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Abstract. Stretch lines are geodesics for Thurston’s asymmetric metric on Teichmüller space

[10]. Each stretch line is directed by a complete geodesic lamination. An anti-stretch line directed

by the complete geodesic lamination µ is a stretch line directed by µ traversed in the opposite

direction. It is not necessarily a geodesic. In this paper, we tackle the problem of the convergence

(or non-convergence) of anti-stretch lines towards a point of Thurston’s boundary of Teichmüller

space. We show that an anti-stretch line directed by a complete geodesic lamination µ which

is made up of a compact and uniquely ergodic measured sublamination γ, with its other leaves

spiraling around it, converges to the projective class of γ.

Introduction

Let S be a surface obtained by removing finitely many points—called the punc-
tures—from an orientable closed surface Ŝ, in such a way that the Euler character-
istic of S is negative. The Teichmüller space T (S) of S is the set of isotopy classes
of complete hyperbolic metrics with finite area on S. If S is endowed with such a
complete hyperbolic metric of finite area, then each puncture has a neighborhood
which is isometric to the quotient of {z = x + iy ∈ C : y > a > 0} ⊂ H

2 by the
group generated by the translation z 7→ z+1. Such a neighborhood is called a cusp.

In what follows, hyperbolic structure shall stand for an isotopy class of complete
hyperbolic metrics with finite area on S, that is, an element of T (S).

This paper is about a geometry on T (S). This geometry is defined by an
asymmetric Finsler metric L which measures the smallest Lipschitz constant of
homeomorphisms isotopic to the identity from a hyperbolic structure on S to another
one.

Some (oriented) geodesic rays for this metric are obtained by stretching a given
hyperbolic structure along a given complete geodesic lamination, that is, along a
geodesic lamination µ such that every component of S \ µ is isometric to the in-
terior of an ideal triangle. When the surface S has punctures, simple examples of
complete geodesic laminations are provided by ideal triangulations of S, that is, by
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triangulations of the surface Ŝ whose vertices are the punctures and whose edges
in S are (infinite) geodesics. Then stretching a hyperbolic structure on S along
such a kind of complete geodesic lamination µ amounts to increasing by the same
multiplicative factor the shifts between adjacent ideal triangles of S \ µ (see Figure
1). We shall recall the general definition of stretching in the next section.

The stretch line directed by µ and passing through g ∈ T (S) is an oriented
geodesic line in T (S) extending naturally the oriented ray obtained by stretching
the structure g along the complete geodesic lamination µ. An anti-stretch line is
a stretch line with the reverse orientation. For instance, if S has punctures and if
µ is an ideal triangulation, then following the anti-stretch line corresponding to a
stretch line directed by µ, accordingly to its orientation, amounts to decreasing by
the same factor the shifts between adjacent ideal triangles of S\µ. As aforesaid, one
of the main features concerning the metric L is that it is not symmetric. Therefore,
an anti-stretch line is not necessarily a geodesic. (See [10], [6] and [9] for an account
of this geometry.)

Figure 1. A stretch along an ideal triangulation of an ideal square in H
2. The shift between

the two adjacent ideal triangles is the signed length of the segment in bold line.

The Teichmüller space T (S), endowed with the topology making close two hy-
perbolic structures g, g′ ∈ T (S) for which the g-length and the g′-length of any
simple closed geodesic are close, has a celebrated compactification by PL 0(S),
the space of projective classes of measured geodesic laminations with compact sup-
port. The boundary of T (S) provided by this compactification is called Thurston’s
boundary of Teichmüller space.

We are interested here in the convergence (or non convergence) of stretch lines,
in both directions, towards Thurston’s boundary of Teichmüller space. Specifically,
consider the stretch line in T (S) directed by µ and passing through the point g.
Let denote it by t 7→ gt, t ∈ R, where g0 = g and where t is the signed arc-length
parameter for which the orientations of R and of the stretch line match. We shall say
that the stretch line positively converges towards a point of Thurston’s boundary
if gt converges to a point of PL 0(S) as t → +∞, and negatively converges if
gt converges as t → −∞. Our problem is to determine whether the stretch line
positively and negatively converges and, in that case, to recognize the limit points.

The positive convergence has been fully solved by Papadopoulos in [6], where a
partial answer to the negative convergence has also been given. He first showed that
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any stretch line directed by a complete geodesic lamination µ positively converges
to a point on the boundary and gave this limit point (see Theorem 1.9 below).
Moreover, he proved that when µ supports a unique (up to scalar multiples) trans-
verse measure of full support, the stretch line directed by µ negatively converges
and the negative limit point is the projective class of µ. One of our main results
relaxes Papadopoulos’ hypothesis, namely, the negative convergence is shown for
all stretch lines directed by complete geodesic laminations µ whose maximal (with
respect to inclusion) compact measured part—called the stump of µ—is not empty
and supports a unique transverse measure, up to scalar multiples (see Theorem 3.2).
In particular, our theorem also deals with punctured surfaces. As one may expect,
the limit point is the projective class of the stump.

1. A short geometric account

In this section, we briefly recall and define the notions we are going to use
throughout our paper. We first give some basic facts concerning geodesic lamina-
tions and measured foliations and then recall the definition of stretches.

Let S be endowed with a fixed hyperbolic metric. A geodesic lamination λ on S

is a union of pairwise disjoint simple geodesics—the leaves of λ—forming a closed
subset of S. A transverse measure (of full support) on a geodesic lamination is
a positive Radon measure defined on each compact arc a transverse to λ, whose
support is exactly a ∩ λ and which is invariant if we slide a along the leaves of λ

by an isotopy respecting these leaves. A geodesic lamination carrying a transverse
measure is called a measured geodesic lamination. The set of all measured geodesic
laminations of compact support is denoted by ML 0(S). Since R

∗
+ acts on ML 0(S)

by multiplying transverse measures by positive scalars, it is natural to consider the
associated projective space PL 0(S). Thurston showed that PL 0(S), endowed
with the quotient topology coming from that of ML 0(S) (see below), is compact
and he used this space to compactify T (S) (see [4] for an equivalent description
of Thurston’s compactification using measured foliations, in the case where S is
compact).

Definition 1.1. (Spiral) An infinite half-leaf l of a geodesic lamination λ is said

to spiral around a leaf l′ of λ if it does not go out to a cusp and if there are lifts l̃

and l̃′ of l and l′ to the universal covering which have a common endpoint on the
circle at infinity. A leaf l of λ is said to spiral around a geodesic sublamination γ of
λ if there is a leaf l′ of γ around which a half-leaf of l spirals.

An isolated spiral of a geodesic lamination λ is an isolated leaf that spirals
around some sublamination of λ.

The existence of a transverse measure on λ rules out isolated spirals. Moreover,
leaves of λ going out to cusps prohibit the existence of compactly supported trans-
verse measures on λ. Thus, a geodesic lamination does not always carry a transverse
measure of compact support. Nevertheless, when the geodesic lamination λ is not
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exclusively made up of leaves going in both directions towards cusps, there always
exists a non-empty compact sublamination of λ admitting a transverse measure.

Definition 1.2. (Stump) Let λ be a geodesic lamination. The stump of λ is
the maximal, with respect to inclusion, compact sublamination of λ admitting a
transverse measure.

Note that the stump may carry a whole family of transverse measures, distinct
even up to positive scalar multiplication. Let us now check that the stump is well-
defined, and let us give a criterion for it to be non-empty.

Lemma 1.3.

(1) Any geodesic lamination has a well-defined stump (which might be empty).
(2) The stump of a geodesic lamination is empty if and only if the leaves of the

lamination all go in both directions towards cusps.

Proof. (1) Suppose that a geodesic lamination λ admits two stumps γ1 and
γ2. By the uniqueness of the decomposition of λ as a union of leaves, γ1 and γ2

cannot intersect transversely (see [2]). Therefore, γ1 ∪ γ2 is a measured compact
sublamination of λ. By maximality of the stumps γi, i = 1, 2, we have γ1 = γ2

setwise. This proves the first assertion.
(2) As previously pointed out, if there exists a leaf of λ admitting one end not

converging to a cusp, then this end spirals around a compact measured geodesic
sublamination of λ. The stump of λ contains that sublamination and is therefore
non-empty. Conversely, if all the leaves of λ go at both ends towards cusps, then
none of them can belong to a compact sublamination. Therefore, the stump of λ is
empty. �

Consequently, a geodesic lamination λ is the union of its compact stump (which
might be empty) and of finitely many isolated and infinite leaves whose ends either
spiral around γ or go towards cusps (see [3], [2]).

