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Abstract. We study Martin boundary points of cones generated by spherical John regions.
In particular, we show that such a cone has a unique (minimal) Martin boundary point at the
vertex, and also at infinity. We also study a relation between ordinary thinness and minimal
thinness, and the boundary behavior of positive superharmonic functions.

1. Introduction

We work in the Euclidean space Rn, where n ≥ 3. Let Ω be a subdomain of
Rn and GΩ stand for the Green function for Ω. Let x0 ∈ Ω be fixed, and let ξ
be a boundary point of Ω. Suppose now that {yj} is a sequence in Ω converging
to ξ. Then, for each bounded open set ω such that x0 ∈ ω and ω ⊂ Ω, there is
j0 such that {GΩ(·, yj)/GΩ(x0, yj)}∞j=j0

is a uniformly bounded sequence of positive
harmonic functions in ω. Therefore some subsequence of {GΩ(·, yj)/GΩ(x0, yj)}j

converges to a positive harmonic function in Ω. All limit functions obtained in this
way are called Martin kernels at ξ or Martin boundary points at ξ. Note that the
number of Martin boundary points at ξ depends on geometry of Ω near ξ, so it is
not necessarily unique. We say that a positive harmonic function h is minimal if
every positive harmonic function less than or equal to h coincides with a constant
multiple of h. If a Martin kernel is minimal, then we call it a minimal Martin kernel
or a minimal Martin boundary point. There have been many investigations for
minimal Martin boundary points of several types of domains. For instance, every
Euclidean boundary point of Lipschitz domains [11], NTA domains [12] or uniform
domains [2], has a unique Martin boundary point and it is minimal. See also [4] and
[3] for other domains. For Denjoy domains [7, 10, 16], Lipschitz-Denjoy domains
[5, 8], sectorial domains [9] and quasi-sectorial domains [15], there are criteria for the
number of minimal Martin boundary points at a fixed Euclidean boundary point.
In [3], Aikawa, Lundh and the author investigated the number of minimal Martin
boundary points at each Euclidean boundary point of a John domain. An open
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subset Ω of Rn is said to be a John domain with John constant CJ and John center
X0 if each point x in Ω can be connected to X0 by a rectifiable curve γ in Ω such
that

(1.1) dist(z, ∂Ω) ≥ CJ`(γ(x, z)) for all z ∈ γ,

where `(γ(x, z)) denotes the length of the subarc γ(x, z) of γ connecting x to z,
and dist(z, ∂Ω) stands for the distance from z to the Euclidean boundary ∂Ω of Ω.
John domains include domains stated above and domains with fractal boundaries.
Each Euclidean boundary point of a John domain may have many minimal Martin
boundary points, but its number is finite.

Theorem A. Let Ω be a John domain with John constant CJ . The following
statements hold:

(i) The number of minimal Martin boundary points at every point of ∂Ω is
bounded by a constant depending only on CJ .

(ii) If CJ >
√

3/2, then there are at most two minimal Martin boundary points
at every point of ∂Ω.

The bound CJ >
√

3/2 in (ii) is sharp (cf. [3, Remark 1.1]). However, the
number of minimal Martin boundary points at a given Euclidean boundary point
can not be determined in terms of the John constant CJ .

In this note, we will consider a cone generated by a (relatively) open subset of
the unit sphere with a John property, and will study Martin boundary points at
the vertex and at infinity. For x ∈ Rn and r > 0, let B(x, r) and S(x, r) denote
the open ball and the sphere of center x and radius r, respectively. When x = 0,
we write B(r) and S(r) to abbreviate the notation. Let x0 ∈ S(1). We say that a
connected (relatively) open subset V of S(1) is a John region of center x0 if there
exists a positive constant cJ with the following property: for each x ∈ V there is a
rectifiable curve γ in V connecting x to x0 such that

(1.2) dist(z, S(1) \ V ) ≥ cJ`(γ(x, z)) for all z ∈ γ.

Throughout the note, we call Γ a cone (with vertex at the origin) generated by a
John base V of center x0 if V is a John region in S(1) of center x0 and

Γ =

{
x ∈ Rn \ {0} :

x

|x| ∈ V

}
.

Our result is as follows.

