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Abstract. The unit ball Bn is shown to be Gromov hyperbolic with respect to the Ferrand
metric λ∗Bn and the modulus metric µBn , and dimension dependent upper bounds for the Gromov
delta are obtained. In the two-dimensional case Gromov hyperbolicity is proved for all simply
connected domains G. For λ∗G also the case G = Rn \ {0} is studied.

1. Introduction

In the eighties Gromov introduced a notion of hyperbolic space, which has
thereafter been studied and further developed by many authors. For a long time the
research was centered at hyperbolic group theory, but lately also many researchers in
geometric function theory have developed an interest towards the theory of Gromov
hyperbolic spaces. For a general overview of the topic, the books of [CoDePa] and
[BuBuIv] can be mentioned.

One of the primary questions is of course which metric spaces (X, d) meet the
Gromov hyperbolicity condition and which ones do not? In geometric function
theory, there are nowadays many metrics around which are of “hyperbolic type” in
the sense that they are defined in domains, the boundary geometry of which—more
or less completely—determine the behavior of the metric. They are also negatively
curved if the curvature can be determined, and in case it can not, still bilipschitz
equivalence to a negatively curved metric can mostly be established. A fundamental
result is that the hyperbolic metric is also hyperbolic in the sense of Gromov, in
all domains where it is defined. A similar result has been proved also for the well-
known quasihyperbolic metric [BoHeKo], only here it is required that we restrict to
domains which are uniform in the sense of Martio and Sarvas, [MaSa].

Typically, if we can prove or disprove Gromov hyperbolicity for a metric in
some domain, the result immediately follows for a related metric or a different
domain with the same metric, if we find a suitable quasi-isometry between the
spaces. However, in general this method works only when the metrics involved are
geodesic, or at least intrinsic, and many metrics which are defined for instance by
point-pair functions, fail to meet the requirement of intrinsity. Such metrics are the
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distance ratio metrics (j-metrics), the Apollonian metric and Seittenranta’s metric
(see [Se]). The non-geodesic case has been considered by eg. Bonk and Schramm in
[BoSc] and by Väisälä [Vä2].

As many of the strongest results in the theory of Gromov hyperbolic spaces
rely on geodesity, for non-geodesic metrics this means that even natural and easy
questions can get quite complicated. For instance, one would expect that a metric of
the above described “hyperbolic type” is also hyperbolic in the sense of Gromov, as
is the case with the hyperbolic and quasihyperbolic metrics. The question regarding
the Gromov hyperbolicity of the distance ratio metrics has recently been answered
by Hästö in [Hä], and as his results show, the situation might be very delicate;
in [Hä] two metrics jG and j̃G are studied, and it turns out that one is Gromov
hyperbolic in any domain, whereas the other one fails to be so in all domains except
the complement of a point. Still the two metrics are very closely connected, in
that they are bilipschitz equivalent and both have the quasihyperbolic metric as
their inner metric. Also for the metrics studied in this article it seems like it is
more or less “a coincidence” that the proof can be carried out in the special cases
proved. One is tempted to conjecture Gromov hyperbolicity to hold for the µG and
λ∗G metrics also in the general case when n ≥ 3, but when our knowledge on the
relation with certain special functions is taken away, the problem becomes hard to
grasp.

In this article I study two special non-intrinsic metrics, known as the modulus
metric and Ferrand’s metric. Both are defined using the concept of conformal
modulus, and consequently they are examples of conformally invariant metrics. The
main results in the article are the proofs of the fact that both of the above metrics are
Gromov hyperbolic in the n-ball, and that the Ferrand metric is Gromov hyperbolic
also in punctured n-space. We also derive upper estimates for the Gromov constants.
The method is to verify the inequality (2.5) by means of inequalities for the special
functions connected to the modulus and Ferrand metrics, especially the Teichmüller
and Grötzsch capacity functions.

