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Abstract. Let ϕ : D → D be analytic, m ∈ N and g0 ∈ H 2. We define the gn ∈ H 2 by

(∗) gn+1(z) =
(
gn(z)ϕ(z)z−m

)+ for n ∈ N0

where (. . .)+ denotes the analytic part of the Laurent series. We derive explicit formulas for the
coefficients bn,k of the gn.

The recursion (∗) comes from the study of the random variables

Sn+1 = S0 + X1 + . . . + Xn −mn,

where the Xν are i.i.d. with generating function ϕ. Ruin occurs when Sn becomes negative. We
have bn,k = P(Sn = k, not yet ruined).

1. Introduction

1.1. In the language of classical probability theory, we consider a gambler that,
at every turn, pays a fee m and wins a random amount X. In business language,
we consider a firm that each month has the fixed cost (such as rents and interest
payments) of m and a variable net income of X ≥ 0. The gambler or firm is ruined
when the capital becomes negative. We give a precise formulation in Section 2 where
we also address possible interpretations in insurance.

We restrict ourselves to integer values and to discrete time. The capital Sn at
time n is a random variable with values in Z and ruin occurs at the time n when Sn

becomes negative for the first time. The main purpose of the paper is to calculate
the probability that Sn has a given value k provided that ruin has not yet occurred,
that is, to calculate

bn,k = P(Sn = k, Sν ≥ 0 for ν < n) for n, k ∈ N0

using function-theoretic methods.
Let m ∈ N and let X be a random variable with values in N0. Then the

generating function of X is a power series

ϕ(z) =
∞∑

k=0

akz
k
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analytic in the unit disk D, where ak = P(X = k) ≥ 0 and |ϕ(z)| ≤ ϕ(1) = 1. In
Section 2 we formulate the ruin problem as a function-theoretic problem.

Then we solve this function-theoretic problem assuming only that ϕ(D) ⊂ D
but not that the coefficients ak are non-negative. The solution in Section 3 is in
the form of a double generating function and is still rather implicit. In Section 4
we give explicit algorithms to compute the coefficients bn,k of this double generating
function in terms of the ak, using only finitely many additions and multiplications.

In Section 5, we return to the original ruin problem and compute the above
probabilities bn,k and the probability that ruin occurs at time n.

In Section 6, we study two classical quantities, in particular the probability
that ruin never occurs. Compare e.g. Chapters III and IV of [Asm00] where the
compound Poisson model in continuous time is used.

It is a substantial restriction of generality to consider only integer-valued random
variables. But this allows the use of function-theoretic methods and furthermore
reduces very much the computation time and storage requirements needed to obtain
explicit numerical results.

It turns out that the computational effort increases considerably with m and
that the case m = 1 is much simpler than m > 1. In applications, the value of m
depends on the approximation of the distribution of income as integer multiples of
the whole or of one half or of one third etc. of the fixed cost. After a suitable scaling
this leads to the cases m = 1 or m = 2 or m = 3 etc.

Our risk processes are generalized random walks. In the language of the divi-
dend model explained in Section 2.1, no special assumptions about the distribution
of claim numbers and claim amounts are made. Basically the explicit formulas are,
of course, convolutions, but due to the repeated application of the Laurent separa-
tion operator these convolutions are incomplete. This operation makes unnecessary
the computation of quantities that are unessential for the barrier problem under
consideration.

No knowledge of risk theory is required; see the book of Asmussen [Asm00] for
a modern exposition. Only the basic concepts of probability theory are needed.

In a later paper we shall apply the present results to the study of down& out
barrier options in financial mathematics. See e.g. [Sch05] for an application of
function-theoretic methods to barrier option pricing.

1.2. For a Laurent series h(z) =
∑

k∈Z ckz
k convergent in r < |z| < 1, we define

the Laurent separation operators by

(1.1) h(z)+ =
∞∑

k=0

ckz
k, h(z)− =

∞∑

k=1

c−kz
−k.

If h contains further variables, we agree to use z as the separation variable. We
define a norm ‖·‖ by

(1.2) ‖h‖2 =
∑

k∈Z

|ck|2.
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It follows from (1.1) that

(1.3) ‖h‖2 = ‖h+‖2 + ‖h−‖2.

Since ‖h‖2 = limρ→1−0
1
2π

∫ 2π

0
|h(ρeiθ)|2 dθ, it follows for ψ analytic in r < |z| < 1

that

(1.4) ‖hψ‖2 = lim
ρ→1−0

1

2π

∫ 2π

0

|h(ρeiθ)|2|ψ(ρeiθ)|2 dθ ≤ ‖h‖2 · sup
r<|z|<1

|ψ(z)|2.

2. The probabilistic ruin problem

2.1. We consider a probability space that is so large that all the following
(discrete) random variables are defined. So we take the same elementary point of
view as in the first volume of Feller [Fel68].

Let X be a random variable with values in N0 and let

(2.1) ϕ(z) =
∞∑

k=0

P(X = k)zk =
∞∑

k=0

akz
k

be its generating function. Thus aj ≥ 0 for all j and ϕ(1) =
∑∞

k=0 ak = 1. We
assume that a0 > 0. The expectation of X is E(X) = ϕ′(1) ≤ ∞. Furthermore let
m ∈ N be given.

Let S0 be another random variable with values in N0; we will often assume that
S0 is constant. We inductively define

(2.2) Sn = Sn−1 + Xn −m for n ∈ N

where the Xν are independent random variables distributed like X. Hence we have

(2.3) Sn = S0 + X1 + . . . + Xn −mn,

so that the Sn are random variables with values in Z which also may assume negative
values because a0 > 0.