A priori, a geodesic lamination has been defined using a fixed hyperbolic metric
on S. It turns out that there is a natural correspondence between the geodesic
laminations associated to any two hyperbolic metrics. This correspondence enables
us to define a geodesic lamination without specifying any underlying hyperbolic
metric. In fact, corresponding geodesic laminations defined for various hyperbolic
metrics on S are isotopic on S (see [11]). This correspondence will be extensively
used throughout this paper. It stems from the fact that the circle at infinity as-
sociated to a hyperbolic universal covering of S can be defined topologically (for
instance, using infinite expansions in terms of elements of the fundamental group of
S), thus giving a canonical one-to-one correspondence between the circles at infinity
of any two hyperbolic universal coverings over S. This correspondence restricts to
the correspondence between geodesic laminations just mentioned above.

A geodesic lamination λ cuts the surface S into finitely many subsurfaces with
boundary. In more rigourous terms, S \ λ is a union of finitely many subsurfaces
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and, for any hyperbolic metric on S, the completion of such a subsurface is a com-
plete hyperbolic surface of finite area with totally geodesic boundary. A geodesic
lamination µ is complete if all the components of S\µ are interiors of ideal triangles.
This is equivalent to the fact that no extra leaf can be added to µ. The edges of
the finitely many ideal triangles of S \ µ are leaves of µ and they are usually called
the frontier leaves of µ. In general, the union of frontier leaves forms a proper and
dense subset of µ: there are examples of geodesic laminations that possess infinitely
many leaves. (In those examples, the intersection of an arc transverse to µ with the
leaves of µ is a Cantor set.)

Definition 1.4. (Glued edge-to-edge) Two ideal triangles are glued edge-to-edge
if they share a common frontier leaf.

For instance, the ideal triangles of an ideal triangulation are glued edge-to-edge.
In what follows, the transverse measures on geodesic laminations we shall con-

sider will always be compactly supported. Consequently, when we will talk about a
measured geodesic lamination λ, it will be always tacitely assumed to be compact.
When we will consider a measured geodesic lamination λ forgetting its transverse
measure, we shall sometimes talk about the topological lamination associated to λ

and we shall also denote it by the same letter. For instance, a geodesic lamina-
tion λ will be said to be topologically contained in a geodesic lamination µ if the
topological geodesic lamination λ is contained (as a set) in the topological geodesic
lamination µ.

Given a hyperbolic structure g ∈ T (S), any measured geodesic lamination λ

has a well-defined length, denoted by lengthg(λ), which can be defined as follows:
when λ is a simple closed geodesic, lengthg(λ) equals the length of λ with respect to
g. If one denotes by kλ the simple closed geodesic λ endowed with a weight k > 0
(or equivalently, endowed with the transverse measure that is k times the number of
intersection points with λ), then we set lengthg(kλ) = k lengthg(λ). A fundamental
theorem of Thurston asserts that the set of weighted simple closed geodesics is dense
in ML 0(S), for a natural topology we shall recall below (see also [4]). The notion
of length for measured geodesic laminations is the unique continuous extension of
the length defined for weighted simple closed geodesics. Another way to define the
length of a measured geodesic lamination λ is by covering λ with finitely many
rectangles of disjoint embedded interiors, R1, . . . , RN , glued along their edges, such
that, in each rectangle Ri, the leaves of λ∩Ri join one “vertical” edge to the other.
If one chooses a vertical edge ∂Ri for each rectangle Ri, i = 1, . . . , N , and if l(x)
denotes the leaf of λ ∩ Ri passing through x ∈ λ ∩ ∂Ri, then one has

lengthg(λ) =
N∑

i=1

∫

λ∩∂Ri

lengthg(l(x)) dλ(x),

where dλ denotes the transverse measure of λ (see Figure 2).
Given two measured geodesic laminations λ and µ, one can define their inter-

section number i(λ, µ) as follows: Cover λ with finitely many rectangles of disjoint
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embedded interiors, R1, . . . , RN , glued along their edges, such that, in each rectan-
gle Ri, the leaves of λ ∩ Ri join one vertical edge to the other, as above. Moreover,
we can choose the rectangles in such a way that the leaves of µ intersect λ (if any)
in the interior of those rectangles. Then,

i(λ, µ) =
N∑

i=1

∫

λ∩µ∩Ri

dλdµ,

where dλ and dµ denote the transverse measures of λ and µ respectively.

Ri

xl(x)

Figure 2. The picture shows three rectangles covering a (part of a) measured geodesic lamina-

tion λ. The length is computed by first summing in each rectangle Ri the lengths of all segments

l(x) using the transverse measure of λ and then by summing the numbers obtained for every

rectangle.

When λ and µ are simple closed geodesics (seen as measured geodesic lami-
nations endowed with the transverse measure given by the number of intersection
points), one recovers the notion of geometric intersection number: Specifically, let
S denote the set of homotopy classes of essential simple closed curves in S. Let
A, B ∈ S . Then one can define the geometric intersection number i(A, B) by

i(A, B) = inf
a∈A,b∈B

♯a ∩ b.

If, for a fixed hyperbolic metric on S, α and β denote the unique geodesic represen-
tatives of A and B respectively, one has i(A, B) = i(α, β) = ♯α∩β. (Note that there
is a bijection between R

∗
+×S and the set of weighted simple closed geodesics.) The

topology on ML 0(S) is defined by saying that two measured geodesic laminations
λ and µ are close when the functions i(λ, ·) and i(µ, ·) defined on S are close for
the weak topology.

A measured foliation F is said to be standard near the cusps if every puncture
has a neighborhood in which the leaves of F are homotopic to that puncture and if
the transverse measure of a (non-compact) arc going out to a cusp is infinite. (Of
course, if the surface has no cusp, then all the measured foliations are standard near
cusps.)
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There is a standard construction which gives a correspondence between the set
of equivalence classes of measured foliations that are standard near the cusps and
the set of measured geodesic laminations, including the empty lamination if and
only if the surface S has cusps (see [5], [7]); the equivalence relation on measured
foliations is generated by isotopies and Whitehead moves (see [4]). Under this
correspondence, a weighted simple closed geodesic (or, equivalently, an element of
R

∗
+×S ) corresponds to the equivalence class of a foliation that is made up of finitely

many foliated cylinders glued along their boundaries, one around each puncture and
one whose leaves are homotopic to the closed geodesic.

For a given equivalence class F of measured foliations, one can also define the
function i(F, ·) on S which evaluates the minimal transverse intersection of an
element A ∈ S with respect to any representative of F . One can extend this notion
to a notion of intersection number i(L, M) between two classes of measured foliations
L, M (See [8]). Then one has, for a fixed hyperbolic structure on S, i(L, M) =
i(λ, µ), where λ and µ are the measured geodesic laminations corresponding to L

and M respectively. The notation i(λ, M) = i(L, µ) also makes sense in view of the
above correspondence.

horocycles centered

at one ideal vertex

Arc of length one
Non-foliated region

Figure 3. The horocyclic foliation in an ideal triangle.

We now recall some basic notions about stretches (see [10]). First of all, let us
fix a complete geodesic lamination µ on S. To any hyperbolic metric m on S is
associated a well-defined partial measured foliation Fµ(m), the latter being called
the horocyclic foliation associated to the hyperbolic metric m and to the complete
geodesic lamination µ. Let us briefly recall its construction. Let µ also denote the
geodesic representative of µ with respect to the metric m. The partial foliation
Fµ(m) will be first contructed in the interior of each ideal triangle of S \ µ and will
then be extended to the whole surface S by continuity. So we consider an ideal
triangle T . We partially foliate it with arcs contained in horocycles centered at the
various vertices of T in such a way that arcs coming from two vertices eventually
meet tangentially at some point (see Figure 3). There is only one way to do this.
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Note that all these arcs are perpendicular to the edges of T . Also note that the three
arcs that meet tangentially have length one and that they enclose a non-foliated
triangle in T . The vertices of the non-foliated triangle are called the distinguished
points of T . A transverse measure for this foliation of T is defined by requiring that
the measure of a compact arc a contained in an edge of T is equal to the length of
a. This construction defines Fµ(m) in the interior of each ideal triangle of S \ µ.
It is then extended to the whole surface; this is possible because the leaves of µ

form a Lipschitz field of directions. If one wants to consider a genuine foliation
(that is, not a partial foliation), one can collapse each triangular non-foliated region
onto a tripod. Passing to the equivalence class g ∈ T (S) of m, this gives rise to
a well-defined isotopy class of measured foliations on S denoted by Fµ(g) and also
called the horocyclic foliation (even if it is an equivalence class).

Every horocyclic foliation is by construction transverse to µ and standard near
the cusps. The latter property is equivalent to the completeness and the area-
finiteness of the hyperbolic structure g the horocyclic foliation Fµ(g) comes from.
Hence, one has a map

φµ : T (S) → MF 0(S), g 7→ Fµ(g),

where MF 0(S) denotes the space of equivalence classes of measured foliations. A
fundamental result of Thurston (see [10] Proposition 9.2 and Proposition 10.9) is
the following

Theorem 1.5. (Thurston [10]) The map φµ is a homeomorphism onto its image,
which is made up of all classes of measured foliations that are transverse to µ and
standard near the cusps.

