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Abstract. We prove that if E is a planar self-similar set with similarity dimension d whose

defining maps generate a dense set of rotations, then the d-dimensional Hausdorff measure of the

orthogonal projection of E onto any line is zero. We also prove that the radial projection of

E centered at any point in the plane also has zero d-dimensional Hausdorff measure. Then we

consider a special subclass of these sets and give an upper bound for the Favard length of E(ρ)

where E(ρ) denotes the ρ-neighborhood of the set E.

1. Introduction

In this paper we investigate the orthogonal and radial projection properties of
some self-similar sets in the plane. Planar self similar sets are the attractors of
iterated function systems whose maps are contracting similitudes. By a classical
result of Marstrand [7], if E is a planar Borel set with s := dimH E ≤ 1 (where
dimH denotes the Hausdorff dimension) then in Lebesgue almost all directions the
orthogonal projections onto lines have Hausdorff dimension s. If dimH E > 1 then
almost all projections have positive Lebesgue measure. Therefore the natural ques-
tion is to ask when the projections have positive s-dimensional Hausdorff measure
in the case when s ≤ 1.

It is useful to partition planar self-similar sets sets into two categories when
studying their orthogonal projections onto lines, namely, the case when the simili-
tudes do not involve rotations or reflections, and the others. The sets whose defining
maps do not involve rotations are distinguished from the others with the relatively
simple structure of their projections: These projections are self-similar sets in R.
The defining maps for the projections can be viewed as a family of maps depend-
ing on a parameter (the projection angle) and measure theoretic arguments can be
made about the properties of “typical” projections. We refer to [11] for the details
and some applications of this method.

In the case when rotations are involved, the projections are no longer self-similar,
thus it is significantly more complicated to study their structure. Our main result
is concerned with the case when the defining maps generate a dense set of rotations,
and partly answers a question by Mattila in [9]. This would be the case when,
for example, one of the maps involved rotation by an irrational multiple of π. In
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fact, if none of the maps involve reflections, our condition is equivalent to having
at least one map with an irrational rotation. The idea of the proof is that, if the
set of rotations is dense, there are many groups of smaller copies of the original
set that are approximately the same size and aligned along lines. This is shown
by modifying a “doubling” argument that has been used in [10]. These copies “pile
up” above a typical point in the projection, making the density of the projected
measure infinite. The density of the rotation angles implies that this is the case in
a dense set of directions, and hence, by approximation, all directions. We prove the
following:

Theorem. Let E ⊂ R
2 be a self-similar set whose defining maps generate a

dense set of rotations modulo 2π. If γ is the similarity dimension of E, then for all
lines l, the γ-dimensional Hausdorff measure of the orthogonal projection of E onto
l is zero.

The case when the rotations are in a discrete set of directions is still an open
question.

Finally, in the last section we give an upper bound for the Favard length of the
ρ-neighborhood E(ρ) of E where E is a homogeneous self-similar set of similarity di-
mension 1 whose defining maps include two non-rotating maps and a (non-reflecting)
rotation by a Diophantine multiple of π. A number α is called Diophantine if there
exist c, d > 0 such that |Nα − M | > cN−d for any two integers N and M (we say
the number is (c, d)-Diophantine in this case). Recall also that a self-similar set
is called homogeneous if all defining maps have the same contraction factor. The
Favard length of a planar set E is given by

Fav(E) =

∫ π

0

L
1(Eθ)dθ

where L
1(Eθ) is the Lebesgue measure of the orthogonal projection of E onto lθ,

the line through the origin making angle θ with the positive x-axis. Besicovitch’s
projection theorems tell us that in the above case, the Favard length of E(ρ) con-
verges to zero since E is irregular, but in very few cases we have precise estimates
for the decay rate. A set E is called a 1-set if 0 < H 1(E) < ∞. There is the known
lower bound c/(− log ρ) when E is any Borel 1-set in the plane (see [8]).

We will prove the following theorem:

Theorem. Let E be the attractor of a homogeneous iterated function system
with similarity dimension 1 which produces two non-rotating maps of the same
contraction factor and a map rotating by angle θ1, where θ1/2π is (c, d)-Diophantine.
Then, denoting the orthogonal projection of E(ρ) onto lθ by Eθ(ρ), for any δ > 0
there exists A, B > 0 such that

(1) L
1(Eθ(ρ)) ≤ A

(log(− log ρ))B



On planar self-similar sets with a dense set of rotations 411

uniformly for all θ, thus

Fav(E(ρ)) ≤ πA

(log(− log ρ))B
.

