj0|
∫

Aj0

(
gi(y)− gj(y)

)
dy

∣∣∣ dx

≤ Cr

∫

B(x0,r)

|∇gi −∇gj|.

Since {∇gi} is a Cauchy sequence in L1(B(x0, r),R
n), we obtain that {gi} is also a

Cauchy sequence in L1(B(x0, r)). Hence gj → u◦f in L1(B(x0, r)) because gj = u◦f
on Aj and |B(c, r) \ Aj| → 0.

Clearly ∫

B(x0,r)

∇gj(x)φ(x) dx = −
∫

B(x0,r)

gj(x)∇φ(x) dx

for every test function φ ∈ C∞
c (B(x0, r),R

n). Since gj → u ◦ f in L1 and ∇gj → g
in Lp we obtain, after passing to a limit, that

∫

B(x0,r)

g(x)φ(x) dx = −
∫

B(x0,r)

u ◦ f(x)∇φ(x) dx

which means that g ∈ Lp(B(x0, r)) is a weak gradient of u ◦ f on B(x0, r). It then
follows from the Lp-Poincaré inequality that u ◦ f ∈ W 1,p(B(x0, r)). ¤

4. Proof of the first part of Theorem 1.2

Proof of the first part of Theorem 1.2. Let u ∈ W 1,q
loc (Ω2). Pick a sequence ui

of functions in C∞(Ω2) so that ui → u in W 1,q
loc (Ω2). Then ui → û locally uniformly

in Ω2 for the continuous representative û that coincides with u almost everywhere.
By a simple modification to the reasoning at the end of the proof of the first part
of Theorem 1.1, in order to prove that û ◦ f ∈ W 1,p

loc (Ω1), it suffices to show that the
sequence ∇(ui ◦ f) is Cauchy in Lp(A) whenever A is a ball compactly contained in
Ω1.

Let i ≤ j. Fix a ball A ⊂⊂ Ω1 and set G = {x ∈ A : |Df(x)| > 0}. We can use
the fact that Jf > 0 on G, apply Hölder’s inequality and use (2.1) to obtain

∫

A

|∇(ui ◦ f)−∇(uj ◦ f)|p ≤
∫

A

|∇ui(f(x))−∇uj(f(x))|p|Df(x)|p dx

=

∫

G

|∇ui(f(x))−∇uj(f(x))|pJf (x)
p
q
|Df(x)|p
Jf (x)

p
q

dx

≤
(∫

f(A)

|∇ui −∇uj|q
) p

q
(∫

G

( |Df(x)|p
Jf (x)

p
q

) q
q−p

dx
) q−p

q
.
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This clearly shows that ∇(ui ◦ f) is Cauchy in Lp if the last integral is finite. By
Hölder’s inequality and (1.2) we have∫

G

( |Df(x)|p
Jf (x)

p
q

) q
q−p

dx =

∫

G

( |Df |n
Jf

) p
q−p |Df | q−n

q−p
p

≤ C
(∫

G

Ka
) p

a(q−p)
(∫

G

|Df |s
) p(q−n)

s(q−p)
< ∞.

When a ≥ 1/(n−1), f satisfies the Lusin condition (N−1) (cf. [10]) and it follows
that u◦f = û◦f almost everywhere and consequently that also u◦f ∈ W 1,p

loc (Ω1). ¤

5. Construction of examples

The following general construction of examples of mappings of finite distortion
was introduced in [8] (see also [7]). Here we give only the brief overview of the
construction, for details see [8, Section 5].

5.1. Canonical transformation. If c ∈ Rn, a, b > 0, we use the notation
Q(c, a, b) := [c1 − a, c1 + a]× · · · × [cn−1 − a, cn−1 + a]× [cn − b, cn + b]

for the interval with center at c and halfedges a in the first n− 1 coordinates and b
in the last coordinate. If Q = Q(c, a, b), the affine mapping

ϕQ(y) = (c1 + ay1, . . . , cn−1 + ayn−1, cn + byn)

is called the canonical parametrization of the interval Q. Let P , P ′ be concentric
intervals, P = Q(c, a, b), P ′ = Q(c, a′, b′), where 0 < a < a′ and 0 < b < b′. We set

ϕ
P,P ′

(t, y) = (1− t)ϕ
P
(y) + tϕ

P ′
(y), t ∈ [0, 1], y ∈ ∂Q0.