The stretch line directed by µ and passing through g ∈ T (S) is the curve

t 7→ gt := φ−1

µ (etFµ(g)), t ∈ R, g = g0,

where the notation kFµ(g), k ∈ R
∗
+, means that the transverse measure of the (class

of the) foliation Fµ(g) has been multiplied by the scalar k. The stretch ray directed
by µ and emanating from g ∈ T (S) is the curve

t 7→ gt := φ−1

µ (etFµ(g)), t ≥ 0, g = g0.

Now recall that there is a natural correspondence between equivalence classes
of measured foliations that are standard near the cusps and measured geodesic
laminations (including the empty lamination if and only if the surface has cusps).
We shall often prefer considering the measured geodesic lamination λµ(g) associated
to the horocyclic foliation Fµ(g) under this correspondence instead of the foliation
itself. We shall call it the horocyclic measured geodesic lamination or the horocyclic
lamination for short. We emphasize right now that the horocyclic measured geodesic
lamination might be empty.

Lemma 1.6. Let S be a surface equipped with a complete geodesic lamination
µ. There exists a hyperbolic structure g ∈ T (S) such that λµ(g) = ∅ if and only if
S has at least one cusp and µ is an ideal triangulation.
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Remark 1.7. Let γ denote the stump of µ. Using Lemma 1.3, another way to
state the lemma above would be

γ 6= ∅ ⇐⇒ λµ(g) 6= ∅, ∀g ∈ T (S).

Proof. First note that, in the case where S has cusps and the complete geodesic
lamination µ is an ideal triangulation, it quite is easy to produce a hyperbolic
structure g for which λµ(g) = ∅: It is obtained by gluing the ideal triangles in
such a way that the distinguished points of two adjacent triangles coincide. This
construction gives rise to a horocyclic foliation made up of foliated cylinders, glued
together along their boundaries, each of them representing a foliated neighborhood
of a cusp. The geodesic lamination corresponding to that (class of) foliation is the
empty geodesic lamination.

Conversely, assume that there exists g ∈ T (S) such that λµ(g) = ∅. Consider
the horocyclic foliation Fµ(g) associated to λµ(g). As above, S must have at least
one cusp and Fµ(g) is made up of foliated cylinders, each representing a foliated
neighborhood of a cusp. By construction, the leaves of Fµ(g) are transverse to µ

and Fµ(g) is standard near cusps. In particular, any leaf of µ entering a foliated
cylinder of Fµ(g) cannot escape from that cylinder, and therefore goes out to a cusp.
This proves that µ is an ideal triangulation. �

If µ is a complete geodesic lamination of non-empty stump γ, then one has by
construction

i(Fµ(g), γ) = i(λµ(g), γ) = lengthg(γ).

Let MF 0(µ) = φµ(T (S)), that is, let MF 0(µ) be the set of equivalence
classes of measured foliations transverse to µ and standard near the cusps. Let
ML 0(µ) denote the corresponding set of measured geodesic laminations (the empty
lamination belongs to it if and only if µ is an ideal triangulation). We shall say
that a geodesic lamination λ is totally transverse to µ if each leaf of λ intersects
µ transversely infinitely many times and if each leaf of µ that does not go to a
cusp meets λ transversely infinitely many times. (In counting intersections, the
leaves are parametered by reals. With this convention, a simple closed geodesic
meets transversely infinitely many times any compact transverse arc.) Thurston
proved ([10], Proposition 9.4) that the non-empty measured geodesic laminations
contained in ML 0(µ) are exactly those measured geodesic laminations that are
totally transverse to µ. We want to understand how the stump γ of µ is intersected
by such a geodesic lamination λ ∈ ML 0(µ). Assume γ to be non-empty and
let ML 0(γ) denote the subset of ML 0(S) made up of those compact measured
geodesic laminations that meet every component of γ transversely. We have

Lemma 1.8. ML 0(γ) = ML 0(µ).

Proof. Let us first show that ML 0(γ) ⊂ ML 0(µ). Let λ ∈ ML 0(γ). First
note that no leaf of λ can be contained in µ: By contradiction, assume that there
exists a leaf of λ contained in µ. This leaf cannot be a leaf of γ since λ meets every
components of γ transversely. Therefore, it is contained in an isolated leaf of µ
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which, because of the compactness of λ, spirals at both ends around γ. But such
a spiral eventually meets another leaf of λ transversely, which is a contradiction.
(Recall that the leaves of µ \ γ that spiral recursively come back around leaves of
γ.) Since µ is complete and λ is compact, this implies that each leaf of λ meets
infinitely many times µ transversely (with the convention above). Now, if l is a leaf of
µ that spirals around the stump γ, then l meets infinitely many times λ transversely.
Therefore, each leaf of µ which does not go to a cusp meets λ transversely infinitely
many times. Thus, λ is totally transverse to µ, that is, λ ∈ ML 0(µ).

Let us show the reverse inclusion. Let λ ∈ ML 0(µ). Since every leaf of γ ⊂ µ

does not go to a cusp and since λ is totally transverse to µ, each leaf of γ meets
infinitely many times λ transversely, which implies that λ meets every component
of γ transversely. Therefore, λ ∈ ML 0(γ).

This concludes the proof. �

We close this section with Papadopoulos’ theorem about positive convergence
of stretch lines ([6], Theorem 5.1 p.169).

Theorem 1.9. (Papadopoulos [6]) A stretch line passing through a point at
which the horocyclic lamination is not empty positively converges to Thurston’s
boundary of Teichmüller space. The positive limit point is the projective class of
the horocyclic lamination.

2. Asymptotic behavior of lengths along an anti-stretch line

2.1. Classification theorem. In this section we describe the asymptotic
behavior of the lengths of measured geodesic laminations as one follows an anti-
stretch line. The classification we obtain depends upon the intersection pattern of
the measured geodesic laminations with the stump, and is similar to the classifica-
tion obtained in [9] as one follows a stretch line, the roles of the stump and of the
horocyclic lamination having been interchanged. As a by-product of this classifica-
tion, we can push further an analysis first made by Papadopoulos in [6] (Lemma
5.3 p.170) on the properties of cluster points of an anti-stretch line (See Corollary
3.1). This enables us to solve the negative convergence question for a whole fam-
ily of stretch lines, namely those directed by complete geodesic laminations whose
stumps are uniquely ergodic (See Theorem 3.2).

Theorem 2.1. (Classification Theorem) Let µ be a complete geodesic lamina-
tion of stump γ and let t 7→ gt, t ∈ R, be a stretch line directed by µ. The length
of the measured geodesic lamination α of compact support behaves asymptotically
according to the cases enumerated below:

(1) If α is topologically contained in γ, then lim
t→−∞

lengthgt
(α) = 0.

(2) If α has a nonempty transverse intersection with γ, then lim
t→−∞

lengthgt
(α)

= +∞.
(3) If α is disjoint from γ, then {lengthgt

(α) : t ≤ 0} is bounded in R
∗
+.
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Remark 2.2.

(1) Putting Theorem 2.1 and Theorem 2 of [9] together, we obtain the following
table which gives the asymptotic behavior of lengthgt

(α), α ∈ ML 0(S),
along a stretch line, as t converges to +∞ and −∞. This behavior depends
on the intersection pattern of α with the stump γ and the horocyclic lami-
nation λ.

α ∩ γ = ∅ α ∩ γ = ∅ α ∩ γ 6= ∅ α ∩ γ 6= ∅
α ∩ λ = ∅ α ∩ λ 6= ∅ α ∩ λ = ∅ α ∩ λ 6= ∅

t → +∞
< ∞ 0 if α ⊆ λ < ∞ 0 if α ⊆ λ

∞ if α * λ ∞ if α * λ

t → −∞
< ∞ < ∞ 0 if α ⊆ γ 0 if α ⊆ γ

∞ if α * γ ∞ if α * γ

(2) If the stump γ is empty, then µ is an ideal triangulation of S. In this case,
for any α ∈ ML 0(S), α is disjoint from γ and the set {lengthgt

(α) : t ≤ 0}
is bounded in R

∗
+. In fact, there exists a hyperbolic structure g∞ ∈ T (S)

such that all the stretch lines directed by µ and passing through points g

different from g∞ negatively converge towards g∞. The hyperbolic structure
g∞ is obtained by gluing the ideal triangles of S \ µ edge-to-edge in such a
way that the distinguished points of any two adjacent ideal triangles coincide.
Using the homeomorphism φµ of Theorem 1.5, this structure is equivalently
described by the fact that λg∞(µ) is empty (see Lemma 1.6). Stretching g∞
along µ does not change anything, that is, the stretch line directed by µ

passing through g∞ is a point.

