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Abstract. We establish a sharp modulus of continuity for those planar quasiregular map-
pings defined in a domain with a cone condition that admit an extension to a mapping of locally
exponentially integrable distortion.

1. Introduction

In this paper, we consider planar mappings f : R2 → R2 such that f ∈ W 1,1
loc (R2;

R2) with |Df(x)|2 ≤ K(x)Jf (x) a.e., where K(x) ≥ 1, Jf (x) is locally integrable
and exp(λK) is locally integrable for some λ > 0. We call such an f a mapping
of locally exponentially integrable distortion. These mappings are known to be
continuous and some modulus of continuity results were established in [2], [7], [10],
[5] and [8]. Our results deal with the mappings that are additionally assumed to
be quasiregular in some domain Ω. Recall that a mapping f : Ω → f(Ω) ⊂ R2 is
quasiregular if f ∈ W 1,1

loc (Ω;R2), Jf (x) is locally integrable and in the distortion
inequality above the function K(x) is bounded, that is 1 ≤ K(x) ≤ K for some
K, almost everywhere in Ω. If in addition we assume f to be a homeomorphism,
we say that f is K-quasiconformal. The main result of the paper can be stated as
follows (see the next section for the definitions).

Theorem 1. Let Ω be a simply connected bounded domain, satisfying a δ-
cone condition, and suppose f : R2 → R2 is a mapping of finite distortion such
that exp(λK(x)) is locally integrable for some λ > 0. If the restriction of f to Ω is
quasiregular, then there exist positive constants Ĉ and C̃ such that

(1) |f(x)− f(y)| ≤ Ĉ

log
λπ

2(π−arcsin δ) C̃
|x−y|

,

whenever x, y ∈ Ω. On the other hand, for a given s > 0 there exists a bounded
domain Ω0, satisfying a δ0-cone condition, and a mapping f0, quasiconformal in Ω0

and having locally exponentionally integrable distortion for all µ < λ0 = 2(π−arcsin δ0)
sπ

,
such that the modulus continuity estimate (1) fails for f0 with the logarithm to the
power 1

s
+ ε for any given ε > 0.
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For the unit disk B = B(0, 1) we have the following consequence.

Corollary 1. Suppose f : B → R2 is a quasiregular mapping of the unit disk
B. If f has an extension to a mapping of finite locally exponentially integrable
distortion for some λ > 0, then there exist positive constants Ĉ and C̃ such that

(2) |f(x)− f(y)| ≤ Ĉ

logλ C̃
|x−y|

,

whenever x, y ∈ B.

This result improves an estimate in [8]. It is a counterpart for the result in
[1], stating that a conformal mapping f in the unit disk with a K–quasiconformal
extension is Hölder continuous in the unit disk with the sharp exponent 1 − k,
where k = (K− 1)/(K + 1), which is better than 1/K given by a well-known result
for quasiconformal mappings. In our case, for a general mapping of exponentially
integrable distortion, the exponent of the logarithm in the estimate (2) would be
λ/2 ([10]).

In the last section of this paper we make some comments on the case when the
domain Ω in question is a quasidisk.

The author wishes to express her thanks to her advisor Pekka Koskela for sug-
gesting this problem and for many helpful discussions.

2. Preliminaries

Let Ω ⊂ R2 be a domain, i.e. a connected and open subset of R2. We say that
a mapping f : Ω → f(Ω) ⊂ R2 has finite distortion if the following conditions are
satisfied:

1. f ∈ W 1,1
loc (Ω;R2).

2. The Jacobian determinant Jf (x) of f is locally integrable.
3. |Df(x)|2 ≤ K(x)Jf (x) a.e. x ∈ Ω

for some measurable function K(x) ≥ 1 which is finite almost everywhere. The func-
tion K(x) is referred to as a distortion (function) of f and the phrase exponentially
integrable distortion means that exp(λK(x)) ∈ L1

loc(Ω) for some λ > 0.
Above, Df(x) denotes the differential matrix of f at the point x (which for

f ∈ W 1,1
loc exists a.e.) and Jf (x) := det Df(x) is the Jacobian. The norm of Df(x)

is defined as
|Df(x)| := max{|Df(x)e| : e ∈ R2, |e| = 1}.