This mapping is called the canonical parametrization of the rectangular annulus
P ′ \ P ◦, where P ◦ is the interior of P.

Now, we consider two rectangular annuli, P ′ \ P ◦, and P̃ ′ \ P̃ ◦, where P =

Q(c, a, b), P ′ = Q(c, a′, b′), P̃ = Q(c̃, ã, b̃) and P̃ ′ = Q(c̃, ã′, b̃′), The mapping

h = ϕ
P̃ ,P̃ ′

◦ (ϕ
P,P ′

)−1

is called the canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦.

¡
¡

@
@

@
@

¡
¡ P ′

PA A

B

B

-h

¡
¡

@
@

@
@

¡
¡ P̃ ′

P̃

Figure 1. The canonical transformation of P ′ \ P ◦ onto P̃ ′ \ P̃ ◦ for n = 2.
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We will need an estimate of the derivate of h on P ′ \ P ◦. For t ∈ [0, 1] fixed we
denote

a′′ = (1− t)a + ta′, b′′ = (1− t)b + tb′,

ã′′ = (1− t)ã + tã′, b̃′′ = (1− t)b̃ + tb̃′.

It is possible to compute the derivative of ϕ
P,P ′

(t, y) in one of the sides {yi = ±1}.
The image of the side has the shape of a pyramidal frustum. We must distinguish
two cases, according to the position of the first variable.

Case A. We will represent the possibilities

ϕ
P,P ′

(t, 1, z2, . . . , zn), ϕ
P,P ′

(t,−1, z2, . . . , zn),

. . .

ϕ
P,P ′

(t, z1, . . . zn−2, 1, zn), ϕ
P,P ′

(t, z1, . . . zn−2,−1, zn)

by
ϕ(t, z) = ϕ

P,P ′
(t, 1, z), z = (z2, . . . , zn).

Then it can be computed (see [8, Section 5] for details) that

(5.1) Dh(ϕ(t, z)) =




ã′−ã
a′−a

, 0, 0, . . . , 0(
ã′−ã
a′−a

− ã′′
a′′

)
z2,

ã′′
a′′ , 0, . . . , 0(

ã′−ã
a′−a

− ã′′
a′′

)
z3, 0, ã′′

a′′ , . . . , 0
. . .(

b̃′−b̃
a′−a

− b̃′′
b′′

b′−b
a′−a

)
zn, 0, 0, . . . , b̃′′

b′′




.

Case B. A representative is

ϕ(t, z) =
(
(ϕ

P,P ′
)n(t, z, 1), (ϕ

P,P ′
)1(t, z, 1), . . . , (ϕ

P,P ′
)n−1(t, z, 1)

)
,

z = (z1, . . . , zn−1).

The purpose of the permutation of coordinates is that this leads to a triangular
matrix which is easier to handle. Then

(5.2) Dh(ϕ(t, z)) =




b̃′−b̃
b′−b

, 0, 0, . . . , 0(
ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
z1,

ã′′
a′′ , 0, . . . , 0(

ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
z2, 0, ã′′

a′′ , . . . , 0
. . .(

ã′−ã
b′−b

− ã′′
a′′

a′−a
b′−b

)
zn−1, 0, 0, . . . , ã′′

a′′




.

5.2. Construction of a mapping. By V we denote the set of 2n vertices of
the cube [−1, 1]n =: Q0. The sets Vk = V × . . . ×V, k ∈ N, will serve as the sets
of indices for our construction. If w ∈ Vk and v ∈ V, then the concatenation of w
and v is denoted by w∧v. The following two results are proven in [8].
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Lemma 5.1. Let n ≥ 2. Suppose that we are given two sequences of positive
real numbers {ak}k∈N0 , {bk}k∈N0 ,

a0 = b0 = 1;(5.3)
ak < ak−1, bk < bk−1, for k ∈ N.(5.4)

Then there exist unique systems {Qv}v∈Sk∈N Vk , {Q′
v}v∈Sk∈N Vk of intervals

(5.5) Qv = Q(cv, 2
−kak, 2

−kbk), Q′
v = Q(cv, 2

−kak−1, 2
−kbk−1)

such that

Q′
v, v ∈ Vk, are nonoverlaping for fixed k ∈ N,(5.6)

Qw =
⋃
v∈V

Q′
w∧v for each w ∈ Vk, k ∈ N,(5.7)

cv =
1

2
v, v ∈ V,(5.8)

cw∧v = cw +
n−1∑
i=1

2−kakviei + 2−kbkvnen,(5.9)

w ∈ Vk, k ∈ N, v = (v1, . . . , vn) ∈ V.