2.2. Proof of the Classification Theorem. Before proving Theorem 2.1,
we make a preliminary discussion about rectangular coverings.

Let µ be a complete geodesic lamination of stump γ and let t 7→ gt, t ∈ R, be
a stretch line directed by µ.

Figure 4. The picture shows three rectangles covering a (part of a) measured geodesic lami-

nation α (in dotted lines). Some leaves of µ are represented in bold lines.

Let α be a measured geodesic lamination and assume that α has a nonempty
transverse intersection with µ. Cover α by finitely many rectangles, R1, . . . , RN , of
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disjoint embedded interiors, glued along their edges, such that, in each rectangle Ri,
the leaves of α∩Ri, i = 1, . . . , N , all join the vertical edges of Ri. Moreover, we can
require that the leaves of µ cross the rectangles from the interior of one horizontal
edge to the interior of the other (see Figure 4).

This construction can be made independent of the hyperbolic structure gt: Con-

sider the preimage µ̃ of µ in the universal covering S̃ of S. Any endpoint of a geodesic
not contained in µ̃ is the limit of a nested family of half-spaces bounded by edges of

ideal triangles of S̃\µ̃. Since a geodesic of S̃ is determined by its endpoints and since
it intersects a leaf of µ̃ at most once, each leaf of α is determined by its intersection
pattern with the leaves of µ̃ (see Figure 5). This pattern does not depend upon
the underlying hyperbolic structure. Now it is easy to construct a rectangular cover
R1, . . . , RN of α as above such that the intersection pattern of each leaf of α∩Ri is
independent of t.

l

a

b

Figure 5. The picture shows a part of µ̃ and a geodesic l transverse to µ̃ with endpoints a, b.

The ideal triangles bound nested half-spaces and the geodesic l and its endpoints are determined

by the intersection pattern with µ̃.

In each rectangle Ri, let mi
1 and mi

2 be respectively the leftmost and the right-
most segment of µ ∩ Ri. These two segments of µ are well-defined, independently
of t, and they belong to leaves of µ we also denote by mi

1 and mi
2.

For each i = 1, . . . , N and for each t ∈ R, consider a lift R̃i of Ri to the universal

covering and denote by m̃i
1 and m̃i

2 the leftmost and the rightmost segments of µ̃∩R̃i

respectively. Denote by m̃i
1 and m̃i

2 the geodesics containing those segments as well.
These geodesics are leaves of µ̃ that project on the leaves mi

1 and mi
2.

If the geodesics m̃i
1 and m̃i

2 have no common endpoint, let δi
t be the unique geodesic

segment joining them perpendicularly. Otherwise, they have only one common
endpoint. For each i = 1, . . . , N and for each t ∈ R, set

wi
t :=

{
length(δi

t) > 0 if m̃i
1 and m̃i

2 have no common endpoint,

0 otherwise.
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Note that wi
t bounds from below the length of any curve joining m̃i

1 and m̃i
2. In

particular, wi
t bounds from below the length of any curve in S joining the segments

mi
1 and mi

2. Consequently, if α(x) is the leaf of α∩Ri passing through x ∈ α∩ ∂Ri,
we have, for all t ∈ R, lengthgt

(α(x)) ≥ wi
t. Hence, for all t ∈ R,

(2.1) lengthgt
(α) =

N∑

i=1

∫

∂Ri∩α

lengthgt
(α(x)) dα(x) ≥

N∑

i=1

wi
t

(∫

∂Ri∩α

dα(x)
)
.

Note that, for all i = 1, . . . , N ,
∫

∂Ri∩α
dα(x) is strictly positive and does not depend

upon t.
The point now is to study the variations and the behavior of the functions

t 7→ wi
t as t converges to −∞. This is the object of the following lemma whose

proof is postponed to the next section. In order to state it, we first give some
definitions.

Definition 2.3. (Separating geodesic, width) Let γ1 and γ2 be two disjoint
geodesics of the hyperbolic plane. These two geodesics bound a closed infinite strip.
A strip is also called a wedge if γ1 and γ2 have one common endpoint, and this
common endpoint is the vertex of that wedge.

A geodesic γ is said to separate γ1 and γ2 if it is contained in that strip and if
it intersects any curve joining one point of γ1 to a point of γ2 .

Likewise, a wedge, an ideal triangle, is said to separate γ1 and γ2 if it is contained
in the strip and if two of its edges separate γ1 and γ2.

Two disjoint geodesics that have no common endpoint are said to be ultraparallel.
The width of a strip is, in the case where the edges of that strip are ultraparallel,

the length of the unique geodesic segment joining them perpendicularly, or is zero
otherwise.

Let µ̃ be a complete geodesic lamination of the hyperbolic plane. Two geodesics
γ1 and γ2 are said to be strongly separated by µ̃ if they are ultraparallel and if there
are infinitely many leaves of µ̃ that separate them.

Two geodesics γ1 and γ2 are said to be weakly separated by µ̃ if they are ultra-
parallel and if they are not strongly separated.

According to the preceding definitions, for each i = 1, . . . , N , the function t 7→
wi

t is the width of the strip bounded by the geodesics m̃i
1 and m̃i

2 in the hyperbolic
plane.

Now we can state the width lemma which describes the behavior of those width
functions.

Lemma 2.4. (Width lemma) Let i ∈ {1, . . . , N}. The function t 7→ wi
t is

either constantly equal to zero or is positive and strictly decreasing. Moreover, in
the latter case, we have

• lim
t→−∞

wi
t = +∞ ⇐⇒ m̃1 and m̃2 are strongly separated by µ̃.

• {wi
t}t≤0 is bounded in R

∗
+ ⇐⇒ m̃1 and m̃2 are weakly separated by µ̃.
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Assuming the validity of the width lemma, let us start the proof of the classifi-
cation theorem.

Proof of Theorem 2.1. The first assertion is easy since

∀t ∈ R, lengthgt
(γ) = i(λµ(gt), γ) = eti(λµ(g), γ) = etlengthg(γ).

Moreover, if γ is not empty, then lengthg(γ) > 0. Therefore, lim
t→−∞

lengthgt
(γ) = 0.

Let us prove Assertions (2) and (3).
Let α be a measured geodesic lamination which is not contained in µ. We shall

use inequality 2.1 to prove Assertion (2) and the positive lower bound in Assertion
(3). However, one has to choose carefully the rectangular covering R1, . . . , RN to
insure the existence of at least one non-vanishing width function.

Lemma 2.5. The rectangular cover R1, . . . , RN can be chosen in such a way
that there exists an index j ∈ {1, . . . , N} so that w

j
t > 0 for one, hence all, t ∈ R.

Proof of Lemma 2.5. It is convenient to lift the situation to the universal
covering. We keep here the notations we have already used above. We shall show
that, given a rectangular cover R1, . . . , RN of α, we can modify it slightly so that
there exists an index j for which the geodesics m̃

j
1 and m̃

j
2 are ultraparallel.

Suppose that for every i, the leaves m̃i
1 and m̃i

2 crossing R̃i have a common

endpoint pi. (Here, R̃i denotes a lift of Ri.) Consider any two adjacent rectangles

R̃i and R̃j (that is, rectangles having intersecting vertical edges) and assume that

the vertices pi and pj are different. Then we can widen a little bit the rectangle R̃i

so that m̃i
2 = m̃

j
1 (see Figure 6). (We do this operation in an equivariant way on

the preimage of the rectangular cover so that it projects onto a rectangular cover
in S.) The geodesics m̃i

1 and m̃i
2 are separated by leaves with different endpoints,

which implies that m̃i
1 and m̃i

2 are ultraparallel.

m̃i
1m̃i

1

m̃i
2

m̃i
2

m̃
j
1

m̃
j
2

R̃i R̃i

R̃j R̃j

pipi

pjpj

Figure 6. The picture shows how to widen R̃i so that m̃i

1
and m̃i

2
are ultraparallel.
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Now assume that any two adjacent rectangles R̃i and R̃j satisfy pi = pj . Take
any leaf a of α and consider a lift ã of it; this geodesic passes from one rectangle

R̃i to another adjacent one, etc. Let us cover ã by those successive rectangles and
let ρ̃ denote their union. ρ̃ contains ã and is the union of infinitely many rectangles
glued along their vertical edges. By assumption, all leaves of µ̃ intersecting ρ̃ have
a common endpoint p (see Figure 7). The rectangular cover R1, . . . , RN being com-
pact, any lift of it is compact and, therefore, ρ̃ is comprised between two horocycles
centered at p. This implies that the endpoints of ã are equal to p, which is absurd.
This concludes the proof of the lemma. �

p

Figure 7. The picture shows a part of ρ̃. All the leaves of µ̃ crossing it have a common endpoint

p. The set ρ̃ is comprised between two horocycles centered at p. Therefore, the endpoints of a lift

of a leaf of α must be p.