This ruin problem has connections with issues arising in insurance business. In
some branches of insurance, such as life annuity insurance, the company is steadily
paying out sums (life annuities) to the policyholders, while certain discrete sums
(annuity reserves) become available to the company as the effect of random events
(death of policyholders), see [Cra55, p. 6]. Ruin occurs when the initial fund is used
up for the payment of annuities and not enough reserves have been released.

In this case, ruin occurred when the steady cash flow outweighed the random
flow. However, more often than not, the situation will be reversed. So our model
cannot be applied to non-life insurance or term life insurance, where the company
receives risk premiums from the policyholders at a uniform rate and has to settle
random claims in return. Here ruin occurs when the random flow outweighs the
steady flow, so it is not only the sign of the cash flows which makes this situation
different from the one considered by us.

On the other hand, if ruin can be disregarded (for example because its proba-
bility is extremely small, or because the portfolio under consideration is only a part
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of the company’s whole business), then our model can be applied to the occurrence
of a surplus. A common task in life insurance is the assessment of dividend policies
(see [Büh70, Sec. 6.4]). Let S̃n be the capital of a company with a monthly pre-
mium income m and random losses Xn that intends to pay dividends to the policy
holder as soon as the surplus of the portfolio under consideration exceeds the level
l; for the sake of simplicity we assume that S̃0 = 0. Dividends are not paid while
S̃n = mn−X1 − . . .−Xn ≤ l or

(2.4) Sn = l + X1 + . . . + Xn −mn ≥ 0 .

This relation is analogous to (2.3), but the interpretation is different; ruin in the
original setting corresponds to S̃n crossing the barrier l from below in the new
setting. In addition, this time the barrier is not absorbing; instead of stopping
when S̃n exceeds l, we now assume that S̃n is distributed and the process continues
immediately by starting again with the initial capital 0. See Section 5.4 for further
details.

Situations of this type were considered by Gerber et al. ([Ger90], [PL94], [WP02],
[Fro05]). Of course, m > E(X) in this case, because the premium must contain the
administration cost and a safety loading. If the probability of claims is small, the
insurance premium will be small compared to the amount of the possible individual
claims, and this leads to a small m.

A broad account of various types of ruin problems is found in [Cra55], where
also function-theoretic methods are used extensively. Predominantly risk theory
[Asm00] studies a quantity somewhat different from (2.3), namely (in our notation)

Sn = S0 + mn− (X1 + . . . + XNn) ,

where m is the constant premium received by the insurance company, the Xk are
the random sizes of the claims and Nn the number of claims to be paid up to time
n, often assumed to be Poisson distributed.

2.2. We define new random variables En for n ∈ N0 by

(2.5) En =

{
1 if Sν ≥ 0 for all ν ≤ n,
0 if Sν < 0 for some ν ≤ n.

Since S0 ≥ 0 we have E0 = 1, and En = 1 continues to hold until, for some random
time R, we have En = 0 for n ≥ R. We set R = ∞ if En = 1 for all n. Thus we
define

(2.6) R =

{
n if Sν ≥ 0 for 0 ≤ ν < n but Sn < 0,
∞ if Sν ≥ 0 for all ν.

Hence R is the time when ruin occurs, and En drops to 0 on the event of ruin.
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The probability of the event that Sn = k ≥ 0 and Sν ≥ 0 for ν < n has the
generating function

(2.7) gn(z) =
∞∑

k=0

P(Sn = k, En = 1)zk =
∞∑

k=0

P(Sn = k,R > n)zk (n ∈ N0).

In particular, the initial random variable S0 has the generating function

(2.8) g0(z) =
∞∑

k=0

P(S0 = k)zk.

Proposition 2.1. Using the Laurent separation operator (1.1) we have

(2.9) gn+1(z) =
(
gn(z)ϕ(z)z−m

)+ for n ∈ N0.

Proof. We see from (2.1), (2.5) and (2.7) that

gn(z)ϕ(z)z−m =
∞∑

j=0

P
(
Sn = j, Sν ≥ 0 (ν ≤ n)

)
zj

∞∑

k=0

P(Xn+1 = k)zk−m,

where Xn+1 is independent of the Xν for ν ≤ n. With l = j + k−m this expression
becomes equal to

∞∑

l=−m

(l+m∑
j=0

P
(
Sn = j, Sν ≥ 0 (ν ≤ n)

)
P(Xn+1 = l + m− j)

)
zl

=
∞∑

l=−m

(l+m∑
j=0

P
(
Sn+1 = l, Sn = j, Sν ≥ 0 (ν ≤ n)

))
zl

=
∞∑

l=−m

P
(
Sn+1 = l, Sν ≥ 0 (ν ≤ n)

)
zl

because of (2.2). The coefficient of zl with l ≥ 0 can be written as P
(
Sn+1 =

l, Sν ≥ 0 (ν ≤ n+1)
)
. Hence (2.9) follows from the definition (1.1) of the Laurent

separation. ¤

3. The function-theoretic problem

3.1. Throughout this section we consider an analytic function

(3.1) ϕ(z) =
∞∑

k=0

akz
k (z ∈ D)

with complex coefficients that satisfies

(3.2) ϕ(D) ⊂ D, ϕ(0) = a0 6= 0.

Let m ∈ N and let g0 be analytic in D with ‖g0‖ < ∞; see (1.2). Thus g0

belongs to the Hardy space H 2. In accordance with Proposition 2.1 we define the
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functions gn recursively by

(3.3) gn+1(z) =
(
gn(z) ϕ(z) z−m

)+ for n ∈ N0;

the Laurent separation operators were introduced in (1.1). The generating function
of this sequence is, by definition,

(3.4) g(z, s) =
∞∑

n=0

gn(z)sn.