Figure 2. Intervals Qv and Q′v for v ∈ V1 and v ∈ V2 for n = 2.

Theorem 5.2. Let n ≥ 2. Suppose that we are given four sequences of positive
real numbers {ak}k∈N0 , {bk}k∈N0 , {ãk}k∈N0 , {b̃k}k∈N0 ,

a0 = b0 = ã0 = b̃0 = 1;(5.10)

ak < ak−1, bk < bk−1, ãk < ãk−1, b̃k < b̃k−1, for k ∈ N.(5.11)

Let the systems {Qv}v∈Sk∈N Vk , {Q′
v}v∈Sk∈N Vk of intervals be as in Lemma 5.1, and

similarly systems {Q̃v}v∈Sk∈N Vk , {Q̃′
v}v∈Sk∈N Vk of intervals be associated with the

sequences {ãk} and {b̃k}. Then there exists a unique sequence {fk} of bilipschitz
homeomorphisms of Q0 onto itself such that

(a) fk maps each Q′
v \Qv, v ∈ Vm, m = 1, . . . , k, onto Q̃′

v \ Q̃v canonically,
(b) fk maps each Qv, v ∈ Vk, onto Q̃v affinely.

Moreover,

(5.12) |fk − fk+1| . 2−k, |(fk)−1 − (fk+1)−1| . 2−k.
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The sequence fk converges uniformly to a homeomorphism f of Q0 onto Q0.

5.3. Completion of the proofs of theorems 1.1 and 1.2.

Construction for Theorem 1.1. It is a well-known fact that for every ε > 0 there
is a quasiconformal mapping f such that f /∈ W 1,n+ε

loc . Therefore we can assume that
p < n. Choose δ > 0 such that

(5.13) δ <
n

p
− 1 and δ(n− 1 + p + ε) < ε

n− 1

p
.

Set
α = 1− 1

p
+ δ, β =

n− 1

p
and γ = δ.

With the help of (5.13) it is not difficult to verify that

(n− 1)α + β + p(γ − β) = (n− 1 + p)δ > 0

(n− 1)α + β + (p + ε)(γ − β) = (n− 1 + p + ε)δ − ε
n− 1

p
< 0

(n− 1)α + β +
p(n− 1)

n− p
(α− β) =

(
n− 1 +

p(n− 1)

n− p

)
δ > 0.

(5.14)

Use Theorem 5.2 for

ak =
1

(k + 1)α
, bk =

1

(k + 1)β
, ãk =

1

(k + 1)γ
and b̃k =

1

(k + 1)γ

to obtain the sequence {fk} and a limit mapping mapping f .
For fixed t ∈ [0, 1] we denote

a′′k = (1− t)ak + tak−1, b′′k = (1− t)bk + tbk−1,

ã′′k = (1− t)ãk + tãk−1, b̃′′k = (1− t)b̃k + tb̃k−1.

Since 1
kω − 1

(k+1)ω ∼ 1
kω+1 for every ω > 0, it is easy to check that

ãk−1 − ãk

ak−1 − ak

∼ ã′′k
a′′k
∼ kα−γ,

b̃k−1 − b̃k

bk−1 − bk

∼ b̃′′k
b′′k
∼ kβ−γ,

b̃k−1 − b̃k

ak−1 − ak

∼ b̃′′k
a′′k
∼ kα−γ,

ãk−1 − ãk

bk−1 − bk

∼ ã′′k
b′′k
∼ kβ−γ,

bk−1 − bk

ak−1 − ak

∼ b′′k
a′′k
∼ kα−β.