Theorem 1.1. Let Γ be a cone generated by a John base V of center x0.
Then there exists a unique Martin kernel KΓ(·, 0) at the origin and it is minimal.
Also, there exists a unique Martin kernel KΓ(·,∞) at infinity and it is minimal.
Furthermore, there exist a positive continuous function f on V and p ≥ n− 2 such
that for x ∈ Γ,

(1.3) KΓ(x, 0) = |x|−pf(x/|x|) and KΓ(x,∞) = |x|2−n+pf(x/|x|).
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Theorem 1.1 is an extension of Kuran’s result [13, Theorem 1]. He considered
an NTA cone, i.e. a cone Γ such that Γ ∩ B(1) is an NTA domain in the sense
of Jerison and Kenig [12]. The boundary Harnack principle and the uniqueness
theorem obtained in [12] was applied to a bounded NTA domain Γ ∩ B(1) in his
arguments. It is noteworthy that cones generated by John bases do not satisfy, in
general, the boundary Harnack principle at a given boundary point. For example,
let Γ = {x ∈ Rn \ {0} : x/|x| ∈ S(1) \ γ}, where γ is a closed arc in S(1) with
endpoints a, b. Then the boundary Harnack principle does not hold at every point
in {x ∈ Rn \{0} : x/|x| ∈ γ \{a, b}}. We will show the boundary Harnack principle
at the origin, using ideas from our previous paper [3].

The rest of the note is organized as follows. In Section 2, we will give a proof
of Theorem 1.1. In Section 3, we will show the equivalence of the ordinary thinness
and the mininal thinness of a set contained in a subcone of Γ, and will show that
there is no positive superharmonic function u in a domain, which contains Γ, such
that |x|pu(x) → +∞ as x → 0 along a subcone of Γ, where p is the homogeneous
degree of KΓ(·, 0) in Theorem 1.1.

Throughout the note, we use the symbol C to denote an absolute positive con-
stant whose value is unimportant and may change from line to line. If necessary,
we use C1, C2, · · · to specify them.

2. Proof of Theorem 1.1

We start by recalling the Harnack inequality involving the quasi-hyperbolic met-
ric. Let x and y be points in a subdomain Ω of Rn. The quasi-hyperbolic metric
on Ω is defined by

kΩ(x, y) = inf
γ

∫

γ

ds(z)

dist(z, ∂Ω)
,

where the infimum is taken over all rectifiable curves γ in Ω connecting x to y
and ds stands for the line element on γ. We say that a finite sequence of balls
{B(xj, 2

−1 dist(xj, ∂Ω))}N
j=1 is a Harnack chain between x and y if x1 = x, xN = y

and xj+1 ∈ B(xj, 2
−1 dist(xj, ∂Ω)) for j = 1, · · · , N − 1. The number N is called

the length of the Harnack chain. We observe that the infimum of the lengths of
the Harnack chains between x and y is comparable to kΩ(x, y) + 1. Therefore the
Harnack inequality yields the following.

Lemma 2.1. There exists a constant C > 1 depending only on the dimension
n such that if x, y ∈ Ω, then

exp(−C(kΩ(x, y) + 1)) ≤ h(x)

h(y)
≤ exp(C(kΩ(x, y) + 1))

for every positive harmonic function h in Ω.

We next recall the notion, a system of local reference points of order N (see [3,
Definition 2.1] for details). We need the case N = 1.
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Definition 2.2. Let 0 < η < 1. We say that ξ ∈ ∂Ω has a system of local
reference points of order 1 with factor η if there exist rξ > 0 and Cξ > 1 with the
following property: for each positive r < rξ there is yr ∈ Ω ∩ S(ξ, r) such that
dist(yr, ∂Ω) ≥ C−1

ξ r and

(2.1) kΩ∩B(ξ,η−3r)(x, yr) ≤ Cξ log
r

dist(x, ∂Ω)
+ Cξ for x ∈ Ω ∩B(ξ, ηr).

We should note that this notion controls the boundary behavior of positive
harmonic functions. Indeed, by Lemma 2.1 and (2.1), there exist constants C > 1
and α > 1 depending only on n and Cξ such that

(2.2) h(x) ≤ C

(
r

dist(x, ∂Ω)

)α

h(yr) for x ∈ Ω ∩B(ξ, ηr),

whenever h is a positive harmonic function in Ω ∩ B(ξ, η−3r). In view of this,
we would like to show the Carleson type estimate: if h is a positive and bounded
harmonic function in Ω∩B(ξ, η−3r) vanishing on ∂Ω∩B(ξ, η−3r) except for a polar
set, then

(2.3) h(x) ≤ Ch(yr) for x ∈ Ω ∩B(ξ, η2r).

