Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 33, 2008, 475-490

DUALITY BASED A POSTERIORI ERROR ESTIMATES FOR HIGHER ORDER VARIATIONAL INEQUALITIES WITH POWER GROWTH FUNCTIONALS

Michael Bildhauer, Martin Fuchs and Sergey Repin

Universität des Saarlandes, Fachbereich 6.1 Mathematik
Postfach 15 11 50, D-66041 Saarbrücken, Germany; bibi 'at' math.uni-sb.de

Universität des Saarlandes, Fachbereich 6.1 Mathematik
Postfach 15 11 50, D-66041 Saarbrücken, Germany; fuchs 'at' math.uni-sb.de

V.A. Steklov Mathematical Institute, St. Petersburg Branch
Fontanka 27, 191011 St. Petersburg, Russia; repin 'at' pdmi.ras.ru

Abstract. We consider variational inequalities of higher order with p-growth potentials over a domain in the plane by the way including the obstacle problem for a plate with power hardening law. Using duality methods we prove a posteriori error estimates of functional type for the difference of the exact solution and any admissible comparision function.

2000 Mathematics Subject Classification: Primary 65N15, 65K10, 74K20, 49J40, 49M29.

Key words: A posteriori error estimates, higher order variational inequalities, duality methods, power growth, elastic plates with obstacles.

Reference to this article: M. Bildhauer, M. Fuchs and S. Repin: Duality based a posteriori error estimates for higher order variational inequalities with power growth functionals. Ann. Acad. Sci. Fenn. Math. 33 (2008), 475-490.

Full document as PDF file

Copyright © 2008 by Academia Scientiarum Fennica