We say that a domain Ω satisfies a δ-cone condition, if there exists such a
constant b > 0 that for any x ∈ ∂Ω we can take a line segment ]x, y] ⊂ Ω of the
length l([x, y]) ≥ b such that for any z ∈]x, y] we have dist(z, ∂Ω) ≥ δl([x, z]).

We call a curve in the extended plane a quasicircle if it is the image of a cir-
cle under a quasiconformal mapping of the plane. If the mapping can be taken
K-quasiconformal, the curve is called a K-quasicircle. A quasidisk is a domain,
bounded by a quasicircle.
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Let us define the modulus of a path family (see [11]). If Γ is a path family in
Ω, then we set

mod(Γ, Ω) = inf
{ ∫

Ω

ρ2(x) dx : ρ : R2 → [0,∞[ is a Borel function

s.t.
∫

γ

ρ ds ≥ 1 for every γ ∈ Γ
}

.
(3)

Finally, we will need the following integral-type isoperimetric inequality.

Lemma 1. Let f : Ω → R2 be a homeomorphism of class W 1,1
loc (Ω;R2). Then

for each B(x0, R) ⊂⊂ Ω the inequality

(4) −
∫

B(x0,r)

Jf (x)dx ≤
(
−
∫

∂B(x0,r)

|Df(x)|ds

)2

holds for almost every 0 < r < R.

Proof. First, as f is homeomorphism, we have the following inequality (see [6],
Theorem 6.3.2)

(5)
∫

B(x0,r)

Jf (x)dx ≤ |f(B(x0, r))|.

Next, we use the usual isoperimetric inequality (see [3], 3.2.43 and 3.2.44) for such
r that f is absolutely continuous on ∂B(x0, r) (this is true for a.e. 0 < r < R):

|f(B(x0, r))| ≤ (H1(∂fB(x0, r)))
2

4π
=

(H1(f(∂B(x0, r))))
2

4π

≤ 1

4π

(∫

∂B(x0,r)

|Df(x)| ds

)2

.

(6)

Finally, the combination of (5) and (6) gives us the required inequality. ¤

3. Homeomorphic case

We first establish the first part of Theorem 1 and Corollary 1 for the homeomor-
phic case. In the next section, it will be shown how to handle the non-homeomorphic
case. First, we record the following auxiliary result (see [7], Lemma 4.2 and its
proof).

Lemma 2. Let f : G → R2, where G is some domain, be a mapping with finite
distortion whose distortion function satisfies

(7) I =

∫

G

exp(λK(x)) dx < ∞.
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If B = B(x0, r2) ⊂ G, then

(8) |f(x)− f(y)|2
r2/2∫

r1

λ dt

t log(I/πt2)
≤ Cλ,I

∫

B

Jf (x) dx,

whenever x, y ∈ B(x0, r1) ⊂ B(x0, r2).

Let us take a large enough ball B = B(x0, R0), containing our fixed domain Ω
as its subset and such that dist(Ω, ∂B) ≥ R for some fixed R. Denote

I =

∫

B

exp(λK(x)) dx.

In order to prove the theorem for f homeomorphic it suffices to establish the
following two lemmas.

Lemma 3. Under the hypotheses of Theorem 1 we have

(9) |f(x)− f(y)| ≤ C1(I, λ, δ,K, R, f)(
∫

B
Jf (x) dx)1/2

log
πλ

2(π−arcsin δ) C2(I,λ,δ,K,R)
|x−y|

,

for all x, y ∈ ∂Ω, provided f is a homeomorphism.

The proof of Lemma 3 actually shows that the estimate (9) holds also when Ω
is unbounded for those x, y ∈ ∂Ω ∩B for which

min{dist(x, ∂B), dist(y, ∂B)} ≥ R.

In addition, we do not have to require the distortion function to be locally ex-
ponentially integrable in the entire plane; it is enough to consider only the set
{x ∈ B : dist(x, ∂Ω) < R + ε} for some ε > 0.

Lemma 4. Let Ω be a simply connected bounded domain and suppose that
f ∈ C(Ω) is quasiconformal in Ω. If for some positive constants C1, C2 and γ the
estimate

(10) |f(x)− f(y)| ≤ C1

logγ C2

|x−y|
,

holds for all x, y ∈ ∂Ω, then there exist such constants Ĉ and C̃ that

(11) |f(x)− f(y)| ≤ Ĉ

logγ C̃
|x−y|

holds for all x, y ∈ Ω.