To do this, we need to show that each point in Γ ∩B(1) can be connected to x0 by
a curve satisfying (1.1), and that the origin has a system of local reference points
of order 1.

Lemma 2.3. Let Γ be a cone generated by a John base V of center x0. Then
each x ∈ Γ ∩B(1) can be connected to x0 by a rectifiable curve γ in Γ ∩B(1) such
that

(2.4) dist(z, ∂Γ) ≥ C1`(γ(x, z)) for all z ∈ γ,

where C1 is a positive constant depending only on Γ.

Proof. Let x ∈ Γ ∩ B(1). Then, by the definition of V , there is a rectifiable
curve γ′ in V connecting x/|x| to x0 and satisfying (1.2). Let γ′x be the image of γ′

under the dilation mapping x/|x| to x. Then γ′x is the curve in Γ∩S(|x|) ⊂ Γ∩B(1)
connecting x to |x|x0 and satisfies that for z ∈ γ′x,

dist(z, ∂Γ) = |x| dist(z/|x|, ∂Γ)

≥ |x|cJ

2
`(γ′(x/|x|, z/|x|)) =

cJ

2
`(γ′x(x, z)).

(2.5)

Indeed, the above inequality can be shown as follows: If dist(z/|x|, ∂Γ) = dist(z/|x|,
{0}) = 1, then we have by (1.2)

dist(z/|x|, ∂Γ) =
`(γ′(x/|x|, z/|x|))
`(γ′(x/|x|, z/|x|)) ≥

`(γ′(x/|x|, z/|x|))
c−1
J dist(z/|x|, S(1) \ V )

≥ cJ

2
`(γ′(x/|x|, z/|x|)).
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If dist(z/|x|, ∂Γ) 6= dist(z/|x|, {0}), then there is y ∈ ∂Γ \ {0} such that dist(z/|x|,
∂Γ) = |z/|x| − y|. Then the angle ∠y0z must be less than π/2. Therefore we have
by (1.2)

dist(z/|x|, ∂Γ) = |z/|x| − y/|y|| cos(2−1∠y0z) ≥ 1√
2

dist(z/|x|, S(1) \ V )

≥ cJ√
2
`(γ′(x/|x|, z/|x|)).

Let γ = γ′x ∪ [|x|x0, x0], where [|x|x0, x0] denotes the line segment between |x|x0

and x0. To complete the lemma, it suffices to show (2.4) for z ∈ [|x|x0, x0]. Let
w ∈ [|x|x0, x0]. Since dist(|x|x0, ∂Γ) ≤ |x| ≤ |w|, it follows from (2.5) with z = |x|x0

that

`(γ(x,w)) = `(γ′x) + ||x|x0 − w| ≤ 2

cJ

dist(|x|x0, ∂Γ) + |w|

≤
(

2

cJ

+ 1

)
|w| =

(
2

cJ

+ 1

)
dist(w, ∂Γ)

dist(x0, ∂Γ)
.

Hence the lemma holds with C1 = (2c−1
J + 1)−1 dist(x0, ∂Γ). ¤

Lemma 2.4. Let Γ be a cone generated by a John base V of center x0. Then
there exists a positive constant C2 depending only on Γ such that

kΓ∩B(2r)(x, rx0) ≤ C2 log
r

dist(x, ∂Γ)
+ C2 for x ∈ Γ ∩B(r),

whenever r > 0. In other words, the origin has a system of local reference points of
order 1.

Proof. Let r > 0. We note that the conclusion in Lemma 2.3 is invariant under
dilation since Γ is the cone. Therefore we see that for each x ∈ Γ ∩ B(r) there is a
curve γ in Γ ∩B(r) connecting x to rx0 such that

dist(z, ∂(Γ ∩B(2r))) = dist(z, ∂Γ) ≥ C1`(γ(x, z)) for all z ∈ γ.