From (5.13) we obtain that α < β and therefore it is not difficult to deduce from
(5.1) and (5.2) that

|Dfk(x)| = |Df(x)| ∼ kβ−γ and

K(x) =
|Df(x)|n

Jf (x)
∼ kn(β−γ)

k(n−1)(α−γ)+(β−γ)
= k(n−1)(β−α)

(5.15)
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for almost every x ∈ Q̃′
v \ Q̃v, v ∈ Vk. It is also not difficult to find out from the

construction that

(5.16) Ln(Q̃′
v \ Q̃v) ∼ 1

2knk(n−1)α+β+1
for every v ∈ Vk.

Let k < m. From (5.15), (5.16) and (5.14) we obtain∫

Q0

|Dfk −Dfm|p dx .
∫

{fk 6=fm}

(|Dfk|p + |Dfm|p) dx

.
∑

v∈Vk

∫

Qv

|Dfk|p dx +
m∑

j=k+1

∑

v∈Vj

∫

Q′v\Qv

|Df |p dx +
∑

v∈Vm

∫

Qv

|Dfm|p dx

.
m∑

j=k

2kn

(
jβ−γ

)p

2knj(n−1)α+β+1
. k−(n−1+p)δ → 0.

It follows that the sequence {fk} converges to f in W 1,p(Q0,R
n) and, in particular,

f ∈ W 1,p(Q0,R
n). From (5.14) and (5.15) we also have

∫

Q0

|Df |p+ε ∼
∑

k∈N

k(p+ε)(β−γ)

k1+(n−1)α+β
= ∞ and

∫

Q0

K
p

n−p ∼
∑

k∈N

(
k(n−1)(β−α)

) p
n−p

k1+(n−1)α+β
< ∞.

By considering the functions ui(x) = xi, we see that Tf (W
1,n(Q0)) 6⊂ W 1,p+ε

loc (Q0).
¤

Construction for Theorem 1.2. Since s(q − p) − p(q − n) > 0 (i.e. a > 0) we
can clearly find η > 0 small enough such that

η < qs + np− qp− 1

n− 1
(qp + nsp− np− qs) and

(n− 1)η + ε
(−ns + η

)
+ ηp < 0.

(5.17)

Set
α =

1

n− 1
(qp + nsp− np− qs) + η, β = qs + np− qp,

γ = q(s− p) + η and δ = (q − n)(s− p) + η.

It is easy to check that β, γ and δ are positive. From a ≥ 1
n−1

we obtain that also α
is positive and (5.17) implies β > α. With the help of the definition of a and (5.17)
it is not difficult to verify that

(n− 1)α + β + s(γ − β) = (n− 1)η + sη > 0

(n− 1)α + β + a(n− 1)(α− β) = (n− 1)η + a(n− 1)η > 0

nγ + q(δ − γ) = nη > 0

(n− 1)α + β + (p + ε)(δ − β) = (n− 1)η + ε
(−ns + η

)
+ ηp < 0.

(5.18)
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Use Theorem 5.2 for the sequences

ak =
1

(k + 1)α
, bk =

1

(k + 1)β
, ãk =

1

(k + 1)γ
and b̃k =

1

(k + 1)γ

to obtain the sequence {fk} and a limit mapping mapping f . Analogously to the
proof of the second part of Theorem 1.1 we obtain that f ∈ W 1,s and thanks to
β > α and (5.18) we have

∫

Q0

|Df |s ∼
∑

k∈N

ks(β−γ)

k1+(n−1)α+β
< ∞ and

∫

Q0

Ka ∼
∑

k∈N

(
kn(β−γ)−(n−1)(α−γ)−(β−γ)

)a

k1+(n−1)α+β
< ∞.

Analogously, we can use Theorem 5.2 for the sequences

ãk =
1

(k + 1)γ
, b̃k =

1

(k + 1)γ
, ˜̃ak =

1

(k + 1)δ
and ˜̃bk =

1

(k + 1)δ

to obtain a limit mapping g such that
∫

Q0

|Dg|q ∼
∑

k∈N

kq(γ−δ)

k1+nγ
< ∞.

From [8, Remark 5.6] we know that the mapping h = g ◦ f can be obtained as
a limit mapping from Theorem 5.2 applied to the sequences

ak =
1

(k + 1)α
, bk =

1

(k + 1)β
, ˜̃ak =

1

(k + 1)δ
and ˜̃bk =

1

(k + 1)δ
.