Theorem 3.1. The functions gn are analytic in D and satisfy ‖gn‖ ≤ ‖g0‖ for
all n. The generating function g(z, s) is analytic in (z, s) ∈ D×D and satisfies

(3.5) g(z, s) =
zmg0(z)− h(z, s)

zm − ϕ(z)s
,

where h(z, s) is a polynomial of degree < m in z.

Proof. Since ϕ and g0 are analytic in D it follows from (3.3) and (1.1) that the
functions gn are analytic in D. Furthermore we see from (1.3) that, for n ∈ N0,

‖gn+1(z)‖ ≤ ‖gn(z) ϕ(z) z−m‖ = ‖gn(z) ϕ(z)‖ ≤ ‖gn(z)‖;
the last inequality follows from (1.4) because ϕ(D) ⊂ D. Hence we conclude that
‖gn‖ ≤ ‖g0‖ < ∞ so that g(z, s) is analytic in (z, s) ∈ D×D in view of (3.4).

We obtain from (3.4), (3.3) and (1.1) that

g(z, s) = g0(z) +
∞∑

n=0

gn+1(z)sn+1

= g0(z) +
∞∑

n=0

(
gn(z) ϕ(z) z−m − (

gn(z) ϕ(z) z−m
)−)

sn+1

= g0(z) + s ϕ(z) z−m g(z, s)− z−m h(z, s),

where we have put

(3.6) h(z, s) = zm

∞∑
n=0

(
gn(z) ϕ(z) z−m

)−
sn+1 .

Now (3.5) follows by rearranging. Since gn(z) ϕ(z) z−m contains only powers zk with
−m ≤ k < ∞, it follows from (1.1) and (3.6) that h(z, s) is a polynomial of degree
< m in z. ¤

3.2. Next we determine the polynomial h(z, s) of Theorem 3.1. We use the
fact that g(z, s) is analytic in z ∈ D so that, in the quotient (3.5), the zeros of the
denominator that lie in D must cancel with the zeros of the numerator.

The special case m = 1 leads to the fixed point function f of ϕ, the unique
inverse function z = f(s) of s = z/ϕ(z) for s ∈ D. This function was introduced by
Mejía and the second author [MP05], and Solynin [Sol07] has shown that f maps
D conformally onto a hyperbolically convex subdomain of D.
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Corollary 3.2. Let m = 1. If f denotes the fixed point function of ϕ then

(3.7) g(z, s) =
zg0(z)− f(s) g0(f(s))

z − ϕ(z)s
.

Proof. It follows from Theorem 3.1 for m = 1 that h(z, s) is a polynomial of
degree < 1 so that h(z, s) ≡ h(s) is independent of z. If we put z = f(s) in (3.5)
then the denominator ϕ(z)

(
z/ϕ(z) − s

)
is zero and therefore also the numerator.

Hence we have

h(z, s) = h(s) = zg0(z) = f(s) g0(f(s)). ¤

Now we turn to the general case m ≥ 1 which is more complicated than the
special case m = 1 because the inverse function of s = zm/ϕ(z) is in general
multi-valued. A similar phenomenon occurs in the context of composition operators
[CGG].

Let s ∈ D and |s|1/m < r < 1. Since |ϕ(z)| < 1 we have

|z|m = rm > |s| > |ϕ(z)s| for |z| = r

so that zm − ϕ(z)s has precisely m zeros in {|z| < r} by Rouché’s theorem.
We conclude that zm − ϕ(z)s has precisely m zeros zµ(s) in D for each s ∈ D.

We consider the polynomial

(3.8) p(z, s) =
m∏

µ=1

(
z − zµ(s)

)

and we see that, for every s ∈ D,

(3.9)
zm − ϕ(z)s

p(z, s)
is analytic and nonzero in z ∈ D.

We shall determine p(z, s) in Section 4. All the following considerations are based
on this polynomial.

Theorem 3.3. For m ≥ 1 we have, in the notations of (3.4) and (3.5),

g(z, s) =
p(z, s)

zm − ϕ(z)s

(
zmg0(z)

p(z, s)

)+

,(3.10)

h(z, s) = p(z, s)

(
zmg0(z)

p(z, s)

)−
.(3.11)

Proof. Let s ∈ D be fixed. We obtain from (3.5) that

(3.12)
zmg0(z)

p(z, s)
=

zm − ϕ(z)s

p(z, s)
g(z, s) +

h(z, s)

p(z, s)
.

The first term on the right-hand side is analytic in D by (3.9) and Theorem 3.1.
Since h is a polynomial of degree < m and p is a polynomial of exact degree m,
the Laurent expansion in {|z| ≥ 1} of the last term of (3.12) contains only negative
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powers of z. Hence (3.12) is a Laurent separation as in (1.1), and this implies (3.10)
and (3.11). ¤

4. The determination of the coefficients

4.1. We again consider the function ϕ given by (3.1) and (3.2). Its power
coefficients an,k are defined by

(4.1) ϕ(z)n =
∞∑

k=0

an,kz
k for n ∈ Z;

we set an,k = 0 for k < 0. Then a1,k = ak and

(4.2) an,0 = an
0 , a0,k = 0 (k > 0).

From (4.1) we obtain the recursion formula

(4.3) an,k =
k∑

j=0

ak−j an−1,j for n ∈ N, k ∈ N0.

If the an,k (k ∈ N0) are needed for only a single n, then it is quicker to use recursions
based on the binary expansion of n.

Proposition 4.1. The polynomial p defined by (3.8) satisfies

(4.4) log
p(z, s)

zm
= −

∞∑

k=1

( ∑

n≥k/m

1

n
an,mn−ks

n

)
z−k

for |s| < 1 and |s|1/m < |z| < ∞, where the summation indices are in N.

