HYPERBOLIC DISTANCE, λ-APOLLONIAN METRIC AND JOHN DISKS

X. Wang, M. Huang, S. Ponnusamy* and Y. Chu
Hunan Normal University, Department of Mathematics
Changsha, Hunan 410081, P. R. China; xtwang@hunnu.edu.cn
Hunan Normal University, Department of Mathematics
Changsha, Hunan 410081, P. R. China
Indian Institute of Technology Madras, Department of Mathematics
Chennai-600 036, India; samy@iitm.ac.in
Huzhou Teachers College, Department of Mathematics Huzhou, Zhejiang 313000, P. R. China

Abstract

In this paper, by using the hyperbolic distance and the λ-Apollonian metric, we establish a sufficient condition for a simply connected proper subdomain $D \subset \mathbf{C}$ to be a John disk. We also construct two examples to show that the converse of this result does not necessarily hold. As a consequence the answer to Conjecture 6.2.12 in the Ph.D. thesis of Broch [2] is negative.

1. Introduction and main results

As in [9] and [13], a simply connected proper domain D of the complex plane \mathbf{C} is called $a b$-John disk if for any two points $z_{1}, z_{2} \in D$, there is a rectifiable arc $\alpha \subset D$ joining them with

$$
\min _{j=1,2} \ell\left(\alpha\left[z_{j}, z\right]\right) \leq b \operatorname{dist}(z, \partial D) \quad \text { for all } z \in \alpha
$$

where b is a positive constant. Here $\ell\left(\alpha\left[z_{j}, z\right]\right)$ denotes the Euclidean arclength of the subarc of α with the endpoints z_{j} and $z ; \operatorname{dist}(z, \partial D)$ denotes the Euclidean distance from z to ∂D which is the boundary of D. We call a domain D a John disk if it is a b-John disk for some positive constant b.

It has been known that a Jordan domain $D \subset \mathbf{C}$ is a quasidisk if and only if both D and $D^{*}=\mathbf{C} \backslash \bar{D}$ are John disks (cf. [10]), and every quasidisk is a John disk (see [5]). Hence John disks can be thought of as "one-sided quasidisks". Also several other necessary and sufficient conditions for D to be a John disk have been given. For example, Näkki and Väisälä obtained the following

Theorem A. [13] Let D be a simply connected proper subdomain in C. Then the following conditions are equivalent.

[^0](1) D is a b-John disk.
(2) For each $x \in \mathbf{R}^{2}$ and $r>0$, any two points in $D \backslash \overline{\mathbf{B}}(x, r)$ can be joined by an arc in $D \backslash \overline{\mathbf{B}}\left(x, \frac{r}{c}\right)$, where the constants b and c depend only on each other and $\mathbf{B}(x, r)$ denotes the disk with the center x of radius r.
(3) For every straight crosscut α of D dividing D into subdomain D_{1} and D_{2}, we have $\min _{j=1,2} \operatorname{diam}\left(D_{j}\right) \leq c \operatorname{diam}(\alpha)$, where the constants b and c depend only on each other and $\operatorname{diam}(\alpha)$ means the diameter of α.

John disks appear naturally in many areas of analysis (see [12, 13]). In [10], Kim and Langmeyer presented a number of results characterizing b-John disk (see [10, Theorem 2.3]). To present our main result, we need some preparation. The following result, which is actually planar version of [10, Theorem 4.1], characterizes b-John disk, in terms of a bound for hyperbolic distance.

Theorem B. A simply connected proper subdomain $D \subset \mathbf{C}$ is a b-John disk if and only if there exists a constant $c \geq 1$ such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c j_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all $z_{1}, z_{2} \in D$. Here the constants b and c depend only on each other.
The definitions of h_{D} and j_{D}^{\prime} are presented in Section 2.
By using the hyperbolic distance h_{D} and the λ-Apollonian metric a_{D}^{\prime} (see again Section 2 for its definition) in D, Broch [2, Theorem 6.2.9] obtained the following result which again provides a necessary and sufficient condition for a Jordan domain to be a b-John disk.

