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Abstract. In this paper, by using the hyperbolic distance and the λ-Apollonian metric, we
establish a sufficient condition for a simply connected proper subdomain D ⊂ C to be a John disk.
We also construct two examples to show that the converse of this result does not necessarily hold.
As a consequence the answer to Conjecture 6.2.12 in the Ph.D. thesis of Broch [2] is negative.

1. Introduction and main results

As in [9] and [13], a simply connected proper domain D of the complex plane
C is called a b-John disk if for any two points z1, z2 ∈ D, there is a rectifiable arc
α ⊂ D joining them with

min
j=1,2

`(α[zj, z]) ≤ b dist(z, ∂D) for all z ∈ α,

where b is a positive constant. Here `(α[zj, z]) denotes the Euclidean arclength of
the subarc of α with the endpoints zj and z; dist(z, ∂D) denotes the Euclidean
distance from z to ∂D which is the boundary of D. We call a domain D a John
disk if it is a b-John disk for some positive constant b.

It has been known that a Jordan domain D ⊂ C is a quasidisk if and only if
both D and D∗ = C\D are John disks (cf. [10]), and every quasidisk is a John disk
(see [5]). Hence John disks can be thought of as “one-sided quasidisks”. Also several
other necessary and sufficient conditions for D to be a John disk have been given.
For example, Näkki and Väisälä obtained the following

Theorem A. [13] Let D be a simply connected proper subdomain in C. Then
the following conditions are equivalent.
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(1) D is a b-John disk.
(2) For each x ∈ R2 and r > 0, any two points in D \B(x, r) can be joined by

an arc in D\B(x, r
c
), where the constants b and c depend only on each other

and B(x, r) denotes the disk with the center x of radius r.
(3) For every straight crosscut α of D dividing D into subdomain D1 and D2,

we have min
j=1,2

diam(Dj) ≤ c diam(α), where the constants b and c depend

only on each other and diam(α) means the diameter of α.

John disks appear naturally in many areas of analysis (see [12, 13]). In [10],
Kim and Langmeyer presented a number of results characterizing b-John disk (see
[10, Theorem 2.3]). To present our main result, we need some preparation. The
following result, which is actually planar version of [10, Theorem 4.1], characterizes
b-John disk, in terms of a bound for hyperbolic distance.

Theorem B. A simply connected proper subdomain D ⊂ C is a b-John disk if
and only if there exists a constant c ≥ 1 such that

hD(z1, z2) ≤ c j′D(z1, z2)

for all z1, z2 ∈ D. Here the constants b and c depend only on each other.

The definitions of hD and j′D are presented in Section 2.
By using the hyperbolic distance hD and the λ-Apollonian metric a′D (see again

Section 2 for its definition) in D, Broch [2, Theorem 6.2.9] obtained the following
result which again provides a necessary and sufficient condition for a Jordan domain
to be a b-John disk.

Theorem C. [2] A Jordan proper subdomain D ⊂ C is a b-John disk if and
only if there are constants µ and ν such that

hD(z1, z2) ≤ µ a′D(z1, z2) + ν

for all pairs z1, z2 ∈ D, where µ and ν depend only on b, and b depends only on µ
and ν.

By comparing Theorem C with Theorem B, Broch [2, Conjecture 6.2.12] raised
the following conjecture.

Conjecture 1.1. A simply connected (Jordan) domain D ⊂ C is a b-John disk
if and only if there is a constant c such that

hD(z1, z2) ≤ c a′D(z1, z2)

for all pairs z1, z2 ∈ D. Here the constants b and c depend only on each other.

For a discussion on related problems, we refer to [1, 3, 4, 7, 8, 9, 11, 12].
In this paper, we mainly consider Conjecture 1.1. Our main results follow.

Theorem 1.2. Let L1 = {z : |z + 1| = 1, Im z ≥ 0}, L2 = {−2 + iy :
−1 ≤ y ≤ 0}, L3 = {x − i : −2 ≤ x ≤ 2}, L4 = {2 + iy : −1 ≤ y ≤ 0} and
L5 = {z : |z − 1| = 1, Im z ≥ 0}. Let D be the bounded domain bounded by Lj,
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j = 1, 2, . . . , 5. Then D is a b-John disk with 0 < b ≤ 6(2 +
√

2), but there does not
exist a constant c such that

hD(z1, z2) ≤ c a′D(z1, z2)

for all z1, z2 ∈ D.