Let us continue the proof of Theorem 2.1.
Assume that the rectangular covering has been chosen according to Lemma 2.5.

By inequality 2.1 we have, for all t ∈ R,

lengthgt
(α) ≥

N∑

i=1

wi
tL

i(α),

where Li(α) =
∫

∂Ri∩α
dα(x). Recall that Li(α) is strictly positive and does not

depend upon t. Moreover, there exists an index j such that, for all t ∈ R, w
j
t is

strictly positive.
Suppose that α intersects γ transversely. Let k ∈ {1, . . . , N} such that γ∩Rk 6=

∅. The leaves of γ are not isolated in µ; therefore, m̃k
1 and m̃k

2 are separated by
infinitely many leaves of µ. The endpoints of m̃k

1 and m̃k
2 are distinct, except in one

particular case where γ is a union of disjoint simple closed geodesics and the other
half-leaves of µ that do not go out to a cusp spiral around the components of γ in
opposite directions, for an observer lying on γ. Such a geodesic lamination µ is said
to be particular. We will come back to that case later. For the moment, we assume
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that µ is not particular. Therefore, the geodesics m̃k
1 and m̃k

2 are strongly separated.
Hence, by Lemma 2.4, lim

t→−∞
wk

t = +∞. Therefore, lim
t→−∞

lengthgt
(α) = ∞, which

proves Assertion (2) when µ is not particular. If µ is particular, then Assertion (2)
is a consequence of the Collar Lemma, since we know from Assertion (1) that the
stump converges to zero. Thus, Assertion (2) is proved.

Suppose that α is disjoint from γ. Then, for all i = 1, . . . , N , the geodesics
m̃i

1 and m̃i
2 are not strongly separated. Moreover, by our choice of the rectangular

covering, there exists j ∈ {1, . . . , N} such that the geodesics m̃
j
1 and m̃

j
2 are weakly

separated, i.e., w
j
t > 0 for all t ∈ R. By Lemma 2.4, {wi

t : t ≤ 0} is bounded in R
∗
+

for all i = 1, . . . , N . This proves that {lengthgt
(α) : t ≤ 0} is bounded from below

in R
∗
+.
It remains to prove that {lengthgt

(α) : t ≤ 0} is bounded from above. This
case follows from the following double inequality, which has been established in [9]:

i(α, λµ(gt)) ≤ lengthgt
(α) ≤ i(α, λµ(gt)) + L(gt, α).

Let us explain the term L(gt, α) in the right-hand inequality. To do this, we
briefly explain how this inequality is established. The idea is to deform each leaf of
the measured geodesic lamination α into some curve which has minimal transverse
intersection with respect to µ and the horocyclic foliation Fµ(gt). One way to do this
is to cover the measured geodesic lamination α with rectangles R1, . . . , RN of disjoint
embedded interiors. Each leaf of α intersects a rectangle Ri from one vertical side to
the other. If a is a component of α∩Ri, then replace it by a curve a∗ with the same
endpoints which is made up of a segment contained in Fµ(gt) followed by a segment
contained in µ. Such a curve is called horogeodesic. Doing this replacement for every
component in every rectangle, one eventually obtains a family of curves whose union
α∗ is called a horogeodesic lamination associated to α. The transverse measure of
α carries out to a transverse measure on α∗. It is then possible to compute the
length L(α∗) of α∗ by summing in each rectangle the lengths of the horogeodesic
curves a∗ replacing the geodesic segments a as above and by using the transverse
measure on α∗ induced by that of α. The triangle inequality readily implies that
this length L(α∗) bounds the length of α from above. The length L(α∗) splits
into two parts, namely, the length of the part of α∗ contained in µ (the “geodesic
part” of α∗) and the length of the part contained in Fµ(gt) (the “horocyclic part”
of α∗). The horogeodesic lamination α∗ might have some superfluous intersections
with µ, materialized by disks bounded by a segment contained in a∗ and a segment
contained in Fµ(gt). One can erase them using homotopies and eventually obtains a
horogeodesic lamination associated to α which has minimal variation with respect to
Fµ(gt) and to µ. One also shows that the inequality concerning the lengths remains
valid as one erases those useless disks. Once α∗ has been put in the right position,
the length of the geodesic part of α∗ turns out to be equal to i(α, λµ(gt)). The term
L(gt, α) represents the length of the horocyclic part of α∗.

If α is disjoint from the stump γ, then the horocyclic part of α∗ is a union of
disjoint curves contained in Fµ(gt), each one made up of a concatenation of finitely
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many horocyclic segments. Since the length of every such segment is bounded form
above by one, this shows that the length of all the segments are uniformly bounded
independently of t, and so is L(gt, α). In fact, one possible upper bound for L(gt, α)
would be a constant times the number of spikes a rectangular covering of α crosses.

Moreover, one has i(α, λµ(gt)) = 0. This proves that the length of α is bounded
from above in the case where α is disjoint from γ. This proves Assertion (3) and
concludes the proof of Theorem 2.1. �

2.3. Proof of the width lemma. In this section we give the proof of the width
lemma. This lemma, reformulated as a general statement, claims the following

Lemma 2.6. (Width lemma) Let µ be a complete geodesic lamination on a
hyperbolic surface. Let µ̃ be the preimage of µ in the universal covering and let
γ1 and γ2 be two leaves of µ̃. Then, the width t 7→ wt of the strip bounded by
those two geodesics is either strictly decreasing or constantly equal to zero as one
stretches the underlying hyperbolic metric along µ with the parameter t. The first
case occurs if and only if γ1 and γ2 are ultraparallel or, equivalently, the last case
occurs if and only if the strip is a wedge. Moreover, in the first case, one has

• lim
t→−∞

wt = +∞ ⇐⇒ γ1 and γ2 are strongly separated by µ̃.

• {wt}t≤0 is bounded in R
∗
+ ⇐⇒ γ1 and γ2 are weakly separated by µ̃.

The proof is rather simple but also rather long (in a written form). The idea
is to first prove it in the particular case where the lamination µ̃ restricts in the
strip bounded by γ1 and γ2 to a lamination with a countable number of leaves (see
Lemma 2.11). The general case follows by a simple geometric argument.

For the moment, we first describe a deformation of the hyperbolic plane which
is in some intuitive sense a limit case of shear deformations (also called earthquakes)
in the same sense that parabolic transformations can be seen as limits of hyperbolic
transformations in the hyperbolic plane.

Definition 2.7. (Spreading out) Assume once for all that the hyperbolic plane
is oriented. Let γ be an oriented geodesic of H

2. It bounds two open half-planes
H+ and H−, the former lying on the right-hand side of γ.

A (right) spreading out along γ is an injective discontinuous map ι : H
2 → H

2

of the following form
{

ι|H−
= id|H−

ι|H+
=

(
Pd

)
|H+

where Pd is a parabolic isometry centered at one of the endpoints of γ.
A left spreading out along γ may be defined similarly.
A spreading out is a choice of an oriented geodesic and of a right spreading out

along that geodesic. Note that a spreading out is a local isometry of the hyperbolic
plane.

Let C be a strip, bounded by the geodesics γ1 and γ2. Let ι be a spreading out
along some geodesic separating γ1 and γ2. Let us say that the strip C ′ bounded by
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ι(γ1) and ι(γ2) has been obtained by spreading out the strip C . In what follows,
we shall always assume that, if the strip C is a wedge, then every spreading out
of C is performed so that the image strip C ′ is again a wedge. This is equivalent
to assuming that the parabolic isometry entering the definition of a spreading out
fixes the vertex of the wedge.

The process of spreading out indefinitely corresponds to choosing an infinite
sequence ιn of right spreading out’s along a fixed geodesic γ such that ιn(H+) (
ιn+1(H+) and for all compact subsets K of H

2, there is an n such that ιn(H+)∩K =
∅.

Lemma 2.8. (Spreading out lemma) Let C be a strip and let C ′ be a strip
obtained by spreading out C. If the width of C is equal to zero then so is the
width of C ′. Otherwise, the width of C ′ is strictly greater than the width of C.
Furthermore, in the latter case, if one spreads out C indefinitely, then the width
converges to infinity.

Proof. The case where the width of C equals zero or, in other words, the case
where C is a wedge follows at once from the assumption made in the definition
above: The strip C ′, which is the image of C by a spreading out, is still a wedge.
Therefore, the width remains equal to zero.