Proof. Let s ∈ D and r = r(s) = maxµ|zµ(s)| so that r < 1. We write

(4.5) log
(
1− ϕ(z)s

zm

)
= log

zm − ϕ(z)s

p(z, s)
+ log

p(z, s)

zm
;

the additive constant 2πik is determined such that equality holds for z = (1 + r)/2
and thus for r < |z| < 1. By (3.9) the first term on the right-hand side is analytic
in z ∈ D and, by (3.8), the second term vanishes at ∞ and is analytic in {|z| > r}.
Hence (4.5) is a Laurent separation; see (1.1).

Now let |s|1/m < |z| < 1. Then |z−mϕ(z)s| < 1 and thus, by (4.1),

log
(
1− ϕ(z)s

zm

)
= −

∞∑
n=1

1

n

(
z−mϕ(z)

)n
sn = −

∞∑
n=1

∞∑
j=0

an,jz
j−mnsn.

Since (4.5) is a Laurent separation, we obtain (4.4) by collecting the terms with z−k

for k = mn− j ≥ 1. ¤
Motivated by (4.4) we set

(4.6) fk(s) =
∑

n≥k/m

1

n
an,mn−k sn for k ∈ N
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and define pk(s) (0 ≤ k ≤ m) and qk(s) (k ∈ N0) by

(4.7) p(z, s) =
m∑

k=0

pk(s)z
m−k,

zm

p(z, s)
=

∞∑

k=0

qk(s)z
−k;

see (3.8). It follows from (4.4), (4.6) and the first formula (4.7) that

log

(
m∑

k=0

pk(s)z
−k

)
= log

p(z, s)

zm
= −

∞∑

k=0

fk(s)z
−k,

and differentiation with respect to z leads to

m∑

k=1

kpk(s)z
−k = −

∞∑

k=1

kfk(s)z
−k

m∑

k=0

pk(s)z
−k.

This yields the recursion formula

(4.8) pk(s) = −1

k

k∑
j=1

j fj(s)pk−j(s) for k = 1, . . . , m.

In a similar way the second formula (4.7) leads to the recursion

(4.9) qk(s) =
1

k

k∑
j=1

j fj(s)qk−j(s) for k ∈ N.

We have p0 = q0 = 1 by (4.7) and (3.8), and (4.8) and (4.9) show for instance that

(4.10) p1 = −f1, q1 = f1, p2 = f2 − 1

2
f 2

1 , q2 = f2 +
1

2
f 2

1 .

Proposition 4.2. The functions fk, pk and qk are analytic in D and the poly-
nomial p is analytic in C×D.

Proof. Since ϕn is bounded by 1 it follows that |an,j| ≤ 1. Hence fk is analytic
in D because of (4.6). Since q0(s) = 1 it follows from (4.9) by induction that qk(s)
is analytic in D for k ∈ N. Since p0(s) = 1 it follows from (4.8) by induction that
pk(s) is analytic in D for 0 < k ≤ m, and we deduce from (4.7) that p(z, s) is
analytic in z ∈ C and s ∈ D. ¤

Now we expand the functions in (4.7) into the power series

(4.11) pk(s) =
∞∑

n=0

pn,k sn, qk(s) =
∞∑

n=0

qn,k sn.
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Putting the definition (4.6) of fk(s) into (4.8) and (4.9), we obtain

pn,k = −
k∑

j=1

n∑
ν=1

j

kν
aν,mν−jpn−ν,k−j for 1 ≤ k ≤ m,(4.12)

qn,k =
k∑

j=1

∑

j/m≤ν≤n

j

kν
aν,mν−jqn−ν,k−j for k ∈ N.(4.13)

These formulas give recursions in n; for n = 0 we have p0,0 = q0,0 = 1 and p0,k =
q0,k = 0 for k ≥ 1. We see from (4.3), (4.12) and (4.13) that the pn,k and qn,k are
polynomials with rational coefficients in the aj given by (3.1).

4.2. It follows from Theorem 3.3 that g is linear in g0. Hence it is no essential
restriction to assume that g0(z) = zl with l ∈ N0.

Proposition 4.3. Let g0(z) = zl with l ∈ N0. Then, see (4.7),

(4.14) g(z, s) =
p(z, s)

zm − ϕ(z)s

l∑

k=0

ql−k(s)z
k,

and the polynomial h(z, s) of Theorem 3.1 satisfies

(4.15) h(z, s) = p(z, s)
∞∑

k=1

ql+k(s)z
−k =

m∑
µ=1

(
µ−1∑
j=1

pj(s)qµ+l−j(s)

)
zm−µ.

Proof. The second formula (4.7) shows that
(

zmg0(z)

p(z, s)

)+

=

( ∞∑
j=0

qj(s)z
l−j

)+

=
l∑

k=0

ql−k(s)z
k

so that (4.14) follows from (3.10) in Theorem 3.3. Furthermore
(

zmg0(z)

p(z, s)

)−
=

( ∞∑
j=0

qj(s)z
l−j

)−
=

∞∑

k=1

ql+k(s)z
−k,

and the first equation (4.15) follows from (3.11). Replacing p(z, s) by the first sum
in (4.11) we obtain

h(z, s) =
m∑

j=0

pj(s)z
m−j

∞∑

k=1

ql+k(s)z
−k,

which yields the second equation (4.15) if we put µ = j + k; note that the sums
with µ > m have to vanish because h(z, s) is analytic in z ∈ D. ¤

We define cn,µ (1 ≤ µ ≤ m) by

(4.16) h(z, s) =
m∑

µ=1

∞∑
n=0

cn,µs
nzm−µ.
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Then it follows from (4.15) and (4.11) that

(4.17) cn,µ =
n∑

ν=0

µ−1∑
j=0

pn−ν,j qν,µ+l−j.

Theorem 4.4. Let g0(z) = zl with l ∈ N0. We write

(4.18) g(z, s) =
∞∑

n=0

∞∑

k=0

bn,kz
ksn.