Therefore (5.18) yields
∫

Q0

|Dh|p+ε ∼
∑

k∈N

k(p+ε)(β−δ)

k1+(n−1)α+β
= ∞.

To obtain a real-valued function u as indicated in the second part of Theo-
rem 1.2, simply consider the coordinate functions of g. ¤

6. Integrability of the distortion of f2 ◦ f1

In this section we give conditions which quarantee nice integrability of the dis-
tortion of f2 ◦ f1. The following example shows that even if f1 and f2 and their
distortions are very nice it does not follow that the distortion of their composition
is nice.

Example 6.1. Let n ≥ 2 and p ≥ 1. There exist homeomorphisms f1, f2 : B(0,
1) → B(0, 1) of finite distortion such that f1 and f2 are Lipschitz, exp(Kp

1 ) ∈
L1(B(0, 1)) and K2 ∈ Lp(B(0, 1)), but K /∈ Lδ

loc(B(0, 1)) for any δ > 0, where K
denotes the distortion of the mapping f = f2 ◦ f1.
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Proof. Set

f1(x) = e
x

‖x‖ exp
(
− log1+ 1

2(n−1)p
e

‖x‖
)

for x ∈ B(0, 1) \ {0},

f2(x) = e
x

‖x‖ exp
(−‖x‖− 1

p
)
for x ∈ B(0, 1) \ {0}

and f1(0) = f2(0) = 0. From Lemma 2.1 we easily obtain that f2 is Lipschitz and
that ∫

B(0,1)

Kp
2 (x) dx ∼

∫

B(0,1)

1

‖x‖n−1
dx < ∞.

Analogously we obtain that f1 is Lipschitz and∫

B(0,1)

exp(Kp
1 (x)) dx ∼

∫

B(0,1)

exp
(
C log1/2 e

‖x‖
)

dx < ∞.

Since for every x 6= 0 we have

f(x) = e
x

‖x‖ exp
(
−e−1/p exp

(1

p
log1+ 1

2(n−1)p
e

‖x‖
))

one can use Lemma 2.1 to obtain that

K(x) ∼ exp
(n− 1

p
log1+ 1

2(n−1)p
e

‖x‖
)
log

1
2p

e

‖x‖
and it is easy to check that Kδ is not integrable for any δ > 0. ¤

Lemma 6.2. Let n ≥ 2, p > n− 1 and let Ω ⊂ Rn be a domain. Suppose that
f ∈ W 1,1

loc (Ω,Rn) is a homeomorphism of finite distortion such that |Df | ∈ Ln−1,1
loc (Ω)

and K ∈ Lp
loc(Ω). Then |Df−1|n log

p−n+1
p (e + |Df−1|) ∈ L1

loc(f(Ω)).

Proof. Fix a compact set E ⊂ Ω. The fact that, under our assumptions, we
have f−1 ∈ W 1,n

loc (f(Ω),Rn) and moreover that f is mapping of finite distortion
follows from [8, Theorem 1.2 and Theorem 4.1]. Therefore, analogously to [8, Proof
of Theorem 4.1], we obtain∫

f(E)

|Df−1(y)|n log
p−n+1

p (e + |Df−1(y)|) dy

≤
∫

E

K(x)n−1 log
p−n+1

p
(
e +

K(x)

|Df(x)|
)
dx.

(6.1)

Set S = {x ∈ E : K(x)
|Df(x)| ≤ exp(Kp(x))}. For every x ∈ E \ S we have

Kp(x) ≤ C(p) log
(
e +

1

|Df(x)|
)

and therefore we can split the integral in (6.1) into two parts and prove that it is
no greater than∫

E

K(x)n−1
(
C(p) + Kp−n+1(x)

)
dx + C(p)

∫

E

log
(
e +

1

|Df(x)|
)
dx.
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The finiteness of the first integral follows from K ∈ Lp(E). Analogously to [7,
Theorem 6.1], one can prove that log(1 + 1

|Jf |) ∈ L1
loc(Ω) for every n ≥ 2, which

implies that the second integral is also finite. ¤
It follows from the Example 6.1 that if we want to prove the integrability of

some power of the distortion of f2 ◦ f1, we must require some stronger condition
than the integrability of some power of the distortion of f2.