2. Preliminaries and definitions

The domains considered in this article are of the type G ( R̄n, that is, proper
subsets of the compactified n-space. We start by defining the modulus metric µG

introduced by Gál in [Gá], and its “dual quantity” λG, which was introduced by
Lelong-Ferrand in [Le].

Let Γ be a family of curves in R̄n. By F (Γ) we denote the family of admissible
functions, that is, non-negative Borel-measurable functions ρ : R̄n → R̄ such that∫

γ

ρ ds ≥ 1

for each locally rectifiable curve γ ∈ Γ. For p ≥ 1 the p-modulus of Γ is defined by

Mp(Γ) = inf
ρ∈F (Γ)

∫

Rn

ρp dm,
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where m is the n-dimensional Lebesgue measure. The modulus is an outer measure
in the space of curve families in R̄n. If p = n the modulus M(Γ) = Mn(Γ) is called
the conformal modulus, and it is then a conformal invariant, i.e. if f : G → G′ is a
conformal mapping and Γ is a curve family in G, then M(Γ) = M(fΓ). For basic
properties of moduli, see [Vä1].

For E, F, G ⊂ R̄n we denote by ∆(E, F ; G) the family of all closed non-constant
curves joining E and F in G, that is, γ : [a, b] → R̄n belongs to ∆(E, F ; G) if one
of γ(a), γ(b) belongs to E and the other to F , and furthermore γ(t) ∈ G for all
a < t < b.

Recall also that for the pair (A,C), C ⊂ A ⊂ Rn where A is open and C
compact, we can define the conformal capacity of (A,C) by

cap(A,C) = inf
u

∫

Rn

|∇u|n dm,

where the infimum is taken over all non-negative ACLn functions with compact
support in A such that u(x) ≥ 1 for x ∈ C. It is widely known that

cap(A,C) = M
(
∆(C, ∂A; A)

)
.

We say that a compact set E ⊂ Rn is of capacity zero, denoted cap E = 0, if there
exists a bounded open set A with E ⊂ A and cap(A,E) = 0. A compact set E ⊂ R̄n

is of capacity zero if it can be mapped by a Möbius transformation onto a bounded
set of capacity zero. A set E which is not of capacity zero is said to have positive
capacity and this is denoted cap E > 0.

For x, y ∈ G ( R̄n λG is defined by

λG(x, y) = inf
Cx,Cy

M
(
∆(Cx, Cy; G)

)
,

where Cz = γz[0, 1) and γz : [0, 1] → G is a curve such that z ∈ Cz and γz(t) → ∂G
when t → 1 and z = x, y. Correspondingly,

µG(x, y) = inf
Cxy

M
(
∆(Cxy, ∂G; G)

)
,

where Cxy is such that Cxy = γ[0, 1] and γ is a curve with γ(0) = x and γ(1) = y.
It is not difficult to show that both quantities µG and λG are conformal invari-

ants, and that µG is a metric when cap ∂G > 0. In a general domain G it is not
known whether the values of µG(x, y) and λG(x, y) can be expressed in explicit form,
eg. in terms of some special functions. For G = Bn, however, we have the formulas

µBn(x, y) = 2n−1τn

( 1

sinh2 1
2
ρ(x, y)

)
= γn

( 1

tanh 1
2
ρ(x, y)

)
,(2.1)

λBn(x, y) = 1
2
τn

(
sinh2 1

2
ρ(x, y)

)
,(2.2)

where γn and τn are the capacity functions of the Grötzsch and Teichmüller con-
densers, respectively, and ρ(x, y) = ρBn(x, y) is the hyperbolic distance between the
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points x and y. The capacity functions are defined by{
γn(s) = cap(Rn \ {te1 : t ≥ s}, B̄n), s > 1

τn(s) = cap(Rn \ {te1 : t ≥ s}, [−e1, 0]), s > 0.