(This theorem will be stated more precisely in Section 3, see Theorem 3.1).
In [12], it was proven that for self-similar sets of similarity dimension 1 with

strong separation and without rotation, the bound

(2) Fav E(ρ) ≤ C exp

(
−a log∗

(
1

ρ

))

holds for some C, a > 0, where

(3) log∗ x := min




n ≥ 0 : log log . . . log︸ ︷︷ ︸
n

x ≤ 1




 .

The class of sets we study in this paper are the only self-similar sets that are
currently known to obey a bound better than (2).

Figure 1.

Example. In Figure 1 is shown a homogeneous self-similar set with dimension
1. There are three defining maps two which don’t rotate and the third map rotates
by (1 +

√
2)π radians. The number 1 +

√
2 is Diophantine with d = 2 since it is a

quadratic irrational (see e.g. [1]). For this set we can take B = log 2
3.3 log 3

.

2. Projections of planar self-similar sets with a dense set of rotations

We first introduce the terminology before we state the result:
An iterated function system is a finite collection of Lipschitz maps on R

2 with
Lipschitz constants less than 1.

Consider an iterated function system in the plane with maps F1, . . . , Fm. There
is a unique nonempty compact set E, called the attractor of this iterated function
system, that satisfies

(4) E =

m⋃

i=1

Fi(E).

We say E is self-similar if the maps Fi are similitudes. The set E can be viewed as
the image of a “projection” Π from a symbol space Ω = {1, . . . , m}N, given by

Π: i1i2i3 . . . −→ lim
n→∞

Fi1 ◦ Fi2 ◦ · · · ◦ Fin(0)



412 Kemal Ilgar Eroğlu

(here the choice of the point 0 is arbitrary; any other point will give the same
limit). The limit is a singleton since the maps are contractions. Finite sequences
u = u1u2 · · ·un of digits ui ∈ {1, . . . , m} will be called words. We will use [u] to
denote the set of sequences in Ω starting with the word u (such sets are called
cylinder sets).

Now assume E is self-similar. Let lθ be the line through the origin making
an angle of θ with the positive x-axis and let Πθ be the composition of Π with
the orthogonal projection onto lθ. Assume each Fi has contraction rate ri. The
similarity dimension of the system above is the number γ such that

m∑

i=1

rγ
i = 1.

We will shortly call γ the similarity dimension of E, when the iterated function
system in question is clear from the context (note that E can be produced by
different iterated function systems). It is well-known that dimH E ≤ γ. For many
purposes the interesting situation is the case when H γ(E) > 0. The Bandt–Graf
condition [2] and the open set condition (see [4]) are examples of necessary and
sufficient conditions for this to be true.

For a word u = u1 · · ·un define ru = ru1 · · · run
. Define

Fu := Fu1 ◦ · · · ◦ Fun
.

We denote by ū the infinite sequence uuu . . . The length of u will be denoted by |u|.
Each Fi is either a scaling and reflection composed with a translation, or a

scaling and rotation composed with translation. Given a word u we can write

Fu

([
x
y

])
= ru

[
cos θu −Ou sin θu

sin θu Ou cos θu

] [
x
y

]
+

[
xu

yu

]

where Ou = −1 if Fu contains a reflection (about the line θ = θu/2), or 1 if it contains
a rotation only (by the angle θu). Note that if Ou = Ov = 1 then θuv = θu + θv, and
|θu − θv| = |θαu − θαv| for any words u, v, α. In this paper we will consider angles
modulo 2π, e.g. we will write |θu − θv| for |(θu − θv) mod 2π|. We are assuming
that the set

Θ = {θu : u is a word}
is dense modulo 2π. Our result is as follows:

Theorem 2.1. Let E ⊂ R
2 be a self-similar set such that Θ is dense modulo

2π. If γ is the similarity dimension of E, then for all lines l, the γ-dimensional
Hausdorff measure of the orthogonal projection of E onto l is zero.

Note that if Θ is dense, then {θu : Ou = 1} is also dense. Given an ε > 0 we
will denote by a = a(ε) some fixed word such that Oa = 1 and |θa| < ε.

Let γ be the similarity dimension of E. We define µ to be the product measure
µ = {rγ

1 , ..., r
γ
m}N on Ω, that is µ([u]) = rγ

u. Let D = diam E.

Definition 1. Two words u, v are called (ε, θ)-relatively close if
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(i) ru

rv
∈ (e−ε, eε);

(ii) |θu − θv| < ε and Ou = Ov;
(iii) There exists ω = ω(u, v) ∈ Ω such that |Πθ(uω)−Πθ(vω)| < εD min{ru, rv}.
This definition means the smaller copies of the set E defined by u and v have

relatively the same size and orientation, and the convex hulls of their projections
on lθ have large overlap.