Theorem 1.3. Let D∗ = {x + iy : x > 0, |y| < 1
2
} and D = C\D∗. Then D is

a b-John disk for some b = 6, but there does not exist any constant c such that

hD(z1, z2) ≤ c a′D(z1, z2)

for all z1, z2 ∈ D.

Theorems 1.2 and 1.3 show that the answer to Conjecture 1.1 is negative irre-
spective of whether D is bounded or unbounded.

2. Preliminary material

Throughout the discussion we restrict ourselves to simply connected proper
subdomains D of the complex plane C = R2. The hyperbolic density at z ∈ D is
given by

ρD(z) = ρB(g(z))|g′(z)|,
where ρB(z) = 2/(1 − |z|2) and g is a conformal mapping of D onto the unit disk
B ⊂ C. Then for any pair of points z1 and z2 in D, we define

hD(z1, z2) = inf
α

∫

α

ρD(z) |dz| and kD(z1, z2) = inf
α

∫

α

|dz|
dist(z, ∂D)

,

where each infimum in the above is taken over all rectifiable curves α in D from z1

to z2. The quantities hD(z1, z2) and kD(z1, z2) are called the hyperbolic distance and
quasihyperbolic distance between z1, z2, respectively. The idea of quasihyperbolic
distance was introduced in [7] and developed in [7, 6]. Also, it is well known that
for all pairs z1 and z2 in D there exists a unique hyperbolic geodesic curve β from
z1 to z2, i.e. a curve β along which the above infimum is obtained, and

hD(z1, z2) =

∫

β

ρD(z) |dz|.

It follows from [2, 14, 6] that

Lemma 2.1. For all z1, z2 ∈ D,

1

2
kD(z1, z2) ≤ hD(z1, z2) ≤ 2 kD(z1, z2)

and

kD(z1, z2) ≥ log

(
1 +

|z1 − z2|
dist(zj, ∂D)

)
(j = 1, 2).
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For a pair of points z1, z2 in D, the inner distance between them is defined by

λD(z1, z2) = inf{`(α) : α ⊂ D is a rectifiable arc joining z1 and z2}.
We call λD the inner metric on D. A point w in the boundary ∂D of D is said to be
rectifiably accessible if there is a half open rectifiable arc α in D ending at w. Let
∂rD denote the subset of ∂D which consists of all the rectifiably accessible points,
that is

∂rD = {w ∈ ∂D : w is rectifiably accessible}.
Further, as in [2], we define the λ-Apollonian metric a′D, in terms of inner distances,
by

a′D(z1, z2) = sup
w1,w2∈∂rD

log(|z1, z2, w1, w2|λ),

where

|z1, z2, w1, w2|λ =
λD(z1, w1)λD(z2, w2)

λD(z1, w2)λD(z2, w1)
.

At this place, it might be important to point out that a′D 6= a′′D, if a′′D denotes the
inner Apollonian metric defined by

a′′D(z1, z2) = inf{`a(α) : α ⊂ D is a rectifiable arc joining z1 and z2}.
Also as in [2], we define a metric j′D(z1, z2) for any z1, z2 ∈ D by

j′D(z1, z2) = log

(
1 +

λD(z1, z2)

dist(z1, ∂D)

)(
1 +

λD(z1, z2)

dist(z2, ∂D)

)
.

This version of the metric is obtained by replacing the Euclidean distances in the
jD-metric introduced by Gehring and Osgood [6] by inner distances. Note that
sometimes, our j′D is multiplied by a factor 1/2. We also recall that the relation
between kD and j′D in John disks is stated in Theorem B and Lemma 2.1. We end
the section with the following result.

Lemma 2.2. Suppose that D is a simply connected proper subdomain in C.
Then

a′D(z1, z2) ≤ j′D(z1, z2)

for all z1, z2 ∈ D.

Proof. For any w ∈ ∂rD, we know

λD(z1, w)

λD(z2, w)
≤ λD(z1, z2) + λD(z2, w)

λD(z2, w)
= 1 +

λD(z1, z2)

λD(z2, w)
≤ 1 +

λD(z1, z2)

dist(z2, ∂D)
.

Thus, by the symmetry and the arbitrariness of w1, w2 ∈ ∂rD in the definition of
a′D , we have

a′D(z1, z2) ≤ log

(
1 +

λD(z1, z2)

dist(z1, ∂D)

)(
1 +

λD(z1, z2)

dist(z2, ∂D)

)
= j′D(z1, z2). ¤
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Corollary 2.3. Suppose that D is a simply connected proper subdomain in C
and that there is a constant c such that

hD(z1, z2) ≤ c a′D(z1, z2)

for all z1, z2 ∈ D. Then D is a b-John disk, where b depends only on c.