Proof of Lemma 3. Let us take such x, y ∈ ∂Ω that |x−y| < R2

8
(π

I
)1/2 ≤ 1

16
( I

π
)1/2

and apply Lemma 2 for x0 = x, r1 = 2|x− y| and r2 = 2(I/π)
1
4 r

1
2
1 . The choice of x

and y guarantees that 2r1 < r2 ≤ R. We have

(12) |f(x)− f(y)|2 ≤ Cλ,I

∫

B(x,2
√

2( I
π

)
1
4 |x−y| 12 )

Jf (x) dx.
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Denote Br = B(x, r). Using Lemma 1 together with the Hölder inequality and the
distortion inequality, we obtain

(13) −
∫

Br

Jf (x) dx ≤ −
∫

∂Br

K(x) ds −
∫

∂Br

Jf (x) ds.

This yields the following differential-type inequality:

(14)
d

dr

(
log

(∫

Br

Jf (x) dx
))

≥ 2

r−
∫

∂Br
K(x) ds

.

Let us choose integers iR and ir so that log R − 1 < iR ≤ log R and log r2 ≤ ir2 <
log r2 + 1. We have

(15)
R∫

r2

dr

r−
∫

∂Br
K(x) ds

≥
iR−1∑
i=ir2

ei+1∫

ei

dr

r−
∫

∂Br
K(x) ds

.

Each of the terms on the right-hand side can be estimated in the following way. Fix
i ∈ {ir2 , ir2 + 1, . . . , iR − 1}. The change of variables r = et leads to

(16)
ei+1∫

ei

dr

r−
∫

∂Br
K(x) ds

=

i+1∫

i

dt

−
∫

∂Bet
K(x) ds

.

Next, the Jensen inequality yields

(17)
i+1∫

i

dt

−
∫

∂Bet
K(x) ds

≥
[ i+1∫

i

−
∫

∂Bet

K(x) ds dt
]−1

.

Using the fact, that f is quasiconformal in Ω, we obtain
i+1∫

i

−
∫

∂Bet

K(x) ds dt =

i+1∫

i

1

2πet

(∫

∂Bet∩Ω

K(x) ds +

∫

∂Bet∩(R2\Ω)

K(x) ds
)
dt

≤ K +

i+1∫

i

1

2πet

∫

lt

K(x) ds dt

≤ K +

i+1∫

i

d(lt)

2πet
−
∫

lt

K(x) ds dt,

(18)

where lt is some arc of the circle ∂Bet , containing the arc ∂Bet∩ (R2 \Ω) and having
the length at least πet, and d(l) denotes the length of an arc l. The cone condition for
Ω makes it possible to take lt so that πet ≤ d(lt) = max{d(∂Bet ∩ (R2 \Ω)), πet} ≤
2(π − arcsin δ)et. As the function τ → exp λτ is convex, we may use the Jensen
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inequality in order to estimate the remaining term. Applying it twice and making
a change of variables, we obtain

i+1∫

i

d(lt)

2πet
−
∫

lt

K(x) ds dt ≤ π − arcsin δ

π

i+1∫

i

−
∫

lt

K(x) ds dt

≤ π − arcsin δ

πλ
log

i+1∫

i

−
∫

lt

exp(λK(x)) ds dt

=
π − arcsin δ

πλ
log

ei+1∫

ei

1

rd(llog r)

∫

llog r

exp(λK(x)) ds dr

≤ π − arcsin δ

πλ
log

1

πe2i

ei+1∫

ei

∫

∂Br

exp(λK(x)) ds dr

≤ π − arcsin δ

πλ
log

I

πe2i
.

(19)

Finally, combining (15), (16), (17), (18) and (19), we arrive at

R∫

r2

dr

r−
∫

∂Br
K(x) ds

≥
iR−1∑
i=ir2

[π − arcsin δ

πλ
log

CI,λ,δ,K

e2i

]−1

≥
iR−2∫

ir2−1

[π − arcsin δ

πλ
log

CI,λ,δ,K

e2r

]−1

dr

≥ πλ

π − arcsin δ

∫ R/e3

r2

dt

t log
CI,λ,δ,K

t2

= log

(
log

CI,λ,δ,K

r2
2

log
e6CI,λ,δ,K

R2

) πλ
2(π−arcsin δ)

.