Theorem 6.3. Let n ≥ 2, Ω ⊂ Rn be a domain, p > n− 1 and r > 0 and set
q = pr(p−n+1)

r(p−n+1)+p(p+1)
. Suppose that f1 ∈ W 1,1

loc (Ω,Rn) and f2 ∈ W 1,n
loc (f1(Ω),Rn) are

homeomorphisms with finite distortion such that |Df1| ∈ Ln−1,1(Ω), K1 ∈ Lp(Ω)
and exp

(
2Kr

2

) ∈ L1
loc(f1(Ω)). Then f = f2 ◦ f1 is a mapping of finite distortion and

its distortion satisfies K ∈ Lq
loc(Ω).

Proof. From Theorem 1.1 we know that f ∈ W 1,1
loc (Ω,Rn). We claim that for

almost every x ∈ Ω we have

(6.2) Df(x) = Df2(f1(x))Df1(x) and Jf (x) = Jf2(f1(x))Jf1(x).

From [3] we know that we can find a Borel partition of f1(Ω), {Ak}, such that
|A0| = 0 and f2 is Lipschitz on Ak, k > 0. We know that f1 is differentiable almost
everywhere (see [14]) and that f2 restricted to Ak is differentiable almost everywhere.
Since f1 satisfies the Lusin (N−1) condition (see [10, Theorem 1.2]) it is not difficult
to deduce that (6.2) holds almost everywhere on f−1

1 (Ak) for every k > 0. The
Lusin (N−1) condition also gives us |f−1

1 (A0)| = 0 and therefore (6.2) holds almost
everywhere. Since f1 and f2 are mappings of finite distortion and f2 satisfies the
Lusin (N−1) condition, we can deduce from (6.2) that f is also a mapping of finite
distortion.

Let A ⊂⊂ Ω be a fixed Borel set such that f1 is differentiable at A (recall that
this happens almost everywhere in Ω [14]) and that |Df(x)| > 0 for every x ∈ A.
Set

(6.3) s =
p2

r(p− n + 1) + p(p + 1)

and check that clearly 0 < s < 1. The definition of distortion, (6.2) and the Hölder’s
inequality give us

∫

A

Kq(x) dx ≤
∫

A

|Df2(f1(x))|nq

Jf2(f1(x))q

Jf1(x)s

|Df1(x)|ns

|Df1(x)|n(q+s)

Jf1(x)q+s
dx

≤
(∫

A

K
q
s
2 (f1(x))

Jf1(x)

|Df1(x)|n dx
)s(∫

A

K
q+s
1−s

1 (x) dx
)1−s

.

Clearly q+s
1−s

= p, which implies that the second integral is finite and therefore it is
enough to prove the finiteness of the first integral. By (2.1), Df1(f

−1
1 (y))Df−1

1 (y) =
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I and (2.2) for α = p−n+1
p

we have
∫

A

K
q
s
2 (f1(x))

Jf1(x)

|Df1(x)|n dx ≤
∫

f1(A)

K
q
s
2 (y)|Df−1

1 (y)|n dy

≤ C

∫

f1(A)

exp
(
2K

qp
s(p−n+1)

2 (y)
)

+ C

∫

f1(A)

|Df−1
1 (y)|n log

p−n+1
p (e + |Df−1

1 (y)|) dy.

(6.4)

The boundedness of the first integral follows from (6.3) and our assumptions and
the boundedness of the second follows from Lemma 6.2. ¤

References

[1] Astala, K., T. Iwaniec, P. Koskela, and G. Martin: Mappings of BMO-bounded dis-
tortion. - Math. Ann. 317, 2000, 703–726.

[2] David, G.: Solutions de l’equation de Beltrami avec ‖µ‖∞ = 1. - Ann. Acad. Sci. Fenn. Ser.
A I Math. 13:1, 1988, 25–70.

[3] Federer, H.: Geometric measure theory. - Die Grundlehren der mathematischen Wis-
senschaften, Band 153, Springer-Verlag, New York, 1969 (second edition 1996).

[4] Gehring, F.W., and J. Väisälä: Hausdorff dimension and quasiconformal mappings. - J.
London Math. Soc. 6, 1973, 504–512.
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