Proof. By Lemma 2.2, we see that there exists a constant c such that

hD(z1, z2) ≤ c a′D(z1, z2) ≤ c j′D(z1, z2).

It follows from Theorem B that D is a b-John disk, where b depends only on c. ¤

3. Proof of main theorems

For the proof of Theorem 1.2, we need the following lemma.

Lemma 3.1. Let D be the bounded domain bounded by Lj (j = 1, 2, . . . , 5) as
in Theorem 1.2. Let z1 = −t2 − it ∈ D with 0 < t < 1/2, and z2 = −z1. Then we
have

(3.2)
λD(z2, p)

λD(z1, p)
≤ 1 + 4t2

and

(3.3)
λD(z1, p)

λD(z2, p)
≤ 1 + 4t2

for all p ∈ ∂D.

Proof. Obviously, it is sufficient to prove (3.2). The proof of (3.3) easily follows
from the proof of (3.2).

Let Lj (j = 1, 2, . . . , 5) be defined in Theorem 1.2. Then ∂D =
⋃5

j=1 Lj, see
Figure 1. For any p = (x, y) ∈ L1, we divide the proof into several steps.

Case (i). Let x > −2t2/(1 + t2). Then (1 + x/2)(1 + t2) > 1. Now we compute

(1 + t2)λ2
D(z1, p)− λ2

D(z2, p)

= (1 + t2)|z1 − p|2 − (|z2|+ |p|)2

= (1 + t2)|z1 − p|2 − (|z1|+ |p|)2

= (1 + t2)
[
(x + t2)2 + (y + t)2

]−
(√

x2 + y2 +
√

t2 + t4
)2

,

= 2t
[
(1 + t2)y −√−2x

√
1 + t2 + t3(x + 1/2) + t5/2

]
(since x2 + y2 = −2x)

= 2t
[√

1 + t2
√−2x

(√
1 + t2

√
1 + x/2− 1

)
+ t3(x + 1/2) + t5/2

]

which is clearly nonnegative and hence, we have
λD(z2, p)

λD(z1, p)
≤
√

1 + t2.

Note that
√

1 + t2 < 1 + 4t2 for 0 < t < 1/2.
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Figure 1. The domain D bounded by five curves Lj (j = 1, 2, . . . , 5).

Case (ii). Let x ≤ −2t2/(1 + t2). Then 0 ≤ (1 + x/2)(1 + t2) ≤ 1. In this case,
we see that

(1 + 4t2)λ2
D(z1, p)− λ2

D(z2, p) = (1 + 4t2)|z1 − p|2 − |z2 − p|2
= (1 + 4t2)[(x + t2)2 + (y + t)2]

− [(x− t2)2 + (y + t)2]

= 4t2[−x(1− 2t2) + t4 + t2 + 2ty] ≥ 0,

since x2 + y2 = −2x and 0 < t < 1/2. It follows that
λD(z2, p)

λD(z1, p)
≤
√

1 + 4t2.

Thus, (3.2) holds when p ∈ L1.
If p ∈ L2, then we see that λD(z1, p) ≥ 2 − t2. If p ∈ L3, then we find that

λD(z1, p) ≥ 1− t. Consequently, we easily obtain that

λD(z2, p)

λD(z1, p)
≤ λD(z1, p) + |z1 − z2|

λD(z1, p)
= 1 +

2t2

λD(z1, p)
≤

{
1 + 16

7
t2 if p ∈ L2,

1 + 4t2 if p ∈ L3.

Finally, if p ∈ L4 ∪ L5, it is obvious that
λD(z2, p)

λD(z1, p)
≤ 1.

The proof of (3.2) is completed. ¤
Proof of Theorem 1.2. The equivalence of (1) and (3) in Theorem A implies

that D is a b-John disk for some constant b with 0 < b ≤ 6(2 +
√

2).



Hyperbolic distance, λ-Apollonian metric and John disks 377

Suppose, on the contrary, that there exists a constant c such that

(3.4) hD(z1, z2) ≤ c a′D(z1, z2)

for all z1, z2 ∈ D.
Let z1 and z2 be as in Lemma 3.1. Then (3.2) and (3.3) imply that

a′D(z1, z2) = sup
w1,w2∈∂rD

log

(
λD(z1, w1)λD(z2, w2)

λD(z1, w2)λD(z2, w1)

)
≤ 2 log(1 + 4t2).