Now assume that the geodesic boundary of C is made up of two ultraparallel
geodesics γ1 and γ2. Let δ be the unique geodesic segment joining these geodesics
perpendicularly. Let γ be the oriented geodesic along which C is spread out into
C ′. By definition, γ separates γ1 and γ2. Therefore, γ intersects (transversely) δ.
We now refer the reader to the left-hand picture of Figure 8. In this picture, we
have used, in order to represent the situation, the upper half-plane model of H

2.
The geodesic γ corresponds in this picture to the vertical geodesic. The geodesics
γ1 and γ2 are respectively the left-hand and the right-hand geodesics. We also have
represented a part of the hypercycle κ around γ1 which meets γ2 tangentially; This
point of tangency is the point where the geodesic δ meets γ2. The points of the
hypercycle κ all lie at the same distance from γ1, namely the width of C.

Now consider the right-hand picture of Figure 8. It represents the previous
situation after having spread out C on the right along γ. The right-hand half-
plane determined by γ has been shifted to the right by a translation of positive
distance. The positions of γ, γ2 and κ before the spreading out ι are recalled in
dashed points and the corresponding positions after the spreading out ι are drawn in
continuous line. Consider now the hypercycle κ′ around ι(γ1) = γ1 which meets ι(γ2)
tangentially. Since ι(γ2) has been obtained by translating γ2, we have ι(γ2)∩κ = ∅.
Therefore, κ is contained in the domain bounded by the hypercycle κ′ and containing
γ1. Since the points of κ′ all lie at the same distance from γ1, namely, the width of
C ′, this proves that the width of C ′ is strictly greater than the width of C.

If one spreads out C along γ indefinitely, that is, if the distance of translation
converges to infinity, then the width also converges to infinity and the lemma is
proved. �
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δγ
γ1

γ2
ι(γ2)

κ
κ′

Figure 8.

We now clarify the link between stretching and spreading out.
Let us recall the situation we have been so far dealing with. Let µ be a com-

plete geodesic lamination on the surface S. Assume that S is endowed with some
fixed hyperbolic metric m and denote by mt the hyperbolic metric obtained by
(anti)stretching m along µ at time t ∈ R. Now consider the universal coverings
over m and mt. Those can be identified with two copies of the hyperbolic plane,
each one being endowed with the complete geodesic lamination µ̃ and µ̃t respec-
tively, which are both the preimages of µ. Now select two leaves γ1 and γ2 of µ̃

and consider the corresponding leaves in µ̃t, denoted by γ1,t and γ2,t. These two
pairs of leaves bound two strips C and Ct. (Both can be wedges if γ1 and γ2 share
a common endpoint.) The restrictions of µ̃ and µ̃t to C and Ct respectively give
rise to complete geodesic laminations µ̃|C and µ̃|Ct

in C and Ct. There is a prefered
homeomorphism St between the two strips C and Ct which respects the geodesic
laminations µ̃|C and µ̃|Ct

and the horocyclic foliations Feµ(m) and Feµ(mt) associated
to them. As a matter of fact, it sends the interior of one ideal triangle coming from
µ̃|C to the interior of an ideal triangle from µ̃|Ct

, respecting the non-foliated regions.
Choose a leaf of Feµ(m) that crosses γ1 and γ2 and denote by α the intersection

of that leaf with C. (Note that such a leaf always exists.) This segment α is
called a cross segment. Give α an orientation and denote by αt the corresponding
oriented cross segment in Ct. (This segment is contained in the leaf of Feµ(mt) that
corresponds to the leaf chosen to define α.) The segment α crosses all the ideal
triangles coming from µ̃|C that separate γ1 and γ2. Moreover, α crosses each of
these ideal triangles through the spike determined by the two edges separating γ1

and γ2. Of course, the same holds for αt. Thus, the set α \ α ∩ µ̃|C is a union of
countably many open disjoint intervals Ij, j ∈ J , ordered following the orientation
of α, each one being a horocyclic arc contained in one spike of a separating ideal
triangle. Let Tj denote the ideal triangle containing the arc Ij .

What is the effect of a stretch along µ on that arc α? In other words, how can
one describe the arc αt? The arc αt crosses the ideal triangles corresponding to
the triangles Tj in the same order. Thus the set αt \ αt ∩ µ̃|Ct

is an ordered union
of countably many open disjoint intervals Ij,t, j ∈ J , each one of them being a
horocyclic arc contained in one spike of the ideal triangle Tj,t corresponding to Tj.
The only difference stems on the lengths lj and lj,t of those horocyclic segments Ij

and Ij,t. Indeed, one has the relation

lj,t = (lj)
et

, for all j ∈ J.
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This relation comes from the very definition of a stretch deformation: if a horocyclic
arc contained in a spike of an ideal triangle has length l ≤ 1, then it lies at a distance
− log(l) from the non-foliated region. Its image is a horocyclic arc of the same spike
lying at a distance −et log(l) = − log(le

t

), since the stretch deformation multiplies
the lengths of arcs contained in the sides of the ideal triangle by the factor et.
Therefore, the length of the image arc is le

t

.
Now consider the following situation: erase all non separating leaves of µ̃|C and

µ̃|Ct
. The strips C and Ct are now divided by those remaining leaves into countably

many wedges. More precisely, if L denotes the union of those remaining leaves,
then each component of C \ L is the interior of a wedge. Among those separating
leaves L, let Lfront denote those leaves that bound a wedge. (The leaves of Lfront are
frontier leaves of µ̃.) There is of course a corresponding situation in Ct. Now we
claim that, if t is negative, one can pass from C to Ct by performing a spreading
out along each geodesic of Lfront.

Lemma 2.9. Let t be a negative real number. Then, the strip Ct is congruent
to a strip obtained from C by a sequence of spreading outs along all the leaves of
µ̃ contained in Lfront. In particular, the width function t 7→ wt, t ∈ R, is either
constantly equal to zero or is strictly decreasing, depending on whether the strip C

is a wedge or not.

Proof. We keep the notations of the preceding discussion. Set, for i = 1, 2,
pi = α ∩ γi and pi,t = αt ∩ γi,t. Consider the unit disk model for both universal
coverings. With these identifications, one can assume, up to some isometry, that
γ1 = γ1,t and p1 = p1,t.

Let Ij be a component of α\α∩ µ̃|C and let Wj be the wedge containing Ij. Let
E− be the leftmost edge of Wj with respect to the orientation of α. Apply a right
spreading out ι along E− in such a way that the vertex of the wedge Wj is fixed by ι.
The image curve ι(α) is now disconnected; reconnect it using a horocyclic segment
contained in the horocycle prolonging ι(Ij). The upshot is a new strip ι(C) separated
by the wedges ι(Wj) and traversed by a cross segment α′ whose intersection with
each wedge is a horocyclic arc. Moreover, exactly one of the wedges, namely Wj,
has been replaced by the wedge ι(Wj), which is bigger in the sense that the length
l′ of α′∩ ι(Wj) is strictly greater than the length lj of Ij . Now specify the spreading

out ι so that l′ = (lj)
et

.
By doing a spreading out for every geodesic of Lfront, one eventually obtains a

strip C ′
t which is separated by a family of wedges W ′

j,t, j ∈ J , and which is crossed
by a segment α′

t which satisfies, for every j ∈ J ,

length(α′
t ∩ W ′

j,t) = lj,t = (lj)
et

.

The two strips C ′
t and Ct are isometric since the prefered map sending the geodesic

lamination µ̃∩Ct onto µ̃∩C ′
t and the corresponding horocyclic foliation Ft onto F ′

t

as well is an isometry. This concludes the proof of the first assertion.
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Since C and t have been chosen arbitrarily, the first assertion together with
Lemma 2.8 imply at once that, if C is not a wedge, then, for all t, t′ ∈ R such that
t < t′, we have wt > wt′. In other words, the width function t 7→ wt is strictly
decreasing. If C is a wedge, then using the first assertion together with Lemma 2.8
again, the width function is constantly equal to zero, and the proof of the lemma is
complete. �

The preceding lemma almost implies the width lemma: Indeed, we have already
shown that

(1) If γ1 and γ2 bound a wedge, then the width function t 7→ wt is constantly
equal to zero, and

(2) If γ1 and γ2 are ultraparallel, then the width function t 7→ wt restricted to
R− is bounded from below by w0 = w > 0 and then strictly increases as t

decreases.

It therefore remains to show that, if the geodesics γ1 and γ2 are weakly separated,
then the width function is bounded from above and to show that, if the geodesics
γ1 and γ2 are strongly separated, then limt→−∞ wt = +∞. The assertion about the
upper bound is easy. Indeed, for each t ∈ R, the length lt of the cross segment αt is
an upper bound to the width wt. We have lt =

∑
|J | lj,t, where |J | is the cardinality

of J . The horocyclic arc Ij,t being contained in a spike of an ideal triangle for every
t and j, one has the constraint lj,t ≤ 1. Therefore,

∀t ∈ R, wt ≤ lt ≤ |J |.

