Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 32, 2007, 425-435
Universidad Autónoma de Madrid, Departamento de Matemáticas
28049 Madrid, Spain; keith.rogers 'at' uam.es
University of California
Los Angeles, CA 90095-1555, USA; paco.villarroya 'at' uv.es
Abstract. The Schrödinger equation, i\partialtu + \Delta u = 0, with initial datum f contained in a Sobolev space Hs(Rn), has solution eit\Deltaf. We give sharp conditions under which supt|eit\Deltaf| is bounded from Hs(R) to Lq(R) for all q, and give sharp conditions under which sup0<t<1|eit\Deltaf| is bounded from Hs(R) to Lq(R) for all q \neq 2. In higher dimensions, we show that supt|eit\Deltaf| and sup0<t<1|eit\Deltaf| are bounded from Hs(Rn) to Lq(Rn) only if s \ge 1/2 - 1/2(n+1).
2000 Mathematics Subject Classification: Primary 35Q55, 42B25.
Key words: Schrödinger equation, pointwise convergence.
Reference to this article: K.M. Rogers and P. Villarroya: Global estimates for the Schrödinger maximal operator. Ann. Acad. Sci. Fenn. Math. 32 (2007), 425-435.
Full document as PDF file
Copyright © 2007 by Academia Scientiarum Fennica