Since `(γ) ≤ C−1
1 dist(rx0, ∂Γ) = C−1

1 r dist(x0, ∂Γ), we have

kΓ∩B(2r)(x, rx0) ≤
∫

γ

ds(z)

dist(z, ∂Γ)
≤ 1 +

1

C1

∫ `(γ)

2−1 dist(x,∂Γ)

dt

t

≤ C2 log
r

dist(x, ∂Γ)
+ C2,

where a constant C2 depends only on C1 and dist(x0, ∂Γ). Thus the lemma follows.
¤

From now on, we suppose that Γ is a cone generated by a John base of center
x0. Using Lemmas 2.3 and 2.4 and repeating similar arguments to [3, Lemmas 5.1
and 6.1], we can obtain Lemmas 2.5 and 2.7 below. We say that a property holds
quasi-everywhere if it holds apart from a polar set.
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Lemma 2.5. (Carleson type estimate) Let r > 0. Suppose that h is a positive
harmonic function in Γ ∩ B(2r) vanishing quasi-everywhere on ∂Γ ∩ B(2r). If h is
bounded in Γ ∩B(2r), then

h(x) ≤ Ch(rx0) for x ∈ Γ ∩B(2−1r),

where a constant C is independent of x, h and r.

Remark 2.6. First, we could prove Lemma 2.5 for sufficiently small r, say
0 < r ≤ r0. If r > r0 and h satisfies the assumptions in Lemma 2.5, then h( r

r0
·)

satisfies
h( r

r0
x) ≤ Ch( r

r0
r0x0) = Ch(rx0) for x ∈ Γ ∩B(2−1r0).

Hence Lemma 2.5 holds for all r > 0.

Let ω(x,E,D) denote the harmonic measure of a Borel set E for an open set D
evaluated at x.

Lemma 2.7. Let r > 0. If h is a positive and bounded harmonic function in
Γ ∩B(2r) vanishing quasi-everywhere on ∂Γ ∩B(2r), then

ω(x, Γ ∩ S(2−1r), Γ ∩B(2−1r)) ≤ C
h(x)

h(rx0)
for x ∈ Γ ∩B(3−1r),

where a constant C is independent of x, h and r.

As a consequence of these lemmas, we can obtain the following Boundary Har-
nack principle at the origin. For two positive functions f1 and f2, we write f1 ≈ f2

if there exists a constant C > 1 such that C−1f1 ≤ f2 ≤ Cf1. The constant C is
called the constant of comparison.

Lemma 2.8. (Boundary Harnack principle) Let r > 0. If h1 and h2 are positive
and bounded harmonic functions in Γ ∩B(2r) vanishing quasi-everywhere on ∂Γ ∩
B(2r), then

h1(y)

h2(y)
≈ h1(y

′)
h2(y′)

for y, y′ ∈ Γ ∩B(3−1r),

where the constant of comparison is independent of y, y′, h1, h2 and r.

We note again that this Boundary Harnack principle holds only at the origin,
that is, it does not hold at other boundary points in general. So we can not apply
the arguments in [2, Lemma 4 and Proof of Theorem 3] to prove the first statement
in Theorem 1.1. We need the following lemma.

Lemma 2.9. Let Ω be a subdomain of Rn with n ≥ 2, and let ξ ∈ ∂Ω. Suppose
that h is a positive harmonic function in Ω such that h vanishes quasi-everywhere on
∂Ω \ {ξ} and limx→∞ h(x) = 0 when Ω is unbounded. If h is bounded in Ω \B(ξ, r)
for each r > 0, then the measure associated with h in the Martin representation is
concentrating on minimal Martin boundary points at ξ.

Proof. Let ∆ and ∆1 denote the Martin boundary and the minimal Martin
boundary of Ω, respectively, and KΩ stand for the Martin kernel of Ω. By the
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Martin representation, there is a unique measure µh on ∆ such that µh(∆\∆1) = 0
and

h(x) =

∫

∆

KΩ(x, y) dµh(y) for x ∈ Ω.

We now write ∆(ξ) for the set of all Martin boundary points at ξ. Let E be a
compact subset of ∆ \ ∆(ξ), and let {Ej} be a decreasing sequence of compact
neighborhoods of E in the Martin compactification of Ω such that

⋂
j Ej = E and

(E1 ∩ Ω) ∩ B(ξ, r1) = ∅ for some r1 > 0. Then, for each j ∈ N, we have by [6,
Corollary 9.1.4]

R̂
Ej∩Ω
h (x) =

∫

∆1

R̂
Ej∩Ω

KΩ(·,y)(x) dµh(y) for x ∈ Ω,

where R̂F
u denotes the regularized reduced function of a positive superharmonic

function u relative to F in Ω. By assumption on h, we see that limj→∞ R̂
Ej∩Ω
h is a

bounded harmonic function in Ω vanishing quasi-everywhere on ∂Ω. The maximum
principle gives limj→∞ R̂

Ej∩Ω
h ≡ 0. Thus we have by the monotone convergence

(2.6) 0 = lim
j→∞

R̂
Ej∩Ω
h (x0) =

∫

∆1

lim
j→∞

R̂
Ej∩Ω

KΩ(·,y)(x0) dµh(y).