The proof of Theorem 2.1 is based on a sequence of lemmas:

Lemma 2.2. Given any ε > 0, an angle φ and word u, for µ-almost all points
ω ∈ Ω there exist infinitely many words sj such that sju is a prefix of ω, Osj

= 1
and |θsj

− φ| < ε.

Proof. Let a = a(ε). There is N ∈ N such that the set

{θa, θaa, θaaa, . . . , θaN}

forms an ε-net modulo 2π. Given any word v, if Ov = 1 we can concatenate a
sequence tv of a’s of length no more than N so that Ovtv = 1 and |θvtv − φ| < ε.
If there is an orientation reversing Fi0 and Ov = −1 then we concatenate to vi0 a
suffix tv of a’s as above to get Ovi0tv = 1 and |θvi0tv − φ| < ε. So we conclude that
there is an integer N0 = N0(ε) such that given any word v we can find a suffix tv of
length no more than N0 satisfying Ovtv = 1 and |θvtv − φ| < ε.

Given this N0, there exists c > 0 such that if t is a word of length no more than
N0 then µ([t]) ≥ c > 0.

Let A be the set of points in Ω where the claim fails. Given n ∈ N, let An be
the points ω of A for which no prefix sj of length ≥ n exists as in the claim. Then
A = ∪An. Therefore it suffices to prove that µ(An) = 0 for any n.

Now we fix n. Write Ω as a disjoint union of cylinders represented by words
length bigger than n and let S0 be the set of words corresponding to the cylinders
in this union. For each word v ∈ S0, let tv be a word of length no more than N0

such that Ovtv = 1 and |θvtv −φ| < ε. Let Ω1 = Ω\∪v∈S0 [vtvu]. Then µ(Ω1) < 1−c.
Given Ωi, define Ωi+1 in the same way: Write Ωi as a disjoint union of cylinders
and let Si be the set of corresponding words. For each word v in Si, find a word tv
as above. Define Ωi+1 = Ωi \ ∪v∈Si

[vtvu]. Note that µ(Ωi+1) < (1 − c)µ(Ωi) for all
i. Since An is a subset of ∩Ωi and µ(∩Ωi) = 0, the result follows. �

The following corollary will be useful when studying visibility properties:

Corollary 2.3. Let ω 7→ θω ∈ [0, 2π) be any function. Then, given a word u
and ε > 0, for µ-almost all ω ∈ Ω there exist prefixes sj such that sju is a prefix of
ω, Osj

= 1 and |θsj
− θω| < ε.

Proof. Let {φn} be a finite collection of angles that form an ε/2-net modulo 2π.
Then, given a fixed φn, by Lemma 2.2 µ-almost all ω ∈ Ω have prefixes sj such that
sju is a prefix of ω, Osj

= 1 and |θsj
− θφn

| < ε/2. Since {φn} forms an ε/2-net,
this implies that µ-almost all ω ∈ Ω have prefixes satisfying the conditions of our
claim. �
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A set of real numbers is called σ-arithmetic if all numbers in the set are in-
teger multiples of σ and σ is the biggest number with this property. We quote a
probabilistic lemma (see [5], Vol II, Lemma V.4.2):

Lemma 2.4. (Feller) Let F be a distribution in R concentrated on [0,∞) but
not at the origin, and Σ the set formed by the points of increase of F, F ∗F, F ∗F ∗
F, . . .. If F is not arithmetic, then Σ is asymptotically dense at infinity in the sense
that for given ε > 0 and K sufficiently large, the interval (K, K + ε) contains points
of Σ. If F has λ-arithmetic support then Σ contains all points nλ for n sufficiently
large.

Lemma 2.5. Given any ε > 0 and a function θ 7→ φ(θ), there exist u, v, θ such
that u, v are distinct and (ε, θ)-relatively close with Ou = Ov = 1. Moreover, in
addition to the conditions (i)-(iii) of Definition 1, we can choose u, v and θ in such
a way that: (iv) |φ(θ) − θu| < ε, |φ(θ) − θv| < ε, and (v) there exists ω such that
Πθ(uω) = Πθ(vω).

lθ

u

v

ua

va

Π(uā)

Π(vā)

Figure 2.

Proof. Let rmin = mini ri. Given r > 0, let Cr be the the set of all cylinders [s]
with

rrmin < rs ≤ r.