With the notation in (4.1) and (4.7), we have

(4.19) bn,k = an,mn+k−l −
n∑

ν=0

m∑
µ=1

aν,mν+k+µcn−ν,µ.

Proof. By (3.5) with g0(z) = zl, we have

g(z, s) =
zl − z−mh(z, s)

1− zmϕ(z)s
=

(
zl − h(z, s)

zm

) ∞∑
ν=0

ϕ(z)ν

zmν
sν

=
(
zl −

∞∑
N=0

m∑
µ=1

cN,µz
−µsN

) ∞∑
ν=0

∞∑
j=0

aν,jz
j−mνsν

by (4.16) and (4.1).
Now we multiply out. In the contribution from zl, we set n = ν and k = l+j−mν

so that j = mn+k−l. In the contribution from the first double sum, we set n = N+ν
and k = −µ + j −mν so that j = mν + k + µ. Thus we obtain (4.19) in view of
(4.18). ¤

The expression (4.19) for the bn,k is a finite but complicated formula. In Section
5 we shall study the computational effort necessary to obtain numerical values for
the bn,k.

There is an alternative formula for the bn,k which is simpler for small l. We
restrict ourselves to the case l = 0.

Proposition 4.5. If g0(z) = 1 then

(4.20) bn,k = an,mn+k +
n−1∑
ν=0

m∑
j=1

pn−ν,j aν,mν+k+j.

Proof. Since q0(s) = 1 it follows from (4.14) with l = 0 that

g(z, s) =
p(z, s)

zm − ϕ(z)s
=

p(z, s)

zm

(
1− ϕ(z)

zm
s

)−1

.

Hence we obtain from (4.7) and (4.11) that

g(z, s) =
∞∑

N=0

m∑
j=0

pN,j z−jsN

∞∑
ν=0

∞∑
µ=0

aν,µz
µ−mnsν .
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We multiply out and set n = N + ν and k = −j + µ−mn. Then we obtain (4.20)
because p0,0 = 1, p0,j = 0 for j ≥ 1 and pn−ν,0 = 0 for ν < n. ¤

4.3. The special case m = 1 is again simpler and the resulting formula is much
more explicit.

Corollary 4.6. If m = 1 and g0(z) = zl then

bn,k = an,n+k−l −
n∑

ν=l+1

l + 1

ν
aν,ν−l−1 an−ν,n−ν+k+1

=
k+1∑
j=1

l + 1

n + j
an+j,n−j−l−1 a−j,k+1−j .

(4.21)

Note that the second representation contains the coefficients of negative powers
of ϕ. An advantage is that the number of terms in the second sum is independent
of n.

Proof. The Bürmann–Lagrange formula shows [MP05, (5.6)] that

(4.22) f(s)l+1 =
∞∑

ν=l+1

l + 1

ν
aν,ν−l−1s

ν for l ∈ N0.

Comparing Corollary 3.2 with Theorem 3.1 for m = 1, we obtain that

f(s)l+1 = h(z, s) =
∞∑

ν=0

cν,1s
ν ;

see (4.16). Hence the first equation (4.21) follows from (4.19) with n− ν instead of
ν and from (4.22).

Furthermore we have [MP05, (5.5)]

(4.23) sf ′(s)f(s)µ−1 =
∞∑

n=µ

an,n−µs
n for µ ∈ Z.

We write sf ′(s)f(s)l−k−1 = sf ′(s)f(s)−k−2f(s)l+1. Now we apply (4.23) with µ =
l − k and then again with µ = −k − 1. Using also (4.22) we obtain

an,n+k−l =
n+k+1∑

ν=l+1

l + 1

ν
aν,ν−l−1an−ν,n−ν+k+1.

Hence the terms in the middle part of (4.21) cancel except for those with n + 1 ≤
ν ≤ n+k +1, and the substitution ν = n+ j now gives the second line of (4.21). ¤

5. Application to the ruin problem

5.1. Now we return to the original probabilistic ruin problem described in
Section 2. Thus ϕ is the generating function of a random variable X with values in
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N0 and P(X = 0) > 0. The coefficients an,k of the powers ϕn satisfy

(5.1) an,k = P(X1 + . . . + Xn = k) for n ∈ N, k ∈ N0

where the Xν are independent and distributed like X; see (2.3). The functions fk

introduced in (4.6) can be written as

fk(s) =
∑

n≥k/m

1

n
P(Sn = mn− k) sn for s ∈ D,

whereas the functions pk and qk defined in (4.7) have no obvious probabilistic inter-
pretation.

Now we can calculate the probability of the event that Sn = k provided that
ruin has not occurred up to time n, see (2.5) and (2.6).

Corollary 5.1. If S0 = l ∈ N0 and m ∈ N then

(5.2) P(Sn = k, En = 1) = P(Sn = k, R > n) = bn,k,

where the bn,k are given by (4.19) if m ≥ 1 and by (4.21) if m = 1.

Proof. It follows from (2.7) and (3.4) that

(5.3) g(z, s) =
∞∑

n=0

∞∑

k=0

P(Sn = k, En = 1) zksn.

The function-theoretic problem of Section 3 is a generalization of the probabilistic
problem of Section 2 by Proposition 2.1 and by (3.3). Hence formulas (4.18) and
(5.2) agree, and we can apply Theorem 4.4 and Corollary 4.6. ¤

All formulas in this section are finite expressions which however are so compli-
cated that a computer is needed for their evaluation. As we see from (4.12), (4.13)
and (4.17), only the power coefficients aν,mν for ν ≤ n are involved in calculating the
cν,k for ν ≤ n and any k. The recursion formula (4.3) shows that O(nk2) arithmetic
operations are required to calculate the aν,j for ν ≤ n and j ≤ k. Hence O(m2n3)
operations are required for the aν,mν for ν ≤ n. The evaluations in (4.12), (4.13)
and (4.17) can be done with O

(
(µ + m + l)2n2

)
further operations.