Many properties of γn and τn can be found in [AnVaVu, Chapter 11] and [Vu1,
Section 5]. For instance, both functions are decreasing homeomorphisms, and we
have inequalities

(2.3)

{
ωn−1(log λns)1−n ≤ γn(s) ≤ ωn−1(log s)1−n

ωn−1

(
log(λ2

ns)
)1−n ≤ τn(s− 1) ≤ ωn−1(log s)1−n

for s > 1, where λn denotes the Grötzsch constant (cf. [Vu1, 7.21]), and ωn−1 is the
(n − 1)-dimensional area of the unit sphere Sn−1. The Grötzsch capacity function
also satisfies the inequality

(2.4) 2n−1cn log
(s + 1

s− 1

)
≤ γn(s) ≤ 2n−1cn log

(
4

s + 1

s− 1

)
,

(cf. [AnVaVu, (5.3),11.20]), where cn is the spherical cap inequality constant defined
by

c2 =
2

π
, cn = 21−nωn−2

( ∫ π/2

0

sin
2−n
n−1 t dt

)1−n

, n ≥ 3.

For any metric space (X, d), we define the Gromov product of two points x, y ∈ X
with respect to a base point w ∈ X by

(x|y)w =
1

2

(
d(x,w) + d(y, w)− d(x, y)

)
.

Using the notation a ∨ b = max(a, b) and a ∧ b = min(a, b), the space (X, d) is said
to be Gromov δ-hyperbolic if for every triple x, y, z ∈ X and a fixed w ∈ X the
inequality

(x|z)w ≥ (x|y)w ∧ (y|z)w − δ

is satisfied. Here we will mostly use the equivalent inequality

(2.5) d(x, z) + d(y, w) ≤ (
d(x,w) + d(y, z)

) ∨ (
d(x, y) + d(z, w)

)
+ 2δ.

3. The Ferrand metric λ∗Bn

We start by defining the conformally invariant metric λ∗G, often referred to as
the Ferrand metric by setting

(3.1) λ∗G(x, y) = λG(x, y)1/(1−n).

The part that λ∗G is a conformal invariant is clear. In [Fe] it is shown that it is a
metric for all G ⊂ R̄n with card(R̄n \G) ≥ 2, but there are only few cases for which
we have explicit formulas for the Ferrand metric. However, in the cases G = Bn,
and G = R2 \ {0} such a formula can be found. In this section we prove that the
metric space (Bn, λ∗Bn) is Gromov hyperbolic, and derive an upper bound for the
Gromov delta. We first record the following lemma:
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Lemma 3.2. Let f : [0,∞) → [0,∞) be increasing with f(0) = 0, and let
s, t ≥ 0. Then, if f(t)/t is decreasing on (0,∞), we have that

f(s + t) ≤ f(s) + f(t)

and if f(t)/t is increasing on (0,∞), we have that

f(s + t) ≥ f(s) + f(t). ¤

The first part of the lemma can be proved as a special case of [AnVaVu, 1.24],
and the second follows a similar reasoning. Using this we can prove the following
inequality:

Lemma 3.3. Let f(x) = log(cosh2 x). Then, for all x, y ≥ 0 we have that

f(x) + f(y) ≤ f(x + y) ≤ f(x) + f(y) + log 4.

Proof. The first inequality follows directly from Lemma 3.2, by checking that
f(t)/t is increasing. The second inequality says that

log
(
cosh2(x + y)

) ≤ log(cosh2 x) + log(cosh2 y) + log(22)

= log
(
22(cosh2 x)(cosh2 y)

)
.

But this is true, since cosh(x + y) ≤ 2 cosh x cosh y. ¤

Theorem 3.4. The metric space (Bn, λ∗Bn) is Gromov δ-hyperbolic, with Gro-
mov constant

δ ≤ 1
2

(
ωn−1

2

)1/(1−n) (
log 400

9
+ 4 log λn

)

≤ (
ωn−1

2

)1/(1−n) (
2n + 2

n
− 3 + log

80

3

)
,

where ωn−1 denotes the (n − 1)-dimensional surface area of Sn−1 and λn is the
Grötzsch constant.