Theorem C. [2] A Jordan proper subdomain $D \subset \mathbf{C}$ is a b-John disk if and only if there are constants μ and ν such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq \mu a_{D}^{\prime}\left(z_{1}, z_{2}\right)+\nu
$$

for all pairs $z_{1}, z_{2} \in D$, where μ and ν depend only on b, and b depends only on μ and ν.

By comparing Theorem C with Theorem B, Broch [2, Conjecture 6.2.12] raised the following conjecture.

Conjecture 1.1. A simply connected (Jordan) domain $D \subset \mathbf{C}$ is a b-John disk if and only if there is a constant c such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all pairs $z_{1}, z_{2} \in D$. Here the constants b and c depend only on each other.
For a discussion on related problems, we refer to $[1,3,4,7,8,9,11,12]$.
In this paper, we mainly consider Conjecture 1.1. Our main results follow.
Theorem 1.2. Let $L_{1}=\{z:|z+1|=1, \operatorname{Im} z \geq 0\}, L_{2}=\{-2+i y:$ $-1 \leq y \leq 0\}, L_{3}=\{x-i:-2 \leq x \leq 2\}, L_{4}=\{2+i y:-1 \leq y \leq 0\}$ and $L_{5}=\{z:|z-1|=1, \operatorname{Im} z \geq 0\}$. Let D be the bounded domain bounded by L_{j},
$j=1,2, \ldots, 5$. Then D is a b-John disk with $0<b \leq 6(2+\sqrt{2})$, but there does not exist a constant c such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all $z_{1}, z_{2} \in D$.
Theorem 1.3. Let $D^{*}=\left\{x+i y: x>0,|y|<\frac{1}{2}\right\}$ and $D=\mathbf{C} \backslash \overline{D^{*}}$. Then D is a b-John disk for some $b=6$, but there does not exist any constant c such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all $z_{1}, z_{2} \in D$.
Theorems 1.2 and 1.3 show that the answer to Conjecture 1.1 is negative irrespective of whether D is bounded or unbounded.

2. Preliminary material

Throughout the discussion we restrict ourselves to simply connected proper subdomains D of the complex plane $\mathbf{C}=\mathbf{R}^{2}$. The hyperbolic density at $z \in D$ is given by

$$
\rho_{D}(z)=\rho_{\mathbf{B}}(g(z))\left|g^{\prime}(z)\right|,
$$

where $\rho_{\mathbf{B}}(z)=2 /\left(1-|z|^{2}\right)$ and g is a conformal mapping of D onto the unit disk $\mathbf{B} \subset \mathbf{C}$. Then for any pair of points z_{1} and z_{2} in D, we define

$$
h_{D}\left(z_{1}, z_{2}\right)=\inf _{\alpha} \int_{\alpha} \rho_{D}(z)|d z| \quad \text { and } \quad k_{D}\left(z_{1}, z_{2}\right)=\inf _{\alpha} \int_{\alpha} \frac{|d z|}{\operatorname{dist}(z, \partial D)}
$$

where each infimum in the above is taken over all rectifiable curves α in D from z_{1} to z_{2}. The quantities $h_{D}\left(z_{1}, z_{2}\right)$ and $k_{D}\left(z_{1}, z_{2}\right)$ are called the hyperbolic distance and quasihyperbolic distance between z_{1}, z_{2}, respectively. The idea of quasihyperbolic distance was introduced in [7] and developed in [7, 6]. Also, it is well known that for all pairs z_{1} and z_{2} in D there exists a unique hyperbolic geodesic curve β from z_{1} to z_{2}, i.e. a curve β along which the above infimum is obtained, and

$$
h_{D}\left(z_{1}, z_{2}\right)=\int_{\beta} \rho_{D}(z)|d z| .
$$

It follows from $[2,14,6]$ that
Lemma 2.1. For all $z_{1}, z_{2} \in D$,

$$
\frac{1}{2} k_{D}\left(z_{1}, z_{2}\right) \leq h_{D}\left(z_{1}, z_{2}\right) \leq 2 k_{D}\left(z_{1}, z_{2}\right)
$$

and

$$
k_{D}\left(z_{1}, z_{2}\right) \geq \log \left(1+\frac{\left|z_{1}-z_{2}\right|}{\operatorname{dist}\left(z_{j}, \partial D\right)}\right) \quad(j=1,2)
$$