In our probabilistic case, we have ak ≥ 0 so that the recursive evaluation (4.3)
of the an,k only uses additions and multiplications of non-negative numbers. This
is a numerically very robust procedure. The same is true for the recursion (4.13) to
compute the qn,k. But the recursion (4.12) for the pn,k contains subtractions so that
a loss of accuracy might possibly occur. The same is true for the formula (4.19) for
the bn,k.

5.2. The random time R when ruin occurs was defined in (2.6). It follows from
(2.7) and S0 ≥ 0 that

(5.4) gn(1) =
∞∑

k=0

P(Sn = k, R > n) = P(R > n) for n ∈ N0,
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and since P(R > n− 1) = P(R = n) + P(R > n) we deduce that

(5.5) P(R = n) = gn−1(1)− gn(1) for n ∈ N.

Let pn,k (1 ≤ k ≤ m) and qn,k (k ≥ 0) be given by (4.11).

Theorem 5.2. If S0 = l ∈ N0 and m ∈ N then the generating function is

(5.6)
∞∑

n=1

P(R = n) sn = 1− (1− s)g(1, s) = h(1, s),

see (3.5). Furthermore, see (4.11),

(5.7) P(R = n) = −
n∑

ν=0

m∑
j=0

l∑

k=0

pν,jqn−ν,k for n ∈ N.

In the special case m = 1 we have

(5.8) P(R = n) =
l + 1

n
an,n−l−1 =

l + 1

n
P(Sn = −1).

Proof. Since ϕ(1) = 1 it follows from (4.14) for z → 1 that

(5.9) g(1, s) =
p(1, s)

1− s

l∑

k=0

qk(s) for s ∈ D.

We see from (5.5), (3.4) and (3.5) that
∞∑

n=1

P(R = n) sn =
∞∑

n=1

(
gn−1(1)− gn(1)

)
sn = 1− (1− s)g(1, s) = h(1, s)

which proves (5.6). Furthermore it follows, by (4.14) for z = 1, that
∞∑

n=1

P(R = n) sn = 1− p(1, s)
l∑

k=0

qk(s) = 1−
∞∑

n=0

( m∑
j=0

pn,j

)
sn

∞∑
n=0

( l∑

k=0

qn,k

)
sn

because of (4.11). This equation implies (5.7).
Now let m = 1. We obtain from Corollary 3.2 for z → 1 and from (4.22) that

1− (1− s)g(1, s) = f(s)l+1 =
∞∑

n=l+1

l + 1

n
an,n−l−1s

n.

This implies the first equation (5.8), and the second one follows because S0 = l and
m = 1 and thus, by (2.3),

P(Sn = −1) = P(X1 + . . . + Xn + l − n = −1) = an,n−l−1. ¤

In the special case S0 = 0, we have l = 0 and (5.7) simplifies to

P(R = n) = −
m∑

j=1

pn,j (n ≥ 1)
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because qn−ν,0 = 0 for ν < n. In terms of risk theory [Asm00, Section IV.2], we are
in the case of no initial reserve.

We have always kept S0 = l fixed. In risk theory [Asm00] the initial capital
reserve for future claims is an important variable. Compare [Asm00, Chapter IV].
For a moment we allow l to vary and denote by Rl the time when ruin occurs for
an initial capital S0 = l.

Proposition 5.3. The double generating function is

(5.10)
∞∑

l=0

∞∑
n=1

P(Rl = n) snwl =
1

1− w

(
1− p(1, s)

wmp(w−1, s)

)
,

where the polynomial p(1,s) is defined by (3.8).

Proof. We obtain from (5.6) and (4.15) that
∞∑

n=1

P(Rl = n) sn = p(1, s)
∞∑

k=l+1

qk(s).

We multiply by wl and sum over l. Inverting the summation order we obtain on the
right-hand side

p(1, s)
∞∑

k=1

1− wk

1− w
qk(s) =

p(1, s)

1− w

∞∑

k=1

(1− wk)qk(s) =
p(1, s)

1− w

(
1

p(1, s)
− w−m

p(w−1, s)

)

because of (4.7). This implies (5.10), see (3.8). ¤
5.3. The random variable En was defined in (2.5). It has the value 1 before

ruin occurs and the value 0 thereafter. Note that Sn may have any sign after ruin
whereas SnEn is always non-negative. The polynomial p(z, s) was introduced in
(3.8).

Theorem 5.4. Let S0 = l ∈ N0. If s ∈ N then
∞∑

n=0

E(SnEn)sn =
l∑

k=0

p′(1, s) + (l − k −m)p(1, s)

1− s
qk(s)

+

(
E(X)−m

)
s p(1, s)

(1− s)2

l∑

k=0

qk(s).

(5.11)

Proof. We obtain from (2.7) that

g′n(z) =
∞∑

k=1

k P(Sn = k, En = 1) zk−1.

If k ≥ 1 then SnEn = k holds if and only if Sn = k and En = 1. It follows that
g′n(1) = E(SnEn). Hence

(5.12)
∞∑

n=0

E(SnEn)sn = g′(1, s) := lim
z→1−0

∂

∂z
g(z, s).



538 Gerd Jensen and Christian Pommerenke

In (4.14) we replace k by l−k, differentiate with respect to z and then let z → 1−0.
We obtain

g′(1, s) =

(
p′(1, s)
1− s

+
p(1, s)

(
ϕ′(1)s−m

)

(1− s)2

) l∑

k=0

qk(s) +
p(1, s)

1− s

l∑

k=0

(l − k)qk(s).