Proof. Let x, y, z, w ∈ Bn. We may now rewrite the second inequality in (2.3)
as

(3.5) ω
1/(1−n)
n−1 log(1 + s) ≤ τn(s)1/(1−n) ≤ ω

1/(1−n)
n−1

(
2 log λn + log(1 + s)

)
.
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Then, by the definition (2.2), the second inequality in (3.5) and the first inequality
in Lemma 3.3, we see that

λ∗Bn(x, z) + λ∗Bn(y, w)

= λBn(x, z)1/(1−n) + λBn(y, w)1/(1−n)

=
(

1
2

)1/(1−n)
(
τn(sinh2 1

2
ρ(x, z))1/(1−n) + τn(sinh2 1

2
ρ(y, w))1/(1−n)

)

≤ (ωn−1

2

)1/(1−n)
(

log(cosh2 1
2
ρ(x, z)) + log(cosh2 1

2
ρ(y, w))

)

+ 4
(ωn−1

2

)1/(1−n)
log λn

≤ (ωn−1

2

)1/(1−n)
log

(
cosh2

(
1
2
ρ(x, z) + 1

2
ρ(y, w)

))
+ 4

(ωn−1

2

)1/(1−n)
log λn.

Now we make use of the fact that the hyperbolic metric of Bn is Gromov hyperbolic
with δ0 = log 3 (see [CoDePa, 4.3] Prop. 4.3 in Chapter 1). Then we know that

1
2
ρ(x, z) + 1

2
ρ(y, w) ≤ (

1
2
ρ(x,w) + 1

2
ρ(y, z)

) ∨ (
1
2
ρ(x, y) + 1

2
ρ(z, w)

)
+ log 3.

Now, let f(x) = log(cosh2 x). Then, for any positive numbers a, b, c, d, we know by
the fact that f is a positive increasing function, and by applying Lemma 3.3 twice,
that

f
(
(a + b) ∨ (c + d) + δ0

)
= f(a + b + δ0) ∨ f(c + d + δ0)

≤ (
f(a) + f(b)

) ∨ (
f(c) + f(d)

)
+ f(δ0) + 2 log 4.

But then, by the above calculation and the inequality (3.5)

λ∗Bn(x, z) + λ∗Bn(y, w)

≤ (ωn−1

2

)1/(1−n)
((

f(1
2
ρ(x,w)) + f(1

2
ρ(y, z))

) ∨ (
f(1

2
ρ(x, y)) + f(1

2
ρ(z, w))

))

+
(ωn−1

2

)1/(1−n)(
log 25

9
+ 2 log 4 + 4 log λn

)

≤ (
λ∗Bn(x,w) + λ∗Bn(y, z)

) ∨ (
λ∗Bn(x, y) + λ∗Bn(z, w)

)

+
(ωn−1

2

)1/(1−n)(
log 400

9
+ 4 log λn

)
.

This proves the first inequality in the statement. The estimate for δ not involving
the Grötzsch constant follows from the inequality λn ≤ exp(n + 1

n
− 3

2
+ log 2), see

[AnVaVu, 12.21]. ¤
Then, by conformal invariance, the Riemann mapping theorem immediately

yields the following.

Corollary 3.6. A simply connected proper subdomain G ( R2 is Gromov
δ-hyperbolic with respect to the metric λ∗G, where

δ ≤ log 5462

2π
≈ 1.3696.

¤
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In estimating the Gromov delta we have used the fact that λ2 = 4 (see [LeVi,
p. 61, (2.10)]).