(20)

Together with (14) this gives the estimate

(21)
∫

Br2

Jf (x) dx ≤
(

log
e6CI,λ,δ,K

R2

log
CI,λ,δ,K

r2
2

) πλ
π−arcsin δ ∫

BR

Jf (x) dx.

Combining it with (12) we obtain the desired estimate for such x, y ∈ Ω that |x−y| <
R2

8
(π

I
)1/2 ≤ 1

16
( I

π
)1/2. Finally, as Ω is bounded and f is continuous in Ω, the estimate

(9) actually holds for all x, y ∈ Ω. ¤
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Proof of Lemma 4. Given a point x ∈ Ω, let us put

Bx = B(x,
1

2
dist(x, ∂Ω))

and Gx = 5Bx ∩ ∂Ω. From the basic modulus estimates and Lemma 2 from [4] it
follows that

(22)
|f(x)− f(y)|
diam f(Bx)

≤ C
( |x− y|

diam Bx

)1/K

,

whenever y ∈ Bx (here K is the quasiconformality coefficient of f in Ω), and

(23) diam f(Bx) ³ dist(f(Bx), ∂f(Ω)) = dist(f(Bx), f(∂Ω)).

Let us denote the path family connecting Bx and Gx in Ω by Γ. As diam Bx ³
diam Gx, Ω is simply connected and 2 dist(Bx, Gx) = diam Bx, the modulus mod(Γ,
Ω) has a positive lower bound. Thus, the modulus mod(f(Γ), f(Ω)) has also a
positive lower bound. This and (23) imply

(24) dist(f(Bx), f(Gx)) ≤ C diam f(Bx)

and

(25) diam f(Bx) ≤ C dist(f(Bx), f(Gx)) ≤ C diam f(Gx),

for some constant C > 0; otherwise mod(f(Γ), f(Ω)) would be arbitrarily small.
Let us first consider such points x, y ∈ Ω that either x ∈ By or y ∈ Bx holds.

Because of the symmetry, we may assume that y ∈ Bx. Combining (22) and (25)
and using the estimate on the boundary, we obtain

|f(x)− f(y)| ≤ Ĉ1

( |x− y|
diam Bx

)1/K

diam f(Gx)

≤ Ĉ2

( |x− y|
diam Bx

)1/K

log−γ C3

diam Bx

≤ Ĉ2 log−γ C3

|x− y| .
(26)

The last step follows from the monotonicity of the function t log−γK C3

|x−y|t for t ∈
[ |x−y|
diam Bx

, 1], provided the constant C2 in the a priori estimate (10) is big enough (we
may always assume it to be as big as we want by changing C1 in a suitable way).

Let us then consider such points x, y ∈ Ω, that

(27) |x− y| ≥ max
{1

2
dist(x, ∂Ω),

1

2
dist(y, ∂Ω)

}
.

Fix some points x′ ∈ Gx and y′ ∈ Gy. Notice that

(28) |x′ − y′| ≤ |x− x′|+ |x− y|+ |y − y′| ≤ 11|x− y|.
Next we use the estimate on the boundary for the points x′, y′ ∈ ∂Ω, obtaining

(29) |f(x′)− f(y′)| ≤ C1 log−γ C2

|x′ − y′| ≤ C1 log−γ C3

|x− y| ,
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again by assuming C2 to be sufficiently large. Next, using (24) and (25), we obtain

|f(x)− f(x′)| ≤ dist(f(x), f(Gx)) + diam f(Gx)

≤ dist(f(Bx), f(Gx)) + diam f(Bx) + diam f(Gx)

≤ C diam f(Gx),

(30)

for some constant C > 0. Thus, using the estimate on the boundary and the fact,
that diam Gx ≤ 5 diam Bx ≤ 10|x− y|, we conclude that

(31) |f(x)− f(x′)| ≤ Ĉ2 log−γ C̃3

|x− y| .