Now we write ϕ′(1)s −m =
(
ϕ′(1) −m

)
s −m(1 − s) and rearrange. Using (5.12)

we obtain (5.11) because ϕ′(1) = E(X). ¤
An explicit formula for E(SnEn) can easily be obtained from (4.7) and (4.11).

Without using any of our function-theoretic results, we now derive a double inequal-
ity which becomes an equality for the special case m = 1.

Proposition 5.5. Let m ∈ N. If 0 < E(X) < ∞ and 0 ≤ E(S0) < ∞ then

bn + P(R ≤ n) ≤ E(SnEn) ≤ bn + mP(R ≤ n),(5.13)

where

bn = E(S0) +
(
E(X)−m

) n−1∑
ν=0

P(R > ν).(5.14)

Proof. By (2.5) and (2.6), we have En = 1 if R > n and En = 0 otherwise.
Hence we see that

(5.15) αn := E(En) = P(R > n).

Furthermore we have En − En−1 = 0 except if En−1 = 1 and En = 0, in which case
Sn−1 ≥ 0 and −m ≤ Sn < 0. It follows that Sn(En − En−1) = 0 if R 6= n and
1 ≤ Sn(En − En−1) ≤ m if R = n. We conclude that

(5.16) P(R = n) ≤ βn := E
(
Sn(En − En−1)

) ≤ mP(R = n).

We obtain from (2.2) that, for n ∈ N,

SnEn = (Sn−1 + Xn −m)En−1 + Sn(En − En−1)

with Xn independent of En−1 and therefore, by (5.15) and (5.16), that

E(SnEn) = E(Sn−1En−1) +
(
E(X)−m

)
αn−1 + βn

for n ∈ N. Since E0 = 1 we conclude that

(5.17) E(SnEn) = E(S0) +
(
E(X)−m

) n−1∑
ν=0

αν +
n∑

ν=1

βν ,

and we have P(R ≤ n) ≤ ∑n
ν=1 βν ≤ mP(R ≤ n) because of (5.16). Hence (5.13)

together with (5.14) follows from (5.17). ¤
5.4. The formulas in this section can also be used to analyze dividend policies

as described in Section 2.1, for instance to calculate the expectation GN of the
company’s net result after N periods. If b̃n,k (n ∈ N, k ∈ Z, k ≤ l) denotes the
probability of ending with a capital k after n periods without crossing the barrier l
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before, then b̃n,k = bn,l−k. The probability that the capital first exceeds l at time n
is the same as the probability P(R = n) that ruin occurs at time n in the original
setting. Then

GN =
∑

k

b̃N,kk +
∑

n

P(R = n)(r + GN−n),

where the company keeps r (r < l) of the surplus and pays out the rest to the policy
holder. From this the GN can be calculated recursively, starting with G0 = 0.

6. Limit results in the probabilistic case

6.1. We continue to study the case that ϕ is the generating function of the
random variable X, see (2.1). First we establish some properties of the polynomial
p(z, s) defined in (3.8) and the functions pk(s) and qk(s) defined in (4.7).

Proposition 6.1. The function p(1, s) is positive and decreasing in s ∈ (0, 1).
The limit satisfies p(1, 1) > 0 if and only if m < E(X) ≤ ∞.

Proof. Since an,k ≥ 0 by (5.1), it follows from Proposition (4.1) with z → 1 that
p(1, s) is positive and decreasing. We consider the convex function

ψ(x) = x−mϕ(x) for 0 < x ≤ 1,

which satisfies ψ′(1) = E(X)−m because ϕ(1) = 1 and ϕ′(1) = E(X).
First let E(X) ≤ m. Then ψ′(1) ≤ 0 so that ψ(x) = 1/s has a solution

x = x(s) ∈ (0, 1), which satisfies x(s) → 1 as s → 1. Since xm − ϕ(x)s = 0 it
follows from (3.8) that p(x, s) = 0. Bernstein’s inequality [Mit70, p. 228] shows
that |p′(z, s)| ≤ m2m for |z| ≤ 1 and |s| ≤ 1, so that

|p(1, s)| = |p(1, s)− p(x(s), s)| ≤ m2m
(
1− x(s)

) → 0 as s → 1.

Now let E(X) > m. Then ψ′(1) > 0 so that there exists r ∈ (0, 1) with ψ(r) < 1
and thus rm > ϕ(r). If 0 < s ≤ 1 and |z| = r then

|z|m = rm > ϕ(r) ≥ |ϕ(z)| ≥ |ϕ(z)s|
and it follows from Rouché’s theorem that all m zeros zµ(s) of zm − ϕ(z)s in D
satisfy |zµ(s)| < r. We conclude that

p(1, s) =
m∏

µ=1

|1− zµ(s)| ≥ (1− r)m. ¤

Proposition 6.2. If 0 < ϕ(0) < 1 then pk(s) and qk(s) have continuous exten-
sions to D for each k, furthermore qk(s) ≥ 0 for 0 ≤ s ≤ 1.

Proof. The variance satisfies 0 < V(X) ≤ ∞ because 0 < P(X = 0) < 1. It
was shown in [MP05, Theorem 7.1] that

lim sup
n→∞

√
n sup

j
an,j < ∞
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holds under the assumption that ϕ does not have the special form ϕ(z) = ϕ∗(zµ)
for some (maximal) µ ≥ 2. If ϕ does have this form then [MP05, Theorem 7.1] is
applied to ϕ∗ instead of ϕ. It follows that

∞∑
n=1

1

n
an,mn−k < ∞

and we see from (4.6) that fk(s) has a continuous extension to D which is non-
negative for 0 ≤ s ≤ 1. Hence our assertions follow from the recursion formulas
(4.8) and (4.9); we have qk(s) ≥ 0 because q0(s) = 1. ¤

6.2. Let R ≤ ∞ be the time when ruin occurs, where R = ∞ means that ruin
never occurs; see (2.6). In the following theorem, it is well-known when P(R = ∞)
is zero or positive, see e.g. Theorems VI.10.3 and XII.2.2 in [Fel71].