If y ∈ E ∩ ∆1, then Ej ∩ Ω is not minimally thin at y for each j (cf. [6, Lemma
9.1.5]). Therefore we have

lim
j→∞

R̂
Ej∩Ω

KΩ(·,y)(x0) = KΩ(x0, y) = 1 for y ∈ E ∩∆1.

Hence this, together with (2.6), concludes µh(E) = 0, and so µh(∆\(∆(ξ)∩∆1)) = 0.
Thus the lemma follows. ¤

Let us give a proof of Theorem 1.1.

Proof of Theorem 1.1. We first show that the origin has at most one minimal
Martin boundary point. Let ξ and η be minimal Martin boundary points at the
origin. Then, by definition, there are sequences {yj} and {y′j} in Γ converging to the
origin such that GΓ(·, yj)/GΓ(x0, yj) → KΓ(·, ξ) and GΓ(·, y′j)/GΓ(x0, y

′
j) → KΓ(·, η)

as j → ∞. Here KΓ(·, ξ) denotes the Martin kernel corresponding to ξ. Let r > 0
and let x ∈ Γ\B(3r). We apply Lemma 2.8 to h1 = GΓ(x, ·) and h2 = GΓ(x0, ·), and
let j →∞. Then we have KΓ(x, ξ) ≈ KΓ(x, η). Since the constant of comparison is
independent of r, it follows that KΓ(·, ξ) ≈ KΓ(·, η) on whole of Γ. By minimality
and KΓ(x0, ξ) = 1 = KΓ(x0, η), we obtain KΓ(·, ξ) ≡ KΓ(·, η), and hence ξ = η.
To complete the first statement of the theorem, it is enough to show that Martin
boundary points at the origin are minimal. But this follows from Lemma 2.9.
Indeed, if ζ is a Martin boundary point at the origin and 0 < r < 3−1, then Lemma
2.8 yields that

KΓ(x, ζ) ≈ GΓ(x, 3−1rx0)

GΓ(x0, 3−1rx0)
for x ∈ Γ \B(3r).
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Hence KΓ(·, ζ) satisfies the assumptions in Lemma 2.9, and so ζ is minimal. Also,
by the Kelvin transfomation with respect to S(1), we observe that there is a unique
Martin boundary point at infinity and it is minimal. The last statement of the
theorem can be obtained by the similar way to [13, p. 472]. ¤

3. Further results

Let E be a subset of Rn and let ξ ∈ Rn be a limit point of E. We say that E is
thin at ξ (in the ordinary sense) if there exists a positive superharmonic function u in
Rn such that u(ξ) < +∞ and u(x) → +∞ as x → ξ along E. The original definition
of minimal thinness by Naïm is based on the regularized reduced function of the
Martin kernel. We define minimal thinness by the following equivalent condition (cf.
[6, Theorem 9.2.7]). Let ξ be a minimal Martin boundary point of a domain Ω and
let E be a subset of Ω, where ξ is a Martin topology limit point of E. We say that E
is minimally thin at ξ with respect to Ω if there exists a Green potential GΩµ in Ω
such that

∫
KΩ(x, ξ)dµ(x) < +∞ and GΩµ(y)/GΩ(x0, y) → +∞ as y → ξ along E

in the Martin topology. For a subset E of Rn, we write Γ(E) = {ry : r > 0, y ∈ E}.
Note from Theorem 1.1 that a unique minimal Martin boundary point at 0 may be
identified with the Euclidean boundary point 0.

Theorem 3.1. Let Γ be a cone generated by a John base V of center x0. Let
U be a subset of S(1) such that U ⊂ V , and suppose that E is a subset of Γ(U).
Then E is thin at 0 if and only if E is minimally thin at 0 with respect to Γ.

This was first proved in the half-space by Lelong-Ferrand [14], and was extended
by Aikawa [1] to a Lipschitz domain. To prove Theorem 3.1, we need the following
estimates.