Let Nr = #Cr. We first consider the case when S = {− log r1, . . . ,− log rm} is not
arithmetic: Let F be a distribution supported on S. Find K sufficiently large as in
Lemma 2.4 for ε/2. Let r̃ be such that

− log r̃ = − log r − log rmin + K.
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Then each [s] ∈ Cr has a subcylinder [u] (i.e. s is a prefix to u) such that ru

r̃
∈

(e−ε/2, eε/2). So there exist at least Nr cylinders [ui] such that
rui

ruj

∈ (e−ε, eε) for

each pair ui, uj. Since Nr → ∞ as r → 0, by choosing r small enough we can also
find a pair ũ, ṽ such that Oũ = Oṽ and |θũ − θṽ| < ε. If Oũ = Oṽ = 1 then let u = ũ
and v = ṽ. If Oũ = Oṽ = −1 and Fi0 is an orientation reversing map in the iterated
function system, let u = ũi0 and v = ṽi0. Then Ou = Ov = 1 and |θu −θv| < ε, thus
(i) and (ii) in Definition 1 are satisfied.

In the case when S is σ-arithmetic for some σ > 0, we again consider a distri-
bution F supported on S, and using the Lemma 2.4 find K such that nσ ∈ Σ for
all n ≥ K. Let r̃ be given by

log r̃ =

[− log r − log rmin

σ
+ K + 1

]
σ.

Then there exists a subcylinder [u] of [s] with ru = r̃. This is true for each [s] ∈ Cr.
The rest of the argument is as in the non-arithmetic case; we can find u, v satisfying
the first two conditions of Definition 1.

Note that (v) trivially implies (iii), so it suffices to check condition (v) alone
to prove (iii): We set a = a(ε/2). Choosing θ to be π/2 plus the direction of the
line segment joining Π(uā) to Π(vā) and setting ω = ā, (v) is satisfied (if these two
points coincide then any direction can be chosen as θ). For (iv), consider the pairs

(u, v), (ua, va), (uaa, vaa), (uaaa, vaaa), . . .

All these pairs satisfy (i)-(ii) and (v) (hence (iii)) with the same ε, θ and ω.
Since |θa| < ε/2, some of them will also satisfy (iv) (see Figure 2). �

Lemma 2.6. Given any N and ε > 0, there exist distinct words u1, . . . , uN and
θ such that the ui are mutually (ε, θ)-relatively close and Oui

= 1.

Proof. The statement is true for N = 2 by the previous lemma. We will now
prove that if the statement is true for N then it is also true for 2N .

So we now assume that the claim of the lemma is true for N . Find u1, . . . , uN

and θ1 for ε1 < ε
6
e−ε/6. Let rumin

= mini=1,...,N rui
. Choose ε2 > 0 so small that

(5) |1 − eε2 | + ε2 <
ε

6
e−ε/6rumin

.

Consider the function φ(θ) = θ− θ1. Apply Lemma 2.5 with ε2 and φ(·) to find
s, t, θ2 and ω̃ satisfying conditions (i)–(v) of the Lemma, that is,

(a) rs

rt
∈ (e−ε2, eε2);

(b) |θs − θt| < ε2 and Os = Ot = 1;
(c) Πθ2(sω̃) = Πθ2(tω̃);
(d) |θ2 − (θs + θ1)| < ε2 and |θ2 − (θt + θ1)| < ε2.

We now claim that the 2N distinct words su1, . . . , suN , tu1, . . . , tuN are mutually
(ε, θ2)-relatively close.
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Since ε1, ε2 < ε/6, it is easily seen that (i) and (ii) of Definition 1 are satisfied
with ε/3. Clearly, su1, . . . , suN are mutually (ε1, θs + θ1)-relatively close. We now
prove that they are also ( ε

3
e−ε/6, θ2)-relatively close:

Without loss of generality, we can assume rt ≤ rs. Note rs < eε/6rt. Let
ω(ui, uj) be as described in part (iii) of Definition 1. Denote by ~eθ the unit vector
in the plane in the direction θ. Observe that |~eα1 − ~eα2 | ≤ |α1 − α2|. Then for any
i, j ∈ {1, . . . , m} and ω = ω(ui, uj), using (5) and (d) we get (see Figure 3)

|Πθ2(suiω) − Πθ2(sujω)|
= |(Π(suiω) − Π(sujω)) · ~eθ2|
= |(Π(suiω) − Π(sujω)) · ~eθs+θ1 + (Π(suiω) − Π(sujω)) · (~eθ2 − ~eθs+θ1)|
≤ |Πθs+θ1(suiω) − Πθs+θ1(sujω)| + |(Π(suiω) − Π(sujω)) · (~eθ2 − ~eθs+θ1)|
≤ |Πθs+θ1(suiω) − Πθs+θ1(sujω)| + |Π(suiω) − Π(sujω)||θ2 − (θs + θ1)|
≤ ε1D min{rsui

, rsuj
} + Drsε2

< ε1D min{rsui
, rsuj

} + D
ε

6
e−ε/6rsrumin

≤ ε

3
e−ε/6D min{rsui

, rsuj
}.