Finally, this together with the same kind of estimate for |f(y) − f(y′)| and (29)
gives us the desired estimate for |f(x) − f(y)| with the help of triangle inequality.
The statement of the lemma for the remaining cases, for example when x ∈ ∂Ω and
y ∈ Ω, can be obtained in the same way. ¤

Finally, let us show that Corollary 1 holds for homeomorphic f . Given the unit
disk B = B(0, 1), let us map it conformally onto the upper half-plane H with the
help of a Möbius transformation ψ having the point (0, 1) as its pole. The mapping
f ◦ ψ−1 is quasiconformal in H and its distortion is locally exponentially integrable
in some half-plane P = {(x1, x2) ∈ R2 : x2 > −h}, where h > 0. Indeed, take
h < −y2, where (y1, y2) ∈ R2 \H is the pole of the Möbius transformation ψ−1. For
each x ∈ P we have

|D(f ◦ ψ−1)(x)|2 = |Df(ψ−1(x))Dψ−1(x)|2 ≤ |Df(ψ−1(x))|2|Dψ−1(x)|2
≤ K(ψ−1(x))Jf (ψ

−1(x))Jψ−1(x) = K(ψ−1)Jf◦ψ−1(x).
(32)

So, the composition f ◦ ψ−1 has the finite distortion function

Kf◦ψ−1(x) ≤ K(ψ−1(x))

for x ∈ P . Let us show that it is locally exponentially integrable with the same λ.
Choose a compact set E ⊂ P . Using a change of variables, we obtain

∫

E

exp[λK(ψ−1(x))] dx =

∫

E

exp[λK(ψ−1(x))]Jψ−1(x)J−1
ψ−1(x) dx

=

∫

ψ−1(E)

exp(λK(y))J−1
ψ−1(ψ(y)) dy

=

∫

ψ−1(E)

exp(λK(y))Jψ(y) dy

≤ sup
ψ−1(E)

Jψ

∫

ψ−1(E)

exp(λK(y)) dy < ∞.

(33)

As H satisfies the cone condition for δ = 1, we may apply the local version of
Lemma 3 for the mapping f ◦ψ−1. In order to do it, we take a ball B0 = (x0, R0) ⊂
R2 so big that for all x ∈ ∂B ∩ {(x1, x2) ∈ R2 : x2 < 2/3} we had ψ(x) ∈ B0 and



Modulus of continuity for quasiregular mappings with finite distortion extension 381

dist(x, ∂B0) > R for a fixed R < h. So, for x, y ∈ ∂B ∩ {(x1, x2) ∈ R2 : x2 < 2/3}
we obtain

|f(x)− f(y)| = |(f ◦ ψ−1)(ψ(x))− (f ◦ ψ−1)(ψ(y))|

≤ Ĉ

logλ C̃
|ψ(x)−ψ(y)|

≤ Ĉ

logλ C′
|x−y|

.
(34)

Here we used the fact, that |ψ(x) − ψ(y)| ≤ M |x − y| for some constant M > 0,
whenever x, y ∈ R2 \B((0, 1), 1

3
).

Repeating the reasoning for the upper part of the ball B (and taking the point
(0,−1) as a pole), we obtain an estimate of the same kind for x, y ∈ ∂B∩{(x1, x2) ∈
R2 : x2 > −2/3} and thus for all x and y on the boundary ∂B. Finally, the claim
follows by invoking Lemma 4.

4. Proof of Theorem 1

We will pass from the homeomorphic case to the non-homeomorphic, using the
so-called Stoilow factorization (see, for example, [6], Chapter 11). Let us first note
that the given mapping f defined in the plane and having finite locally exponentially
integrable distortion belongs to the Orlicz–Sobolev class W 1,Q

loc (C), where Q(t) =
t2

log(e+t)
(see, for example, [6], §11.5). The mapping f satisfies almost everywhere the

equation

(35) ∂f(z) = µf (z)∂f(z),

where ∂ = 1
2
(∂x + i∂y), ∂ = 1

2
(∂x − i∂y) and |µf (z)| ≤ K(z)−1

K(z)+1
. Equation (35)

is called the Beltrami equation. Let us take a ball B, containing the domain Ω,
where the given mapping f is quasiconformal. Consider the Beltrami equation with
the Beltrami coefficient µ = µfχB. By Theorem 11.8.3 in [6], this equation has a
homeomorphic solution h in the class z + W 1,Q

loc (C) (i.e. |hz| + |hz − 1| ∈ LQ(C)).
Next, the mapping f

∣∣
B

is a solution of this equation in B, so by Theorem 11.5.1
in [6] it can be represented as f

∣∣
B

= ϕ ◦ h, where ϕ : h(B) → C is holomorphic. As
a solution of the same Beltrami equation, h satisfies

|Df(z)|2 ≤ K(z)Jh(z)

almost everywhere in B. Using the fact that ϕ is Lipschitz in h(Ω) ⊂⊂ h(B) and the
obtained continuity estimate for the mapping h, we easily get the required inequality
for f . The corollary is dealt in the same way.