Lemma 3.2. Let Γ be a cone generated by a John base V of center x0, and let
U be a subset of S(1) such that U ⊂ V . The following statements hold:

(i) For x ∈ Γ(U) ∩B(6−1),

(3.1) GΓ(x, x0)KΓ(x, 0) ≈ |x|2−n,

where the constant of comparison is independent of x.
(ii) For x ∈ Γ(U) ∩B(6−1) and y ∈ Γ(U) ∩B(3|x|),

(3.2)
GΓ(x, x0)GΓ(x, y)

GΓ(x0, y)
≈ |x− y|2−n,

where the constant of comparison is independent of x and y;
(iii) For x ∈ Γ ∩B(6−1) and y ∈ Γ(U) ∩ (B(2−1) \B(3|x|)),

(3.3)
GΓ(x, x0)GΓ(x, y)

GΓ(x0, y)
≤ C|x− y|2−n,

where a constant C is independent of x and y.



Martin boundary points of cones generated by spherical John regions 297

To apply Lemma 2.1 to the Green function, we need the following: If z ∈ Ω,
then

(3.4) kΩ\{z}(x, y) ≤ 3kΩ(x, y) + π for x, y ∈ Ω \B(z, 2−1 dist(z, ∂Ω)).

The proof of this inequality may be found in [3, Lemma 7.2].

Proof of Lemma 3.2. (i) We observe from the Harnack inequality that

KΓ(6−1x0,∞) ≈ 1 and GΓ(6−1x0, x0) ≈ dist(x0, ∂Γ)2−n.

By Lemma 2.8 and (1.3), we have for x ∈ Γ ∩B(6−1),

GΓ(x, x0) ≈ GΓ(x, x0)

GΓ(6−1x0, x0)
≈ KΓ(x,∞)

KΓ(6−1x0,∞)
≈ KΓ(x,∞) =

|x|2−n

KΓ(x, 0)
f(x/|x|)2.

Since f is positive and continuous on U , we obtain (3.1) for x ∈ Γ(U) ∩B(6−1).
(ii) Let x ∈ Γ(U) ∩ B(6−1) and y ∈ Γ(U) ∩ B(3|x|). We will consider three

cases.
Case 1: |y| ≤ 6−1|x|. By Lemma 2.8 and (3.1), we have

GΓ(x, x0)
GΓ(x, y)

GΓ(x0, y)
≈ GΓ(x, x0)KΓ(x, 0) ≈ |x|2−n.

Since |x| ≈ |x− y|, we obtain (3.2) in this case.
Case 2: |y| ≥ 6−1|x| and |y − x| ≥ 2−1 dist(x, ∂Γ). Since dist(y, ∂Γ) ≥

|y| dist(U, ∂Γ) and dist(6−1|x|x0, ∂Γ) = 6−1|x| dist(x0, ∂Γ) ≥ 18−1|y| dist(x0, ∂Γ),
we have by Lemma 2.4

kΓ∩B(1)(6
−1|x|x0, y) ≤ kΓ∩B(1)(6

−1|x|x0, |y|x0) + kΓ∩B(1)(y, |y|x0)

≤ C2 log
|y|

dist(6−1|x|x0, ∂Γ)
+ C2 log

|y|
dist(y, ∂Γ)

+ 2C2

≤ C.

Therefore Lemma 2.1, together with (3.4), gives

GΓ(x, y) ≈ GΓ(x, 6−1|x|x0) and GΓ(x0, y) ≈ GΓ(x0, 6
−1|x|x0).

Since |x− 6−1|x|x0| ≈ |x− y|, we obtain from Case 1 that

GΓ(x, x0)GΓ(x, y)

GΓ(x0, y)
≈ GΓ(x, x0)GΓ(x, 6−1|x|x0)

GΓ(x0, 6−1|x|x0)
≈ |x− y|2−n.

Case 3: |y − x| ≤ 2−1 dist(x, ∂Γ). By the Harnack inequality, GΓ(x, x0) ≈
GΓ(y, x0). Since GΓ(x, y) ≈ |x− y|2−n in this case, we obtain (3.2).