For a pair of points z_{1}, z_{2} in D, the inner distance between them is defined by

$$
\lambda_{D}\left(z_{1}, z_{2}\right)=\inf \left\{\ell(\alpha): \alpha \subset D \text { is a rectifiable arc joining } z_{1} \text { and } z_{2}\right\} .
$$

We call λ_{D} the inner metric on D. A point w in the boundary ∂D of D is said to be rectifiably accessible if there is a half open rectifiable arc α in D ending at w. Let $\partial_{r} D$ denote the subset of ∂D which consists of all the rectifiably accessible points, that is

$$
\partial_{r} D=\{w \in \partial D: w \text { is rectifiably accessible }\} .
$$

Further, as in [2], we define the λ-Apollonian metric a_{D}^{\prime}, in terms of inner distances, by

$$
a_{D}^{\prime}\left(z_{1}, z_{2}\right)=\sup _{w_{1}, w_{2} \in \partial_{r} D} \log \left(\left|z_{1}, z_{2}, w_{1}, w_{2}\right|_{\lambda}\right),
$$

where

$$
\left|z_{1}, z_{2}, w_{1}, w_{2}\right|_{\lambda}=\frac{\lambda_{D}\left(z_{1}, w_{1}\right) \lambda_{D}\left(z_{2}, w_{2}\right)}{\lambda_{D}\left(z_{1}, w_{2}\right) \lambda_{D}\left(z_{2}, w_{1}\right)}
$$

At this place, it might be important to point out that $a_{D}^{\prime} \neq a_{D}^{\prime \prime}$, if $a_{D}^{\prime \prime}$ denotes the inner Apollonian metric defined by

$$
a_{D}^{\prime \prime}\left(z_{1}, z_{2}\right)=\inf \left\{\ell_{a}(\alpha): \alpha \subset D \text { is a rectifiable arc joining } z_{1} \text { and } z_{2}\right\} .
$$

Also as in [2], we define a metric $j_{D}^{\prime}\left(z_{1}, z_{2}\right)$ for any $z_{1}, z_{2} \in D$ by

$$
j_{D}^{\prime}\left(z_{1}, z_{2}\right)=\log \left(1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\operatorname{dist}\left(z_{1}, \partial D\right)}\right)\left(1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\operatorname{dist}\left(z_{2}, \partial D\right)}\right) .
$$

This version of the metric is obtained by replacing the Euclidean distances in the j_{D}-metric introduced by Gehring and Osgood [6] by inner distances. Note that sometimes, our j_{D}^{\prime} is multiplied by a factor $1 / 2$. We also recall that the relation between k_{D} and j_{D}^{\prime} in John disks is stated in Theorem B and Lemma 2.1. We end the section with the following result.

Lemma 2.2. Suppose that D is a simply connected proper subdomain in \mathbf{C}. Then

$$
a_{D}^{\prime}\left(z_{1}, z_{2}\right) \leq j_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all $z_{1}, z_{2} \in D$.
Proof. For any $w \in \partial_{r} D$, we know

$$
\frac{\lambda_{D}\left(z_{1}, w\right)}{\lambda_{D}\left(z_{2}, w\right)} \leq \frac{\lambda_{D}\left(z_{1}, z_{2}\right)+\lambda_{D}\left(z_{2}, w\right)}{\lambda_{D}\left(z_{2}, w\right)}=1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\lambda_{D}\left(z_{2}, w\right)} \leq 1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\operatorname{dist}\left(z_{2}, \partial D\right)} .
$$