We will base the construction of our example, showing the sharpness of the
obtained result, on a mapping constructed in [8] (f2 from the proof of Theorem 1).
Based on what is done in [8], we can state the following lemma.

Lemma 5. For a given s > 0 there exists a homeomorphic mapping f of finite
distortion which is quasiconformal in the right half-plane H = {(x1, x2) ∈ R2 : x1 >
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0} such that its distortion function K in the left half-plane satisfies

(36) K(x) ≤ 2s log(2/|x|) + C,

where C > 0 is some constant, for all x ∈ B(0, r) ∩ (R2 \H) for some r > 0 and is
bounded in R2 \B(0, r), and for all positive C1, C2 and ε there exists such x0 ∈ ∂H
that

(37) |f(x)− f(0)| = |f(x)| > C1 log−
1
s
−ε C2

|x|
holds for all x ∈ ∂H, such that |x| < |x0|.

As we can notice

(38) exp(λK(x)) ≤ C

|x|2sλ
,

that is, the distortion of f is locally exponentially integrable for all λ < 1/s.
Let us then consider the domain Ω = {(R cos θ,R sin θ) ∈ R2 : R ∈ R, −α <

θ < 0}, where 0 < α < π is some fixed angle. It satisfies the cone condition for
δ = sin α

2
. This domain can always be cut in such a way that the remaining domain

Ω0 ⊂ Ω is bounded, satisfies the cone condition for the same δ and its boundary near
the origin coincides with the boundary of the domain Ω. For example, if 0 < α < π

2
,

then Ω0 can be taken in the form Ω0 = Ω ∩B(0, R0) for some R0 > 0.
Denote β = π

2π−α
and take the mapping g : R2 \ Ω → R2 defined by g(R cos θ,

R sin θ) = (Rβ sin βθ,−Rβ cos βθ). This mapping maps the set R2 \ Ω = {(R cos θ,
R sin θ) ∈ R2 : R ∈ R, 0 < θ < 2π − α} conformally onto the right half-plane
H = {(x1, x2) ∈ R2 : x1 > 0} and is extendable to a quasiconformal mapping of the
whole plane.

Next, consider the superposition f ◦ g, where f is the mapping from Lemma 5.
It is quasiconformal in Ω and, hence, in Ω0; indeed, in the same way as before for
x ∈ Ω we calculate

(39) |D(f ◦ g)(x)|2 = |Df(g(x))Dg(x)|2 ≤ KfKgJf◦g(x),

where Kf and Kg denote the quasiconformality coefficients of f and g respectively.
Similarly, we can estimate the distortion outside Ω:

(40) |D(f ◦ g)(x)|2 ≤ K(g(x))Jf◦g(x).

Thus, for the distortion function of f ◦ g, denoted by Kf◦g, we have the estimate

(41) Kf◦g(x) ≤ K(g(x)) ≤ 2s log
2

|g(x)| + C = 2s log
2

|x|β + C

and

(42) exp(µKf◦g(x)) ≤ C

|x|2sµβ
,
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for x ∈ R2 \ Ω0 close to the origin, so it is exponentially integrable for all µ <

1/sβ = 2(π−arcsin δ)
sπ

= 2π−α
sπ

. Thus, Lemma 3 gives us the estimate (10) for the
boundary points with γ = 1/s− ε for any given positive ε.

Finally, using Lemma 5, we calculate

|(f ◦ g)(x)− (f ◦ g)(0)| = |f(g(x))| > C1 log−
1
s
−ε C2

|g(x)|

= C1β
− 1

s
−ε log−

1
s
−ε C

1
β

2

|x|

(43)

for x, close enough to the origin. This completes the proof of the theorem.

5. Result for quasidisks

Recall that each quasidisk can be mapped onto the exterior of the unit disk
under a conformal mapping, which is extendable to a quasiconformal mapping of
the entire plane (see, for example, [9], Chapter I, §6). Thus, let us state the following
theorem.