Also in the case of the punctured n-space Rn
∗ = Rn \ {0}, it is possible to

establish Gromov hyperbolicity of Ferrand’s metric. In the case n ≥ 3 there is
no explicit formula, but the natural way to prove Gromov hyperbolicity is to use
a double-sided estimate by means of the Teichmüller capacity function, proved by
Vuorinen in [Vu2];

τn

( |x− y|
|x| ∧ |y|

)
≤ λRn∗ (x, y) ≤ τn

( |x− y|+
∣∣|x| − |y|

∣∣
2(|x| ∧ |y|)

)
.

This is valid for n ≥ 2, and immediately yields the inequality

(3.7) τn

( |x− y|
|x| ∧ |y|

)1/(1−n)

≥ λ∗Rn∗ (x, y) ≥ τn

( |x− y|
2(|x| ∧ |y|)

)1/(1−n)

.

We will also use the fact that the distance ratio metric jG defined by

(3.8) jG(x, y) = log

(
1 +

|x− y|
dist(x, ∂G) ∧ dist(y, ∂G)

)

is Gromov hyperbolic in G = Rn \ {0}. This was recently shown by Hästö in [Hä]:

Lemma 3.9. Let G ( Rn be an open set. Then jG is Gromov hyperbolic if
and only if G has a single boundary point. In this case the Gromov delta satisfies
δ ≤ log 3. ¤

Note that since the domains in this article are generally equipped with the
Möbius space topology, we are actually studying G = R̄n \ {0,∞}. Of course,
otherwise λ∗G wouldn’t even be a metric. However, this gives us no limitations
regarding the use of Lemma 3.9. Now we can prove the following:

Theorem 3.10. The metric space (Rn
∗ , λ

∗
Rn∗ ) is Gromov hyperbolic, with

δ ≤ 2ω
1/(1−n)
n−1 log 6λ2

n ≤ 2ω
1/(1−n)
n−1

(
2n + 2

n
− 3 + log 24

)
.

Proof. By the definition of λ∗Rn∗ and by the inequalities (3.7) and (2.3) we have
that

λ∗Rn∗ (x, z) + λ∗Rn∗ (y, w)

≤ τn

( |x− z|
|x| ∧ |z|

)1/(1−n)

+ τn

( |y − w|
|y| ∧ |w|

)1/(1−n)

≤ ω
1/(1−n)
n−1

(
log

(
1 +

|x− z|
|x| ∧ |z|

)
+ log

(
1 +

|y − w|
|y| ∧ |w|

))
+ 4 ω

1/(1−n)
n−1 log λn

= ω
1/(1−n)
n−1

(
jRn∗ (x, z) + jRn∗ (y, w)

)
+ 4 ω

1/(1−n)
n−1 log λn.
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By Lemma 3.9, and the inequalities (3.7) and

(3.11) log(1 + x) ≤ log(2 + x) = log(1 + 1
2
x) + log(2),

we now see that

jRn∗ (x, z) + jRn∗ (y, w)

≤ (
jRn∗ (x,w) + jRn∗ (y, z)

) ∨ (
jRn∗ (x, y) + jRn∗ (z, w)

)
+ 2 log 3

≤
(

log
(
1 +

|x− w|
2(|x| ∧ |w|)

)
+ log

(
1 +

|y − z|
2(|y| ∧ |w|)

))

∨
(

log
(
1 +

|x− y|
2(|x| ∧ |y|)

)
+ log

(
1 +

|w − z|
2(|z| ∧ |w|)

))

+ 2 log 3 + 2 log 2.

But from this, and the above computation it follows by using (2.3) and (3.7) again,
that we have Gromov hyperbolicity with constant

δ ≤ 2 ω
1/(1−n)
n−1 log 6 + 4ω

1/(1−n)
n−1 log λn,

which gives the constant stated. ¤
Remark 3.12. It is unclear what the role of the exponent 1/(1 − n) in the

definition of λ∗G is. It can be said though, that for this approach in proving the
above results the use of this particular exponent is necessary, as it allows us to use
the inequalities (2.3). However, for n = 2 and simply connected domains, actually
any power p ∈ (0, 1] makes λ−p

G a metric, and for the unit ball Bn the same is true for
p ∈ (0, 1/(n− 1)], see [AnVaVu, 16.1,16.2]. Also, in [Le] it was shown that λ

−1/n
G is

a metric for any proper subdomain G ( Rn. The question of Gromov hyperbolicity
in these other cases remains unsolved.