Thus, by the symmetry and the arbitrariness of $w_{1}, w_{2} \in \partial_{r} D$ in the definition of a_{D}^{\prime}, we have

$$
a_{D}^{\prime}\left(z_{1}, z_{2}\right) \leq \log \left(1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\operatorname{dist}\left(z_{1}, \partial D\right)}\right)\left(1+\frac{\lambda_{D}\left(z_{1}, z_{2}\right)}{\operatorname{dist}\left(z_{2}, \partial D\right)}\right)=j_{D}^{\prime}\left(z_{1}, z_{2}\right) .
$$

Corollary 2.3. Suppose that D is a simply connected proper subdomain in \mathbf{C} and that there is a constant c such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right)
$$

for all $z_{1}, z_{2} \in D$. Then D is a b-John disk, where b depends only on c.
Proof. By Lemma 2.2, we see that there exists a constant c such that

$$
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right) \leq c j_{D}^{\prime}\left(z_{1}, z_{2}\right) .
$$

It follows from Theorem B that D is a b-John disk, where b depends only on c.

3. Proof of main theorems

For the proof of Theorem 1.2, we need the following lemma.
Lemma 3.1. Let D be the bounded domain bounded by $L_{j}(j=1,2, \ldots, 5)$ as in Theorem 1.2. Let $z_{1}=-t^{2}-i t \in D$ with $0<t<1 / 2$, and $z_{2}=-\overline{z_{1}}$. Then we have

$$
\begin{equation*}
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq 1+4 t^{2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{D}\left(z_{1}, p\right)}{\lambda_{D}\left(z_{2}, p\right)} \leq 1+4 t^{2} \tag{3.3}
\end{equation*}
$$

for all $p \in \partial D$.
Proof. Obviously, it is sufficient to prove (3.2). The proof of (3.3) easily follows from the proof of (3.2).

Let $L_{j}(j=1,2, \ldots, 5)$ be defined in Theorem 1.2. Then $\partial D=\bigcup_{j=1}^{5} L_{j}$, see Figure 1. For any $p=(x, y) \in L_{1}$, we divide the proof into several steps.

Case (i). Let $x>-2 t^{2} /\left(1+t^{2}\right)$. Then $(1+x / 2)\left(1+t^{2}\right)>1$. Now we compute $\left(1+t^{2}\right) \lambda_{D}^{2}\left(z_{1}, p\right)-\lambda_{D}^{2}\left(z_{2}, p\right)$
$=\left(1+t^{2}\right)\left|z_{1}-p\right|^{2}-\left(\left|z_{2}\right|+|p|\right)^{2}$
$=\left(1+t^{2}\right)\left|z_{1}-p\right|^{2}-\left(\left|z_{1}\right|+|p|\right)^{2}$
$=\left(1+t^{2}\right)\left[\left(x+t^{2}\right)^{2}+(y+t)^{2}\right]-\left(\sqrt{x^{2}+y^{2}}+\sqrt{t^{2}+t^{4}}\right)^{2}$,
$=2 t\left[\left(1+t^{2}\right) y-\sqrt{-2 x} \sqrt{1+t^{2}}+t^{3}(x+1 / 2)+t^{5} / 2\right] \quad\left(\right.$ since $\left.x^{2}+y^{2}=-2 x\right)$
$=2 t\left[\sqrt{1+t^{2}} \sqrt{-2 x}\left(\sqrt{1+t^{2}} \sqrt{1+x / 2}-1\right)+t^{3}(x+1 / 2)+t^{5} / 2\right]$
which is clearly nonnegative and hence, we have

$$
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq \sqrt{1+t^{2}}
$$

Note that $\sqrt{1+t^{2}}<1+4 t^{2}$ for $0<t<1 / 2$.