(6)

lθs+θ1

lθ2
= lθ

≤ ε2

≤ ε1Drs min{rui
, ruj

}

≤ Drs

Π(suiω)

Π(sujω)

Figure 3.

Therefore su1, . . . , suN are mutually ( ε
3
e−ε/6, θ2)-relatively close. A similar proof

shows that tu1, . . . , tuN are also mutually ( ε
3
e−ε/6, θ2)-relatively close. Let i0 be such

that rui0
= rumin

. Now we will prove that sui0 and tui0 are ( ε
3
, θ2)-relatively close

and that we can use any ω ∈ Ω in Definition 1 (iii). From this the result will follow,
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since for ω = ω(ui, uj) we get

|Πθ2(suiω) − Πθ2(tujω)| ≤ |Πθ2(suiω) − Πθ2(sui0ω)| + |Πθ2(sui0ω) − Πθ2(tui0ω)|
+ |Πθ2(tui0ω) − Πθ2(tujω)|

(we can use any ω ∈ Ω as ω(ui, uj) if i = j).
Denoting by Rθ the rotation map in the plane by angle θ, for any word u with

Ou = 1 we can write
Fu(z) = ruRθu

z + bu

for some vector bu. Also recall that Π(uτ) = Fu(Π(τ)) for any τ ∈ Ω by definition.
Using (5), the conditions (a)–(c) above and the linearity of Rθ we get (see Figure 4)

|Πθ2(sui0ω) − Πθ2(tui0ω)| = |Πθ2(sui0ω) − Πθ2(tui0ω) + Πθ2(tω̃) − Πθ2(sω̃)|
= |(Π(sui0ω) − Π(tui0ω) + Π(tω̃) − Π(sω̃)) · ~eθ2 |
≤ |Π(sui0ω) − Π(tui0ω) + Π(tω̃) − Π(sω̃)|
= |rsRθs

Π(ui0ω) − rtRθt
Π(ui0ω)

+ rtRθt
Π(ω̃) − rsRθs

Π(ω̃)|
= |rsRθs

(Π(ui0ω) − Π(ω̃)) − rtRθt
(Π(ui0ω) − Π(ω̃))|

≤ |(rs − rt)Rθs
(Π(ui0ω) − Π(ω̃))|

+rt|(Rθs
− Rθt

)(Π(ui0ω) − Π(ω̃))|
≤ |rs − rt|‖Rθs

‖ · D + rt‖Rθs
− Rθt

‖ · D
≤ Drt(|1 − eε2| + ε2) ≤ Drt

ε

3
rumin

≤ ε

3
Drtui0

and the result follows since rtui0
≤ min{rsui

, rtuj
} for any i, j. The lemma is proved.

�

lθ2

Figure 4.
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And finally we prove the following result which immediately implies the main
result of this section:

Proposition 2.7. For all θ we have H γ(ΠθΩ) = 0.

Proof. Let µθ be the projection of the measure µ under Πθ. We will prove that
given any N , at µθ-almost all points x the γ-dimensional upper density of µθ given
by

lim sup
r→0

µθB(x, r)

(2r)γ

is at least cN , where c is a constant independent of N (here B(x, r) denotes an
open ball of radius r around x). Observe that the restriction of H γ to ΠθΩ is
absolutely continuous with respect to µθ: This can be seen from the fact that if µ̃
is the projection of µ to ΠΩ (via Π) then the restriction of H γ to ΠΩ is absolutely
continuous with respect to µ̃ (see [6], Theorem 5.3.1). The result will follow from a
standard density theorem (see [4], Prop. 2.2 for a statement).

Observe that if u, v are distinct and (ε, θ)-relatively close for some ε and θ, then
u and v can not be prefixes of each other provided ε is small enough. This follows
from the fact that ru/rv /∈ (rmax, 1/rmax) if any of u and v is a proper prefix of the
other. Note that this also implies that [u] and [v] are disjoint in Ω. Now, given N ,
we can find distinct u1, . . . , uN that are mutually (1, θ0)-relatively close for some θ0.
This we can see by applying Lemma 2.6 with any ε < 1. By using small enough ε
in the Lemma if necessary, we can assume that [ui] are disjoint. For the purposes
of our proof, the words ui will be regarded as mutually (1, θ0)-relatively close.