Theorem 2. Let Ω be a bounded quasidisk such that some conformal mapping
ϕ : R2 \ Ω → R2, mapping the exterior of Ω onto the exterior of the closed unit
disk B, has the property Jϕ ∈ Lp(B̂ \ Ω), where B̂ is some ball, containing Ω.
Let f : R2 → R2 be a mapping of finite distortion such that exp(λK(x)) is locally
integrable for some λ > 0. If the restriction of f to the quasidisk Ω is quasiregular,
then there exist positive constants C1 and C2 such that

(44) |f(x)− f(y)| ≤ C1

log
p−1

p
λ C2

|x−y|
,

whenever x, y ∈ Ω.

Proof. As it was shown before, it is enough to consider the homeomorphic case.
Denote by ϕ̃ a quasiconformal extension of ϕ to the entire plane. Let us first note
that the superposition f ◦ ϕ̃−1 satisfies the conditions of the Corollary 1. Indeed,
for x ∈ B we have

(45) |D(f ◦ ϕ̃−1)(x)|2 = |Df(ϕ̃−1(x))Dϕ̃−1(x)|2 ≤ KfKϕ̃−1Jf◦ϕ̃−1(x),

that is, the mapping f ◦ϕ̃−1 is quasiconformal in B. Let us now consider the exterior
of B. For x ∈ R2 \B we have that

(46) |D(f ◦ ϕ̃−1)(x)|2 ≤ K(ϕ−1(x))Jf◦ϕ−1(x).

So, the composition f ◦ ϕ̃−1 has the finite distortion function

Kf◦ϕ̃−1(x) ≤ K(ϕ−1(x))
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for x ∈ R2 \ B. Let us show that it is exponentially integrable in ϕ(B̂) with some
λ1. Indeed, using a change of variables and the Hölder inequality, we obtain

∫

ϕ(B̂)

exp(λ1Kf◦ϕ̃−1(x)) dx

≤
∫

B

exp(λ1KfKϕ̃−1) dx +

∫

ϕ(B̂)\B
exp[λ1K(ϕ−1(x))] dx

=

∫

B̂\Ω
exp[λ1K(y)]Jϕ(y) dy + C

≤
(∫

B̂\Ω
exp

[
λ1

p

p− 1
K(y)

]
dy

)(p−1)/p(∫

B̂\Ω
Jp

ϕ(y) dy
)1/p

+ C < ∞,

(47)

when λ1 = p−1
p

λ. After applying Corollary 1 we arrive at

|f(x)− f(y)| = |(f ◦ ϕ̃−1)(ϕ̃(x))− (f ◦ ϕ̃−1)(ϕ̃(y))|

≤ Ĉ

log
p−1

p
λ C̃
|ϕ̃(x)−ϕ̃(y)|

≤ C1

log
p−1

p
λ C2

|x−y|
,

(48)

whenever x, y ∈ Ω (here we used the local Hölder continuity of the quasiconformal
mapping ϕ̃ and the boundedness of Ω). ¤

Let us return to the domain Ω from Section 4. This domain is a quasidisk. Let
us map it conformally onto the upper half-plane by means of the mapping h2 having
the form h2(z) = zβ in terms of the complex plane. Let us now map the upper half-
plane onto the exterior of the unit disk using the Möbius transformation h1(z) = z+i

z−i

in terms of the complex plane. The pole of this map is the point a = (0, 1). Its
preimage in Ω is b = h−1

2 (a) = (cos(π − α
2
), sin(π − α

2
)) = (cos π

2β
, sin π

2β
). Let us

take the Möbius transformation h3 of the complex plane, mapping infinity to this
point, for example, h3(z) =

(cos π
2β

+i sin π
2β

)z

z+1
. The superposition h = h1 ◦ h2 ◦ h3 has

the form h(z) = zβ+(1+z)β

zβ−(1+z)β . This mapping preserves infinity and maps conformally
the exterior of the bounded domain h−1

3 (Ω) onto the the exterior of the unit disk
B. The Jacobian determinant of g is p-integrable when p < 2π−α

π−α
. Thus, Theorem 2

gives for the mapping f ◦ g near the origin the continuity estimate (10) with the
exponent 1/s− ε for any given positive ε, which is sharp by Theorem 1.

Remark. The conclusion of Theorem 2 is interesting only when p−1
p

> 1
2
, i.e.,

when p > 2. It appears to be unknown if this is always the case; by Brennan’s
conjecture any p < 2 would do even when Ω is not a quasidisk. One could also
modify the proof of Theorem 1 to cover the case of a “twisted” cone condition,
satisfied by quasidisks. This would give an exponent strictly better than λ

2
but the

dependence from K would be complicated.
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