By Lemma 2.1, we deduce that

hD(z1, z2) ≥ 1

2
log

(
1 +

|z1 − z2|
dist(z1, ∂D)

)
=

1

2
log

(
1 +

2t√
t2 + 1

)
.

Thus, by assumption (3.4), these two inequalities yield that

log

(
1 +

2t√
t2 + 1

)
≤ 2 hD(z1, z2) ≤ 2c a′D(z1, z2) ≤ 4c log(1 + 4t2).

But, on the other hand,

lim
t→0

log
(
1 + 2t/

√
t2 + 1

)

log(1 + 4t2)
= ∞

which is a contradiction and we complete the proof of Theorem 1.2. ¤
Before the proof of Theorem 1.3, we prove the following lemma.

Lemma 3.5. Let D be as in Theorem 1.3 and let z1 = x0 + 1
2
i, z2 = z1 with

x0 < 0. Then we have

(3.6)
λD(z1, p)

λD(z2, p)
≤

√
1 +

1

dist(z2, ∂D)2

and

(3.7)
λD(z2, p)

λD(z1, p)
≤

√
1 +

1

dist(z1, ∂D)2

for all p ∈ ∂D.

Proof. Let L1 = {x + i/2 : x > 0}, L2 = {iy : −1/2 ≤ y ≤ 1/2}, L3 =
{x− i/2 : x > 0}, see Figure 2.

We need only to prove (3.6) as the proof of (3.7) easily follows from that of
(3.6).
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Figure 2. D, the exterior of the region bounded by L1, L2, L3.

If p ∈ L1, then we have

λD(z1, p) = |z1 − p| = dist(z1, ∂D) + |p− i/2|
and

λD(z2, p) = λD(z2, i/2) + |p− i/2| =
√

1 + dist(z1, ∂D)2 + |p− i/2|
so that (3.6) becomes obvious.

If p ∈ L2, then

λD(z1, p) = |z1 − p| and λD(z2, p) = |z2 − p|.
Obviously,

λD(z1, p)

λD(z2, p)
≤ λD(z1,−i/2)

λD(z2,−i/2)
≤ |z1 + i/2|
|z2 + i/2| =

√
1 +

1

dist(z2, ∂D)2
.

If p ∈ L3, then

λD(z2, p) = |z2 − p| = dist(z2, ∂D) + |p + i/2|
and

λD(z1, p) = λD(z1,−i/2) + |p + i/2| =
√

1 + dist(z2, ∂D)2 + |p + i/2|.
We now obtain that

λD(z1, p)

λD(z2, p)
≤ λD(z1,−i/2)

λD(z2,−i/2)
=

√
1 + dist(z2, ∂D)2

dist(z2, ∂D)
=

√
1 +

1

dist(z2, ∂D)2
.

The proof is completed. ¤
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Proof of Theorem 1.3. Clearly, (2) in Theorem A holds with c = 1 and so, one
could get an explicit constant, for instance b = 6. Now, the equivalence of (1) and
(2) in Theorem A implies that D is a b-John disk with b = 6.

Suppose, on the contrary, that there exists a constant c such that

(3.8) hD(z1, z2) ≤ c a′D(z1, z2)

for all z1, z2 ∈ D, where D is as in Theorem 1.3.
Now, let z1 and z2 be as in Lemma 3.5. Then

a′D(z1, z2) = sup
w1,w2∈∂rD

log

(
λD(z1, w1)λD(z2, w2)

λD(z1, w2)λD(z2, w1)

)

≤ log

(√
1 +

1

dist(z2, ∂D)2

√
1 +

1

dist(z1, ∂D)2

)
.

We know that

(3.9) a′D(z1, z2) ≤ log

(
1 +

1

dist(z1, ∂D)2

)
,

since dist(z1, ∂D) = dist(z2, ∂D).
It follows from Lemma 2.1, (3.8) and (3.9) that

log

(
1 +

1

dist(z1, ∂D)

)
≤ 2c log

(
1 +

1

dist(z1, ∂D)2

)
.

But

lim
x0→−∞

log
(
1 + 1

dist(z1,∂D)

)

log
(
1 + 1

dist(z1,∂D)2

) = ∞.

This is the desired contradiction. ¤
Acknowledgement. The authors thank the referee for valuable comments.
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