Now let x = Πθ(τ) where τ satisfies the conditions of Lemma 2.2 with ε = ru1,
word u1 and φ = θ − θ0. That is, τ has prefixes of the form sju1 where sj satisfy
|θsj

+ θ0 − θ| < ru1. By Lemma 2.2, µθ-almost all x are of this form. It follows that
for each j,i and ω ∈ Ω, using ideas similar to those in (6) we get

|x − Πθ(sjuiω)| = |Πθ(τ) − Πθ(sjuiω)|
= |(Π(τ) − Π(sjuiω)) · ~eθ|
≤ |(Π(τ) − Π(sjuiω)) · ~e(θsj

+θ0)|
+ |(Π(τ) − Π(sjuiω)) · (~eθ − ~e(θsj

+θ0))|
≤ |Π(τ) − Π(sjuiω)| + |Π(τ) − Π(sjuiω)||θ − (θsj

+ θ0)|
≤ |Π(τ) − Π(sju1ω)| + |Π(sju1ω) − Π(sjuiω)|

+ Drsj
|θ − (θsj

+ θ0)|
≤ Drsju1 + Drsj

min{ru1, ruj
} + Drsj

ru1

≤ 2Drsju1 + eDrsj
ru1 ≤ 5Drsju1 .

Now, observe that diam Πθ([sjui]) ≤ eDrsju1 for each i. Therefore, if we set

bj = 8Drsju1 then each Πθ([sjui]) lies in B(x, bj), thus (using that rsjui
≥ 1

e
rsju1 for
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each i):
µθ(B(x, bj))

(2bj)γ
≥ 1

(16De)γ
N

and this proves our claim. �

Applications to visibility. We now make remarks about the application of
the method above to visibility problems. We consider the visibility of a self-similar
set from a point. Given a point a ∈ R, we define the radial projection (centered at
a) as

πa : R
2 \ a −→ S1, πa(x) =

x − a

|x − a| .

Definition 2. We say that a set E is s-visible from a if H s(πa(E)) > 0. We
say E is s-invisible from a if H s(πa(E)) = 0.

Remark. The standard terminology is to say “visible/invisible from a” in the
case s = 1.

We observe that if E satisfies the conditions of Theorem 2.1, we can use the
radial projections of the measure µ to show that, at all points, the projected mea-
sure has infinite γ-dimensional density almost everywhere (where γ is the similarity
dimension). More precisely, given a ∈ R

2, we define µ̃a to be the restriction of µ to
Ω \Π−1(a) and define µa as the projection of µ̃a to a measure on S1 via πa ◦Π. It is
easy to see that, in the proof of Lemma 2.7, one can use Corollary 2.3 and the same
idea of aligning the 1-relatively close squares around typical points in such a way
that the radial projections of these squares have large overlap, making the measure
density big. Since the required modifications are fairly obvious, we state the result
without a proof:

Theorem 2.8. Let E ⊂ R
2 be a self-similar set for which {θu : u is a word} is

dense modulo 2π. If γ is the similarity dimension of E, then for all points a in the
plane, E is γ-invisible from a.

We also remark that in a recent work [13] of Simon and Solomyak, it is proven
that purely unrectifiable planar self-similar sets with finite H

1 measure and satisfy-
ing the open set condition are invisible from all points in the plane. This implies our
conclusion in the case d = 1. To see this, note that if d = 1 and H 1(E) > 0, dense
set of rotations implies the nonexistence of tangent directions at all points of E,
hence the pure unrectifiability of E (see [3] for an overview of tangency properties).

3. Favard length in some special cases

The Favard length of a planar set E is defined as

Fav E =

∫ π

0

L
1(Eθ) dθ

where Eθ is the orthogonal projection of E onto lθ. It can be interpreted as a
measure of the probability of Buffon’s needle hitting the set E. By Besicovitch’s
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well-known theorem, irregular 1-sets project to zero measure in Lebesgue almost all
directions, therefore their Favard length is zero (see [3] for details). One can then
ask about the speed at which Fav E(ρ) decreases to zero, where E(ρ) denotes the
ρ-neighborhood of the set E.

Mattila has shown [8] that c/(− log ρ) is a lower bound for 1-sets. There is no
upper bound that applies to all 1-sets, but one may give upper bounds for certain
classes of sets.