(iii) Let x ∈ Γ ∩ B(6−1) and y ∈ Γ(U) ∩ (B(2−1) \ B(3|x|)). By Lemma 2.5,
we have GΓ(x, x0) ≤ CGΓ(|y|x0, x0). It follows from Lemma 2.4 and dist(y, ∂Γ) ≥
|y| dist(U, ∂Γ) that kΓ∩B(1)(y, |y|x0) ≤ C, and so Lemma 2.1 gives GΓ(|y|x0, x0) ≈
GΓ(y, x0). Hence

GΓ(x, x0)GΓ(x, y)

GΓ(x0, y)
≤ CGΓ(x, y) ≤ C|x− y|2−n.
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The proof of the lemma is complete. ¤
Let R̂E

1 denote the regularized reduced function of the constant function 1 rel-
ative to E in Rn.

Proof of Theorem 3.1. We may assume, without loss of generality, that 0 is a
limit point of E and E ⊂ B(6−1). We first assume that E is thin at 0. By Wiener’s
criterion (cf. [6, Theorem 7.7.2]), there exists a sequence {aj} of positive numbers
such that

lim
j→∞

aj = +∞ and
∞∑

j=1

ajR̂
Ej

1 (0) < +∞,

where Ej = {x ∈ E : 2−j−1 ≤ |x| ≤ 2−j}. Let dνj(x) = GΓ(x, x0)dµj(x), where
R̂

Ej

1 (x) =
∫ |x− y|2−ndµj(y). Since µj is supported on Ej, it follows from (3.2) that

1 = R̂
Ej

1 (y) ≤ C
GΓνj(y)

GΓ(x0, y)
for quasi-every y ∈ Ej.

Then u(y) =
∑∞

j=1 ajGΓνj(y) is a Green potential in Γ such that u(y)/GΓ(x0, y) →
+∞ as y → 0 along E \ F , where F is a polar set. We also have by (3.1)

∞∑
j=1

aj

∫
KΓ(x, 0) dνj(x) ≤ C

∞∑
j=1

ajR̂
Ej

1 (0) < +∞.

Hence E \ F is minimally thin at 0 with respect to Γ, and so is E.
We next assume that E is minimally thin at 0 with respect to Γ. Then there

is a measure µ supported on Γ(U) ∩B(6−1) such that
∫

KΓ(x, 0) dµ(x) < +∞ and
GΓµ(y)/GΓ(x0, y) → +∞ as y → 0 along E. Let dν(x) = GΓ(x, x0)

−1dµ(x). Then
we have by (3.2) and (3.3)

GΓµ(y)

GΓ(x0, y)
≤ C

∫
|x− y|2−n dν(x) for y ∈ E,

and so
∫ |x− y|2−n dν(x) → +∞ as y → 0 along E. Also, we have by (3.1)∫

|x|2−n dν(x) ≤ C

∫
KΓ(x, 0) dµ(x) < +∞.

Hence E is thin at 0. The proof is complete. ¤

Corollary 3.3. Let Γ be a cone generated by a John base, and suppose that
E is a non-polar set such that E ⊂ Γ. Then Γ(E) is not minimally thin at 0 with
respect to Γ.

Proof. Let r > 0 and let rE = {ry : y ∈ E}. Observe that R̂E
1 (x) = R̂rE

1 (rx)
for x ∈ Rn. Since E is non-polar, we have

R̂rE
1 (0) = R̂E

1 (0) > 0 for all r > 0.

This shows that Γ(E) is not thin at 0. Hence Theorem 3.1 concludes that Γ(E) is
not minimally thin at 0 with respect to Γ. ¤
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Theorem 3.4. Let Γ be a cone generated by a John base, and suppose that Ω
is a domain such that Γ ∩ B(1) ⊂ Ω and 0 ∈ ∂Ω. If E is a non-polar set such that
E ⊂ Γ, then there is no positive superharmonic function u in Ω such that
(3.5) lim

x→0,x∈Γ(E)
|x|pu(x) = +∞,

where p > 0 is the homogeneous degree of KΓ(·, 0) in Theorem 1.1.

Proof. Let u be a positive superharmonic function in Ω. By [6, Theorem 9.3.3],
u/KΓ(·, 0) has a finite minimal fine limit l at 0 with respect to Γ. That is, there
exists a subset F of Γ, minimally thin at 0, such that u(x)/KΓ(x, 0) → l as x → 0
along Γ\F . By Corollary 3.3, we can find a sequence {xj} in Γ(E)\F converging to 0
such that u(xj)/KΓ(xj, 0) → l as j →∞. Hence there is no positive superharmonic
function in Ω satisfying (3.5). ¤
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