If the geodesics γ1 and γ2 are weakly separated, the cardinality |J | of J is finite
and of course independent of t. This proves the assertion about the upper bound.
Therefore, it remains to prove that the width function converges to infinity as t

converges to −∞ when the geodesics γ1 and γ2 are strongly separated. We shall
first show this assertion in the case where the separating ideal triangles coming from
µ̃|C are glued edge-to-edge. We first give a definition.

Definition 2.10. (Discrete approximation) Let γ1 and γ2 be two ultraparallel
leaves of a complete geodesic lamination µ̃ of the hyperbolic plane and let C denote
the strip bounded by those two leaves. Let µ̃|C be the restriction of µ̃ to C and let
α be an oriented cross segment in C.

A discrete approximation µ̃D of µ̃|C is a geodesic lamination of some strip CD

obtained as follows:
The set α \ α ∩ µ̃|C is a union of countably many open disjoint intervals Ij,

j ∈ J , ordered following the orientation of α, each one of them being a horocyclic
arc contained in one spike of a separating ideal triangle. Let Tj denote the ideal
triangle containing the arc Ij and Wj the wedge bounded by the edges of Tj that
meet α.

Choose any subset J0 of J , with the ordering induced by that of J . Glue the
wedges Wj , j ∈ J0, edge-to-edge following the ordering of J0, in such a way that the
horocyclic arcs Ij1 and Ij2 of two adjacent wedges Wj1 and Wj2 , j1, j2 ∈ J0, coalesce
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into one arc. One eventually obtains a union of wedges glued edge-to-edge, together
with an arc α′ which crosses each wedge. Consider the closure CD of that union;
it is a strip bounded by two outermost geodesics γD

1 and γD
2 . The union of those

two geodesics together with the edges of the wedges form a geodesic lamination µ̃D

of CD whose leaves all separate γD
1 and γD

2 . It is easy to see that this definition is,
up to congruence, independent from the choice of the cross segment α or from its
orientation.

Note that there is a canonical correspondence between the leaves of µ̃D\(γD
1 ∪γD

2 )
and their images in µ̃|C.

Lemma 2.11. Let C be a strip bounded by two ultraparallel leaves of a com-
plete geodesic lamination µ̃ of the hyperbolic plane. Let µ̃D be a discrete approxi-
mation of µ̃|C . Then the strip CD is, up to congruence, contained into the strip C.
In particular, if wD and w denote the width of CD and of C respectively, then one
gets

wD ≤ w.

Proof. The idea of the proof is based on the observation that, in order to recover
from a discrete approximation µ̃D the original strip C (up to congruence), one has
to insert (possibly infinitely many) wedges. Inserting wedges is done by spreading
out the strip CD along the leaves of µ̃D. Then, a simple application of Lemma 2.8
concludes the proof. We now formalize this idea.

We are using the same notations as in the definition.
Let J0 ⊂ J be the set of indices defining µ̃D. Consider an increasing sequence

J0 ⊂ J1 ⊂ · · ·Jn ⊂ · · · whose union is equal to J . Since J is countable, so are
all the Ji’s and we can assume that Ji+1 has been obtained from Ji by adding one
element. Consider the sequence CD

i of strips associated to the sequence Ji. By
construction, CD

i+1 has been obtained by using one more wedge than for CD
i and

gluing all these wedges edge-to-edge. Arguing exactly like in the proof of Lemma
2.9, this amounts to spreading out CD

i along some geodesic (exactly where the new
wedge has to be inserted). Again, following the proof of that lemma, one recovers
after those spreading outs a strip which is congruent to C. This concludes the proof.

�

Now that we have defined a discrete approximation of a geodesic lamination, we
explain how we propagate the stretch deformation done along the initial lamination
to its discrete approximation.

Let us fix t negative and let Ct be the strip obtained from C after a stretch
along µ of time t. By Lemma 2.9, this strip Ct is also obtained by spreading
out C along the leaves contained in Lfront. We propagate those spreading outs to
spreading outs done in CD. Among the spreading outs used to pass from C to
Ct, retain those that are performed along the geodesics that correspond to the
geodesics in the discrete approximation µ̃D. Now apply these spreading outs along
the corresponding geodesics in CD and denote by CD

t the obtained strip. This strip
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CD
t is the discrete approximation of Ct obtained by selecting the same subset J0 of

indices as for CD. By Lemma 2.11, one has the following

Lemma 2.12. (Propagation) Let C be a strip bounded by two ultraparallel
leaves of a complete geodesic lamination µ̃ of the hyperbolic plane. Let µ̃D be a
discrete approximation of µ̃|C and let wt and wD

t denote the widths of the strips
Ct and CD

t , respectively obtained by anti-stretching C and propagating this anti-
stretching to CD. Then one has, for all t < 0,

wD
t ≤ wt.

We are now ready to prove the width lemma for a discrete approximation.

Lemma 2.13. (Glued edge-to-edge case) The width lemma is true for geodesics
γ1 and γ2 separated by ideal triangles glued edge-to-edge.

Proof. First remark that, using the notations above, we have Lfront = L. This
is due to our glued-edge-to-edge assumption.

Next, recall we only have to show that if γ1 and γ2 are strongly separated, then
lim

t→−∞
wt = +∞. Consequently, assume that γ1 and γ2 are strongly separated.

We first show that it suffices to prove the lemma in the following case:
All leaves of Lfront, except γ2, have a common endpoint (which is an endpoint

of γ1 as a matter of fact).
The reason for this claim goes as follows. The geodesics γ1 and γ2 are ultra-

parallel. Therefore, the strip C is bounded in the circle at infinity by two disjoint
segments c+ and c− of open interiors. Each leaf of Lfront has an endpoint in c+

and an endpoint in c−. Moreover, the closures of the components of C \ Lfront are
wedges; denote by Wj , j ∈ J , those wedges. Since γ1 and γ2 are strongly separated,
the cardinal of J is infinite and, therefore, one segment, say c+, contains the vertices
of infinitely many wedges among the Wj . Let W+

j , j ∈ J+ ⊂ J , |J+| = ∞, denote
those wedges with vertices in c+. Choose any wedge W with vertex in c−. (Such a
wedge exists since γ1 and γ2 are ultraparallel.)

Consider the discrete approximation ν̃D made up of those geodesics of Lfront that
bound the wedges W+

j , j ∈ J+, and the wedge W . In other words, the corresponding

strip C ′D is obtained by gluing edge-to-edge the wedges W and W+

j , j ∈ J+, and
then by taking the closure. (The extra wedge W has been added to insure that the
strip C ′D is not a wedge itself.) This discrete approximation is almost of the type
prescribed above, except that the wedge W might separate C ′D into two connected
components. Necessarily, one of these connected components is a wedge which has
been obtained by gluing infinitely many wedges of W+

j , j ∈ J+. Consider then

the subwedge composed by that component and by W and call it CD. Then this
discrete approximation is of the desired form. If wD and w denote the widths of
CD and of C respectively, then, by Lemma 2.11, one has wD ≤ w. By propagating
the anti-stretch deformation on the discrete approximation, we get, for all t < 0,
wD

t ≤ wt, and the claim follows.
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Assume now that all leaves of Lfront, except γ2, have a common endpoint a.
There are infinitely many leaves having a as an endpoint and all these leaves are
edges of infinitely many wedges glued edge-to-edge. The union ∪Wi of these wedges
is again a wedge we denote by W1. This big wedge W1 is bounded by γ1 and a
geodesic γ which joins one endpoint of γ1 to the opposite endpoint of γ2. It is glued
edge-to-edge along γ to a single wedge W2 bounded by γ and γ2.

Let α be a cross segment in C. The segment α ∩ W1 is a horocyclic segment
which is the union of the closures of the infinitely many horocyclic segments α∩Wi.
Let li be the length of the segment α∩Wi and l the length of α∩W1. Then l =

∑
i li.

For each t ∈ R, one has

lt =
∑

i

li,t =
∑

i

(li)
et

,

where lt and li,t denote the length of the image of α∩W1 and the length of the image
of α ∩Wi after propagating the stretch deformation. Therefore, lim

t→−∞
lt = +∞. By

Lemma 2.9, this implies that, as t converges to −∞, the strip Ct is indefinitely
spread out. By Lemma 2.8, it follows that lim

t→−∞
wt = +∞, which concludes the

proof. �

Proof of the width lemma. It remains to prove the assertion about the limit of
the width function. Choose any discrete approximation µ̃D of µ̃|C with infinitely
many ideal triangles. Then, by Lemma 2.11 and Lemma 2.12, one has

wD
t ≤ wt,

where wD
t denotes the width of CD

t , obtained by propagating the stretch deformation
on CD. By Lemma 2.13,

lim
t→−∞

wD
t = +∞,

which concludes the proof of the width lemma. �

3. On negative convergence of stretch lines

Corollary 3.1. (Cluster points) Let t 7→ gt , t ∈ R, be a stretch line directed

by µ with non-empty stump γ. Then, every point of {gt : t ≤ 0} \ {gt : t ≤ 0} (if
any) is a projective class of a measured geodesic lamination which is topologically
contained in γ.