Theorem 6.3. Let S0 = l ∈N0. If E(X) ≤ m then P(R = ∞) = 0, and if
m < E(X) ≤ ∞ then

(6.1) P(R = ∞) = p(1, 1)
l∑

k=0

qk(1) > 0.

Proof. From (5.4) we obtain that

β := P(R = ∞) = lim
n→∞

P(R > n) = lim
n→∞

gn(1).

If ε > 0 then β − ε < gn(1) < β + ε for n ≥ n0 so that

(β − ε)sn0

1− s
≤ g(1, s) =

∞∑
n=0

gn(1)sn ≤ (β + ε)sn0

1− s
+ n0.

Together with (5.9) this implies that

(6.2) β = lim
s→1−0

(1− s) g(1, s) = p(1, 1)
l∑

k=0

qk(1);

the limits p(1, 1) and qk(1) exist by Proposition 6.2.
If E(X) ≤ m then p(1, 1) = 0 by Proposition 6.1 so that P(R = ∞) = β = 0 by

(6.2). Now let m < E(X) ≤ ∞. Then p(1, 1) > 0 by Proposition 6.1 and qk(1) ≥ 0
by Proposition 6.2. Since q0(1) = 1 it follows from (6.2) that

P(R = ∞) = p(1, 1)
l∑

k=0

qk(1) ≥ p(1, 1) > 0. ¤

Theorem 6.4. Let S0 = l ∈ N0.
(i) If E(X) < m then

(6.3) P(R > n) = o
( 1

n

)
as n →∞.
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(ii) If E(X) = m then

(6.4) E(SnEn) → p′(1, 1)
l∑

k=0

qk(1) ≥ l + 1 as n →∞

with equality if m = 1.
(iii) If m < E(X) < ∞ then

(6.5) E(SnEn) ∼ (
E(X)−m

)
P(R = ∞)n as n →∞.

Remarks. (i) The relation in (6.3) strengthens Theorem 6.3 for the case
E(X) ≤ m. The proof of (6.3) does not use our function-theoretic results. We
do not say anything about the limit behaviour of E(SnEn) for the case E(X) < m.

(ii) The limit p′(1, 1) = lims→1−0
∂

∂z
p(z, s)

∣∣∣
z=1

exists by Proposition 6.2. It
follows from (6.4) that p′(1, 1) > 0.

(iii) If E(X) > m then P(R = ∞) > 0 by Theorem 6.3 and its value is given by
(6.1).

Proof. We define αn and βn as in (5.15) and (5.16). Since SnEn ≥ 0 and S0 = l,
we see from (5.17) that

(6.6) 0 ≤ E(SnEn) = l +
(
E(X)−m

) n−1∑
ν=0

αν +
n∑

ν=1

βν .

(i) Let E(X) < m. Then it follows from (6.6) and (5.16) that
∞∑

ν=0

αν ≤
(
m− E(X)

)−1
(
l + m

∞∑
ν=0

P(R = ν)
)

< ∞.

Since αn = P(R > n) is decreasing we deduce [Kno64, p. 125] that P(R > n) =
o(1/n).

(ii) Let E(X) = m. By (5.11) in Theorem 5.4 we have

(6.7)
∞∑

n=0

E(SnEn)sn =
1

1− s

l∑

k=0

(
p′(1, s) + (l − k −m)p(1, s)

)
qk(s).

We have p(1, 1) = 0 by Proposition 6.1 and γ := limE(SnEn) < ∞ exists by (6.6)
and (5.16). Hence we can argue as in the proof of Theorem 6.3 to deduce from (6.7)
that

γ = p′(1, 1)
l∑

k=0

qk(1).

It follows from (5.13) in Theorem 5.5 that

l + P(R ≤ n) ≤ E(SnEn) ≤ l + mP(R ≤ n).

Since P(R ≤ n) → P(R < ∞) = 1 by Theorem 6.3, it follows that l+1 ≤ γ ≤ l+m,
in particular γ = l + 1 if m = 1.



542 Gerd Jensen and Christian Pommerenke

(iii) Let m < E(X) < ∞. We have αn = P(R > n) → P(R = ∞) > 0 (n →∞)
by (5.15) and (6.1). Since

∑
βν converges we deduce from (6.6) that

lim
n→∞

1

n
E(SnEn) =

(
E(X)−m

)
lim

n→∞
1

n

n−1∑
ν=0

αν

=
(
E(X)−m

)
P(R = ∞) > 0. ¤

The explicit formulas in Theorem 6.3 and 6.4 contain p(1, 1), p′(1, 1) and the
qk(1). Contrary to the situation in Section 5, these values cannot be obtained from
the coefficients ak of ϕ by finitely many additions and multiplications. Now we
indicate how to compute these values.

First we compute the zeros zµ (µ = 1, . . . , m) of zm − ϕ(z) with |zµ| < 1. Then
we form

p(z, 1) =
m∏

µ=1

(z − zµ) =
m∑

k=0

pk(1)zm−k

as in (3.8). This allows us to compute p(1, 1) and p′(1, 1). It follows from (4.7) that
m∑

k=0

pk(1)z−k

∞∑

k=0

qk(1)z−k = 1, p0(1) = q0(1) = 1,

which leads to the recursion formula

(6.8) qk(1) = −
min(m,k)∑

j=1

pj(1)qk−1(1) for k ∈ N.

We need to compute the qk(1) only for k ≤ l.
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