In [12], Peres and Solomyak gave an upper bound for self-similar 1-sets in the
plane that do not involve rotations and satisfy the strong separation condition.
Defining log∗ x as in (3), they proved that for such sets C exp(−a log∗(1/ρ)) for
some a, C > 0 is an upper bound. This bound is of course far from the lower bound
given by Mattila, and it is not known whether it can be improved or not. Peres
and Solomyak also gave an example of a random Cantor set for which the expected
upper bound is of the same order as Mattila’s lower bound. It is an interesting
problem to give more accurate estimates for deterministic sets. The method used
in this section is based on the approach in [12].

Now we state our second main result. We are going to consider a homogeneous
self-similar set E in the plane of similarity dimension 1, defined by m maps. Let
r = 1/m be the common contraction factor of the homogeneous system. We are
assuming that the defining maps produce two non-rotating maps of the same con-
traction rate and a map containing rotation by a Diophantine multiple of 2π. By
composing the non-rotating maps with themselves to remove reflections if necessary,
we can assume that

(a) There are two distinct words u, v with |u| = |v| = k, Ou = Ov = 1 and
θu = θv = 0;

(b) One of the defining maps, say, F1, contains irrational rotation by θ1, where
θ1/2π is (c, d)-Diophantine.

Under these assumptions, we are going to prove the following:

Theorem 3.1. Given any δ > 0, there exists A > 0 such that

(7) L
1(Eθ(ρ)) ≤ A

(log(− log ρ))B

uniformly for all θ, where B = log 2/((1 + δ)k(d + 1) logm). Thus,

Fav(E(ρ)) ≤ πA

(log(− log ρ))B
.

Observe that it suffices to prove this theorem for a sequence of ρn decreasing
to 0 such that log(− log ρn+1)/ log(− log ρn) is bounded. Also for simplicity, we will
assume that the diameter of E is 1 (this will only change the constant A). For a
word u, we have ru = r|u| since the system is homogeneous.
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Before we begin the proof, we mention an equivalent reformulation of this result:
Let C be the convex hull of the self-similar set E. Let

Cn =
⋃

u: |u|=n

Fu(C).

Observe that there exists a constant K independent of n and K translation maps
in the plane such that, for ρ ≤ rn, E(ρ) can be covered by these K translates of
Cn. This follows from the fact that C contains a (nontrivial) ball since there are
irrational rotations. Therefore, Fav(Cn) is comparable (with uniform constants) to
Fav(E(rn)). Note that if we take ρ = rn, we have n = log ρ/ log r therefore (7)
becomes

(8) L
1(Cθ

n) ≤ Ã

(log n)B
.

In this formulation, the lower bound given for Fav(Cn) by Mattila’s result is c/n.
The first stage in the proof is to construct 2n (0, θ)-relatively close words for any

given n: Let u, v as in condition (a) given above. Let k = |u| = |v|. Note that u and v
satisfy the definition of (0, θ) relative closeness if we choose ω = ω(u, v) = ū and θ to
be perpendicular to the line connecting Π(uω) to Π(vω) (or any line if these points
coincide). Now we observe that uu, uv, vu, vv are also mutually (0, θ) relatively
close words with the same θ and ω used for u and v: Clearly Π(uω) = Π(uuω)
and Π(vω) = Π(vuω). And since Fu, Fv contain no rotation, the points Π(uvω) and
Π(vvω) lie on the line connecting Π(uuω) to Π(vuω). Continuing this procedure, for
any n, we can obtain 2n words u1, . . . , u2n that are mutually (0, θ)-relatively close
and with |ui| = kn for all i = 1, . . . , 2n.

By our assumption θ′ := θ1/2π is (c, d)-Diophantine, that is, for any integers
N, M we have

(9) |Nθ′ − M | > cN−d.

Observe that, given any ε > 0, by the pigeonhole principle, there are integers N ≤ 1
ε

and M such that
|Nθ′ − M | < ε.

Combined with (9), we have

(10) ε > |Nθ′ − M | > cεd.

Now we make the following observations:

Observation 1. There exists a constant c1 = c1(θ
′) such that, given any ε,

there is an integer p < c1ε
−d−1 such that the numbers

θ1, θ11, θ111, . . . , θ1p

form an ε-net modulo 2π. Therefore, given any word s, angle φ and number ε, there
is a word ts = 1p with |ts| < c1ε

−d−1 such that |θsts − φ| < ε.

Observation 2. Simple geometric arguments similar to those in the previous
section (e.g. see the computation in (6)) show that, given (0, θ)-relatively close
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cylinders u1, . . . , u2n, if the word s is such that Os = 1 and |θs + θu1 − θ0| < r|u1|,
then the cylinders su1, . . . , su2n are (1, θ0)-relatively close.