4. The modulus metric µBn

Also for the modulus metric, we have an explicit formula in the case of the unit
ball, and here a similar proof as for the Ferrand metric can be carried out to show
Gromov hyperbolicity. In this case, however, we are allowed to work in slightly more
general domains, since in general removing a set of capacity zero does not affect the
modulus metric.

Theorem 4.1. Let E ⊂ Bn be a compact set with cap E = 0, and let G =
Bn \ E. Then the metric space (G,µG) is Gromov δ-hyperbolic, with Gromov
constant

δ ≤ 2n−1cn log 12.

Especially, if G ( R2 is a domain of type G = D \E, where D is simply connected
and E is compact with cap E = 0, then (G,µG) is Gromov hyperbolic with

δ ≤ 4 log 12

π
≈ 3.1639.
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Proof. We first note that by the definition of the hyperbolic tangent we have

(4.2) log

(
1

tanh x
+ 1

1
tanh x

− 1

)
= log

(1 + tanh x

1− tanh x

)
= 2x.

Using Definition (2.1) and the inequality (2.4) together with (4.2) we get

µBn(x, z) + µBn(y, w)

= γn

( 1

tanh 1
2
ρ(x, z)

)
+ γn

( 1

tanh 1
2
ρ(y, w)

)

≤ 2ncn log 4 + 2n−1cn

(
ρ(x, z) + ρ(w, y)

)

Now, the proof may be carried out exactly as in the proof of Theorem 3.4, as the
linear function f : x 7→ 2x clearly satisfies f(x + y) = f(x) + f(y) for all x, y ∈ R.
Then we get

µBn(x, z) + µBn(y, w)

≤ (
µBn(x,w) + µBn(y, z)

) ∨ (
µBn(x, y) + µBn(w, z)

)
+ 2ncn log 12.

For n = 2 we may again use the Riemann mapping theorem and conformal invariance
to get Gromov hyperbolicity for all simply connected domains. The fact that µBn =
µG, and in the two-dimensional case µD = µG follows directly from the definitions
of capacity and modulus, and from the fact that (zero) capacity is preserved in
conformal mappings. ¤

Remark 4.3. Note that the upper bounds involving the Grötzsch constant λn

obtained for the Gromov delta in the cases λ∗Bn and λ∗Rn∗ grow without bound as
n →∞. This follows from the fact that the function n 7→ λn grows without bound
(see [AnVaVu, 12.37]), and the result that ω

1/(1−n)
n−1 is strictly increasing. Namely,

let a < b be real numbers. Then clearly

a1/(1−x) > b1/(1−x), for all x ≥ 1.

It is known that ωn−1 increases for 2 ≤ n ≤ 7 and decreases for n ≥ 7 ([AnVaVu,
2.28]), and that any function a1/(1−x) is strictly increasing in [1,∞). Thus, for n ≥ 8
we get

ω
1/(1−n)
n−1 > ω

1/(1−n)
n−2 > ω

1/(1−(n−1))
n−2 ,

and thus ω
1/(1−n)
n−1 is strictly increasing for n ≥ 7. For values 2 ≤ n ≤ 8 this is also

true, and can easily be checked by computing the values (see [AnVaVu, p. 44]).
Contrary to the Ferrand metric, the upper bound obtained for µBn in fact ap-

proaches zero as n grows, which follows from [AnVaVu, 2.34]. As the function 2ncn

is decreasing, the constant 4 log 12/π is an upper bound for the Gromov delta of
(Bn, µBn) for all n ≥ 3, but of course a better constant can easily be calculated for
the higher dimensions.
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