Figure 1. The domain D bounded by five curves $L_{j}(j=1,2, \ldots, 5)$.
Case (ii). Let $x \leq-2 t^{2} /\left(1+t^{2}\right)$. Then $0 \leq(1+x / 2)\left(1+t^{2}\right) \leq 1$. In this case, we see that

$$
\begin{aligned}
\left(1+4 t^{2}\right) \lambda_{D}^{2}\left(z_{1}, p\right)-\lambda_{D}^{2}\left(z_{2}, p\right)= & \left(1+4 t^{2}\right)\left|z_{1}-p\right|^{2}-\left|z_{2}-p\right|^{2} \\
= & \left(1+4 t^{2}\right)\left[\left(x+t^{2}\right)^{2}+(y+t)^{2}\right] \\
& -\left[\left(x-t^{2}\right)^{2}+(y+t)^{2}\right] \\
= & 4 t^{2}\left[-x\left(1-2 t^{2}\right)+t^{4}+t^{2}+2 t y\right] \geq 0,
\end{aligned}
$$

since $x^{2}+y^{2}=-2 x$ and $0<t<1 / 2$. It follows that

$$
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq \sqrt{1+4 t^{2}}
$$

Thus, (3.2) holds when $p \in L_{1}$.
If $p \in L_{2}$, then we see that $\lambda_{D}\left(z_{1}, p\right) \geq 2-t^{2}$. If $p \in L_{3}$, then we find that $\lambda_{D}\left(z_{1}, p\right) \geq 1-t$. Consequently, we easily obtain that

$$
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq \frac{\lambda_{D}\left(z_{1}, p\right)+\left|z_{1}-z_{2}\right|}{\lambda_{D}\left(z_{1}, p\right)}=1+\frac{2 t^{2}}{\lambda_{D}\left(z_{1}, p\right)} \leq \begin{cases}1+\frac{16}{7} t^{2} & \text { if } p \in L_{2} \\ 1+4 t^{2} & \text { if } p \in L_{3}\end{cases}
$$

Finally, if $p \in L_{4} \cup L_{5}$, it is obvious that

$$
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq 1
$$

The proof of (3.2) is completed.
Proof of Theorem 1.2. The equivalence of (1) and (3) in Theorem A implies that D is a b-John disk for some constant b with $0<b \leq 6(2+\sqrt{2})$.

Suppose, on the contrary, that there exists a constant c such that

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right) \tag{3.4}
\end{equation*}
$$

for all $z_{1}, z_{2} \in D$.
Let z_{1} and z_{2} be as in Lemma 3.1. Then (3.2) and (3.3) imply that

$$
a_{D}^{\prime}\left(z_{1}, z_{2}\right)=\sup _{w_{1}, w_{2} \in \partial_{r} D} \log \left(\frac{\lambda_{D}\left(z_{1}, w_{1}\right) \lambda_{D}\left(z_{2}, w_{2}\right)}{\lambda_{D}\left(z_{1}, w_{2}\right) \lambda_{D}\left(z_{2}, w_{1}\right)}\right) \leq 2 \log \left(1+4 t^{2}\right) .
$$

By Lemma 2.1, we deduce that

$$
h_{D}\left(z_{1}, z_{2}\right) \geq \frac{1}{2} \log \left(1+\frac{\left|z_{1}-z_{2}\right|}{\operatorname{dist}\left(z_{1}, \partial D\right)}\right)=\frac{1}{2} \log \left(1+\frac{2 t}{\sqrt{t^{2}+1}}\right) .
$$

Thus, by assumption (3.4), these two inequalities yield that

$$
\log \left(1+\frac{2 t}{\sqrt{t^{2}+1}}\right) \leq 2 h_{D}\left(z_{1}, z_{2}\right) \leq 2 c a_{D}^{\prime}\left(z_{1}, z_{2}\right) \leq 4 c \log \left(1+4 t^{2}\right)
$$