Now we fix an n and the corresponding ui, with |ui| = kn. Let

s(n) = 2c1m
(d+1)kn

Ln = ms(n)s(n)2

ρn = rLn.

(11)

Given θ0, our purpose is to prove (7) with θ = θ0, ρ = ρn, and n sufficiently
large. Note that log(− log ρn+1)/ log(− log ρn) is bounded, therefore this suffices for
the general proof.

Let G be the set of words of length Ln. We partition G into two subsets: Those
words that contain u1 “at the right place” in the sense of Lemma 2.2, and others.
Let

G1 = {α ∈ G | ∃s : su1 is a prefix of α with Os = 1, |θs + θu1 − θ0| < r|u1|}
and define G2 = G \ G1. For a word α denote Eα = Fα(E). As before, we denote
by Eθ0

α (ρ) the projection of Eα(ρ) onto lθ0 . Then

(12) Eθ0(ρn) =
⋃

α∈G1

Eθ0
α (ρn) ∪

⋃

α∈G2

Eθ0
α (ρn) =: H1 ∪ H2.

We first give an upper bound for the number of words in G2:
By the observations above, there is a word t of length no more than c1(r

|u1|)−d−1

= s(n)/2 such that Ot = 1 and |θt + θu1 − θ0| < r|u1|. Then we have |tu1| ≤
s(n)/2 + kn ≤ s(n), for n sufficiently large. Write Ω \ [tu1] as a disjoint union of
cylinders represented by words of length |tu1|. Now for each cylinder [s] in this
union, we can find a word ts of length no more than s(n)/2 that satisfies Osts = 1
and |θsts + θu1 − θ0| < r|u1|. Then |tsu1| ≤ s(n), and we repeat this procedure by
writing [s] \ [stsu1] as a disjoint union of cylinders represented by words of length
|stsu1| ≤ |s| + s(n) for each s. Note that at each stage we remove words that are
in G1. After Ln/s(n) steps we will have obtained a collection of words of length no
more than Ln that contain all possible prefixes for the words in G2. Note that at each
step, from each cylinder we remove a subcylinder represented by a suffix of length
≤ s(n). Therefore, by counting the number of remaining cylinders (represented with
words of length Ln) we can obtain this way, we get

(13) #G2 ≤ (ms(n) − 1)Ln/s(n) = mLn

(
1 − 1

ms(n)

)ms(n)s(n)

≤ mLne−s(n).

Recall that diamEα = r|α| with r = 1
m

. Then, in the view of (11), we get

(14) L
1(H2) ≤

∑

α∈G2

diam Eθ0
α (ρn) ≤ (#G2)3r

Ln ≤ 3e−s(n).

Now we turn our attention to the words in G1. A word in G1 is of the form
su1β where Os = 1 and |θs + θu1 − θ0| < r|u1|. Then the words su1, . . . , su2n are
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mutually (1, θ)-relatively close by Observation 2. Also recall that for any word α,
µ([α]) = r|α| = diam Eα. Therefore, we can find a constant η (not depending on n
or x) such that for each x ∈ H1, there is a ball B(x, Rx) with

µθ0(B(x, Rx)) ≥ 2nηRx.

This can be proved by arguing as in the proof of Proposition 2.7. Indeed, if x ∈
Π([su1]), we can take Rx = 3r|su1| and η = 1

3
. Then by Vitali Covering Theorem

this implies that

(15) L
1(H1) ≤ ζ2−n

for some ζ not depending on n. Therefore, by (12), our theorem will be proved if
we can put upper bounds to 2−n and e−s(n) in terms of ρ = ρn as in (7).

By (11), we have

log ρn = −Ln log m = −ms(n)s(n)2 log m

thus

log(− log ρn) = s(n) log m + 2 log s(n) + log log m ≤ (1 + log m)s(n)

for n sufficiently large, which implies

(16) s(n) = 2c1m
kn(d+1) ≥ 1

1 + log m
log(− log ρn).

Taking logs above, we get

log(2c1) + k(d + 1)n log m ≥ log(1/(1 + log m)) + log log(− log ρn).

which implies that, for any δ > 0

(17) n ≥ 1

(1 + δ)k(d + 1) log m
log log(− log ρn).

for n ≥ N(δ). Setting B = log 2/((1 + δ)k(d + 1) log m) we get

2−n =
1

en log 2
≤ 1

eB log log(− log ρn).
=

1

(log(− log ρn))B
.

And finally, by (16), we have (for large n)

e−s(n) ≤ 1

e
log(− log ρn)

1+log m

=
1

(− log ρn)1/(1+log m)
≤ 1

(log(− log ρn))B
.

The proof is complete. �
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