Proof. Let [α] ∈ PL 0(S) be a point of {gt, t ≤ 0} \ {gt, t ≤ 0}. Let {gn} be
a sequence of {gt, t ≤ 0} converging to [α] ∈ PL 0(S). Then we have i(α, γ) = 0,
that is, α and γ have no transverse intersection. Indeed, there exists a sequence
{xn} of R

∗
+ such that, for all β ∈ ML 0(S),

lim
n→∞

xn lengthgn
(β) = i(α, β).

Since {gn} is a sequence of T (S) converging to infinity, we must have limn→∞ xn =
0. Now taking β = γ and using Theorem 2.1 (1) we get the desired equality.
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Since i(α, γ) = 0, it therefore remains to show that α cannot have any compo-
nent disjoint from γ.

Suppose that α is not contained in γ, that is, α has a component α0 which is
disjoint from γ.

Two mutually exclusive cases occur: Either

(1) there exists an essential simple closed curve β such that
• β ∩ γ = ∅ and
• β ∩ α0 6= ∅,

Or
(2) such a closed curve β does not exist, in which case

• α0 is a simple closed geodesic that separates the surface, and
• ∀β ∈ S , β ∩ α0 6= ∅ =⇒ β ∩ γ 6= ∅.

Indeed, consider the component C of S \ γ that contains α0. The metric com-
pletion C̄ of C (with respect to any hyperbolic metric) is a hyperbolic surface with
totally geodesic boundary. First remark that C̄ is not simply connected, because of
the existence of α0. In other words, C̄ contains at least one essential simple closed
curve. The classification of surfaces, associated with hyperbolic geometry, asserts
that there exist finitely many pairwise disjoint simple closed geodesics κ in C̄ such
that the completion of each component of C̄ \κ is either a degenerated pair of pants
or a crown. Recall that a degenerated pair of pants is a complete hyperbolic sur-
face of finite area whose interior is homeomorphic to a three punctured sphere and a
crown is a complete hyperbolic surface whose boundary is a disjoint union of finitely
many infinite geodesics and whose interior is homeomorphic to a once punctured
disk. Note that the sphere with three cusps and the crown with one cusp cannot
occur in the decomposition given by κ. Furthermore, the existence of α0 implies
that the completion P of each component of C̄ \ κ contains at least one boundary
component which does not belong to γ in the surface S. Due to the topology of
those components and to the fact that α0 is connected, the geodesic lamination α0

either intersects κ transversely or is contained in κ. If α0 has a nonempty transverse
intersection with a component β of κ, then β is not contained in γ and therefore
belongs to Case (1). Now assume that α0 is contained in κ. In particular, α0 is a
simple closed geodesic. Let P1 and P2 be the completions of the two components of
C̄ \κ whose boundaries contain α0. (The surfaces P1 and P2 might be equal.) If one
of them, say P1, is a crown, then the boundary component a of P1 that is different
from α0 belongs to γ (in the surface S) and every geodesic segment of S which has
a nonempty transverse intersection with a has a nonempty transverse intersection
with α0 as well, and conversely. Moreover, in this case, α0 separates the surface S,
so we are in Case (2).

If P1 and P2 are degenerated pairs of pants, then there exists at least one simple
closed geodesic β satisfying the conditions of Case (1). All the cases are treated and
the claim is proved.
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Now, let us deal with the first case and choose an essential simple closed curve
β ∈ S such that β∩γ = ∅ and β∩α0 6= ∅. Using Theorem 2.1, the two requirements
on β imply

(1) lengthgn
(β) is bounded from above, and

(2) i(α, β) > 0.

This is in contradiction with the fact that xn → 0. We conclude that α is topologi-
cally contained in γ, which proves the corollary in that case.

Now, let us deal with the second case and consider an essential simple closed
curve β ∈ S such that β ∩ γ 6= ∅ and |β ∩ α0| = 2. (Such a simple closed geodesic
β exists because α0 is a separating simple closed geodesic.) The set β \ β ∩ α0 has
two components, β1 and β2, at least one intersecting γ. For the moment, assume
that only one of them, say β1, intersects γ. Let β ′ be the geodesic representative
of the simple closed curve obtained by joining the two endpoints of β1 using one of
the two geodesic segments contained in α0. There always exists a choice a of such
a subsegment of α0 so that β ′ is essential. To see this, consider the pair of pants of
S containing α0 and β1. Then β ′ is one of the boundary components of that pair
of pants. Therefore, β ′ is essential if and only if this boundary component is not a
cusp. But there are at least one boundary component which is not a cusp, otherwise
γ would be empty.

Now we claim that

lim
n→∞

xn(lengthgn
(β) − lengthgn

(β ′)) = 0.

The proof of this claim is easy: First note that limn→∞ lengthgn
(β1) = +∞. This

is due to the fact that the endpoints of any lift of the geodesic segment β1 to
the universal covering belong to two lifts of α0 which are strongly separated by
γ. The width lemma implies that lim

n→∞
lengthgn

(β1) = ∞. Next, by Theorem 2.1,

{lengthgn
(α0)} is bounded from above. Therefore, {lengthgn

(a)} is also bounded
from above. Now consider a lift of β1∪a in the universal covering. This lift is a curve
c which is the concatenation of two geodesic segments and the endpoints of that
curve are identified through the action of the holonomy group of S. Therefore, the
geodesic segment d joining them projects on S to a simple closed curve homotopic to
β ′ and its length is an upper bound for lengthgn

(β ′). Using hyperbolic trigonometry
in the triangle bounded by c and d and replacing length(x) by x in order to lighten
notations, one gets

cosh(β ′) ≤ cosh(d) = cosh(β1) cosh(a) − sinh(β1) sinh(a) cos(θ)

≤ cosh(β1)(cosh(a) − tanh(β1) sinh(a) cos(θ)) ≤ cosh(β1)Cn,

where θ denotes the angle between β1 and a. From the preceding discussion, the
sequence Cn is bounded. Moreover, we have limn→∞ lengthgn

(β ′) = ∞. This
can also be seen using the pair of pants P of S containing α0 and β1. At least
one geodesic of the boundary of the crown crosses P from one boundary compo-
nent to β ′. The infinite geodesics of the boundary of the crown are leaves of γ.
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Therefore, β ′ has a nonempty transverse intersection with γ. Theorem 2.1 implies
limn→∞ lengthgn

(β ′) = ∞. It follows that exp(β ′ − β1) is bounded. Therefore, since
xn converges to zero, one gets

lim
n→∞

xn(lengthgn
(β1) − lengthgn

(β ′)) = 0.

The claim follows.
It is now fairly easy to conclude since, by definition of convergence towards

Thurston’s boundary, one has

lim
n→∞

xnlengthgn
(β) = i(α, β) = i(γ, β) + 2, and

lim
n→∞

xnlengthgn
(β ′) = i(α, β) = i(γ, β),

which raises a contradiction.
The case where both β1 and β2 intersect γ is handled in the same way by

constructing two simple closed geodesics β ′ and β ′′ as above and by showing that
the length of the union of those two geodesics, multiplied by xn, has the same limit
as the length of β multiplied by xn.

Therefore, extra components for γ cannot exist, that is, γ ⊂ α and the proof is
complete. �

A geodesic lamination is uniquely ergodic if it supports a transverse measure
which is unique up to scalar multiples. (Note that a uniquely ergodic measured
geodesic lamination is not empty.) An immediate corollary is the following

Theorem 3.2. (Negative convergence) Every stretch line directed by a com-
plete measured geodesic lamination with uniquely ergodic stump γ converges nega-
tively to the projective class of γ.

Proof. Suppose that the stump γ is uniquely ergodic. This implies in particular
that γ is connected. From the preceding corollary, we conclude that any cluster
point α (if any) of {gt : t ≤ 0} \ {gt : t ≤ 0} is topologically equal to γ. Hence

every point of {gt, t ≤ 0}\{gt, t ≤ 0} (if any) is the projective class [γ] ∈ PL 0(S),
again by unique ergodicity.

Since the Teichmüller space bordered by PL 0(S) is compact, the set {gt, t ≤ 0}\
{gt, t ≥ 0} is non-empty: for instance, the sequence {g−n} which converges to in-
finity always admits a cluster point. This proves the theorem. �
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