But, on the other hand,

$$
\lim _{t \rightarrow 0} \frac{\log \left(1+2 t / \sqrt{t^{2}+1}\right)}{\log \left(1+4 t^{2}\right)}=\infty
$$

which is a contradiction and we complete the proof of Theorem 1.2.
Before the proof of Theorem 1.3, we prove the following lemma.
Lemma 3.5. Let D be as in Theorem 1.3 and let $z_{1}=x_{0}+\frac{1}{2} i, z_{2}=\overline{z_{1}}$ with $x_{0}<0$. Then we have

$$
\begin{equation*}
\frac{\lambda_{D}\left(z_{1}, p\right)}{\lambda_{D}\left(z_{2}, p\right)} \leq \sqrt{1+\frac{1}{\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda_{D}\left(z_{2}, p\right)}{\lambda_{D}\left(z_{1}, p\right)} \leq \sqrt{1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}} \tag{3.7}
\end{equation*}
$$

for all $p \in \partial D$.
Proof. Let $L_{1}=\{x+i / 2: x>0\}, L_{2}=\{i y:-1 / 2 \leq y \leq 1 / 2\}, L_{3}=$ $\{x-i / 2: x>0\}$, see Figure 2.

We need only to prove (3.6) as the proof of (3.7) easily follows from that of (3.6).

Figure 2. D, the exterior of the region bounded by L_{1}, L_{2}, L_{3}.
If $p \in L_{1}$, then we have

$$
\lambda_{D}\left(z_{1}, p\right)=\left|z_{1}-p\right|=\operatorname{dist}\left(z_{1}, \partial D\right)+|p-i / 2|
$$

and

$$
\lambda_{D}\left(z_{2}, p\right)=\lambda_{D}\left(z_{2}, i / 2\right)+|p-i / 2|=\sqrt{1+\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}+|p-i / 2|
$$

so that (3.6) becomes obvious.
If $p \in L_{2}$, then

$$
\lambda_{D}\left(z_{1}, p\right)=\left|z_{1}-p\right| \quad \text { and } \quad \lambda_{D}\left(z_{2}, p\right)=\left|z_{2}-p\right| .
$$

Obviously,

$$
\frac{\lambda_{D}\left(z_{1}, p\right)}{\lambda_{D}\left(z_{2}, p\right)} \leq \frac{\lambda_{D}\left(z_{1},-i / 2\right)}{\lambda_{D}\left(z_{2},-i / 2\right)} \leq \frac{\left|z_{1}+i / 2\right|}{\left|z_{2}+i / 2\right|}=\sqrt{1+\frac{1}{\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}} .
$$

If $p \in L_{3}$, then

$$
\lambda_{D}\left(z_{2}, p\right)=\left|z_{2}-p\right|=\operatorname{dist}\left(z_{2}, \partial D\right)+|p+i / 2|
$$

and

$$
\lambda_{D}\left(z_{1}, p\right)=\lambda_{D}\left(z_{1},-i / 2\right)+|p+i / 2|=\sqrt{1+\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}+|p+i / 2|
$$

We now obtain that

$$
\frac{\lambda_{D}\left(z_{1}, p\right)}{\lambda_{D}\left(z_{2}, p\right)} \leq \frac{\lambda_{D}\left(z_{1},-i / 2\right)}{\lambda_{D}\left(z_{2},-i / 2\right)}=\frac{\sqrt{1+\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}}{\operatorname{dist}\left(z_{2}, \partial D\right)}=\sqrt{1+\frac{1}{\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}}
$$

The proof is completed.

Proof of Theorem 1.3. Clearly, (2) in Theorem A holds with $c=1$ and so, one could get an explicit constant, for instance $b=6$. Now, the equivalence of (1) and (2) in Theorem A implies that D is a b-John disk with $b=6$.

Suppose, on the contrary, that there exists a constant c such that

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}^{\prime}\left(z_{1}, z_{2}\right) \tag{3.8}
\end{equation*}
$$

for all $z_{1}, z_{2} \in D$, where D is as in Theorem 1.3.
Now, let z_{1} and z_{2} be as in Lemma 3.5. Then

$$
\begin{aligned}
a_{D}^{\prime}\left(z_{1}, z_{2}\right) & =\sup _{w_{1}, w_{2} \in \partial_{r} D} \log \left(\frac{\lambda_{D}\left(z_{1}, w_{1}\right) \lambda_{D}\left(z_{2}, w_{2}\right)}{\lambda_{D}\left(z_{1}, w_{2}\right) \lambda_{D}\left(z_{2}, w_{1}\right)}\right) \\
& \leq \log \left(\sqrt{1+\frac{1}{\operatorname{dist}\left(z_{2}, \partial D\right)^{2}}} \sqrt{1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}}\right) .
\end{aligned}
$$

We know that

$$
\begin{equation*}
a_{D}^{\prime}\left(z_{1}, z_{2}\right) \leq \log \left(1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}\right) \tag{3.9}
\end{equation*}
$$

since $\operatorname{dist}\left(z_{1}, \partial D\right)=\operatorname{dist}\left(z_{2}, \partial D\right)$.
It follows from Lemma 2.1, (3.8) and (3.9) that

$$
\log \left(1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)}\right) \leq 2 c \log \left(1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}\right)
$$

But

$$
\lim _{x_{0} \rightarrow-\infty} \frac{\log \left(1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)}\right)}{\log \left(1+\frac{1}{\operatorname{dist}\left(z_{1}, \partial D\right)^{2}}\right)}=\infty
$$

This is the desired contradiction.
Acknowledgement. The authors thank the referee for valuable comments.

References

[1] Beardon, A. F.: The Apollonian metric of a domain in \mathbf{R}^{n}, - In: Quasiconformal mappings and analysis, Spring-Verlag 1998, 91-108.
[2] Broch, O. J.: Geometry of John disks. - Ph.D. Thesis, NTNU, 2004.
[3] Gehring, F. W., and K. Hag: Hyperbolic geometry and disks. - In: Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math. 105, 1999, 275-284.
[4] Gehring, F. W., and K. Hag: The Apollonian metric and quasiconformal mappings. - In: In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998), Contemp. Math. 256, Amer. Math. Soc., Providence, RI, 2000, 143-163.
[5] Gehring, F. W., and O. Martio: Quasiextremal distance domains and extension of quasiconformal mapping. - J. Analyse Math. 45, 1985, 181-206.
[6] Gehring, F. W., and B. G. Osgood: Uniform domains and the quasihyperbolic metric. J. Analyse Math. 36, 1979, 50-74.
[7] Gehring, F. W., and B. P. Palka: Quasiconformally homogeneous domains. - J. Analyse Math. 30, 1976, 172-199.
[8] Heinonen, J.: Lectures on analysis on metric space. - Springer-Verlag, New York, 2001.
[9] John, F.: Rotation and strain. - Comm. Pure Appl. Math. 14, 1961, 391-413.
[10] Kim, K., and N. Langmeyer: Harmonic measure and hyperbolic distance in John disks. Math. Scand. 83, 1998, 283-299.
[11] Langmeyer, N.: The quasihyperbolic metric, growth and John domains. - Ph.D. Thesis, University of Michigan, 1996.
[12] Martio, O., and J. Sarvas: Injectivity theorems in plane and space, - Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1978, 383-401.
[13] NÄkki, R., and J. VÄisälä: John disks. - Exposition. Math. 9, 1991, 3-43.
[14] Pommerenke, Ch.: Boundary behaviour of conformal maps. - Springer-Verlag, 1992.

[^0]: 2000 Mathematics Subject Classification: Primary 30C65.
 Key words: Hyperbolic distance, λ-Apollonian metric, John disk.
 *Corresponding author.
 The research was partly supported by NSFs of China (No. 10571048 and No. 10471039) and of Hunan Province (No. 05JJ10001), and NCET (No. 04-0783).

