Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 32, 2007, 523-543

ON A FUNCTION-THEORETIC RUIN PROBLEM

Gerd Jensen and Christian Pommerenke

Sensburger Allee 22 a, D-14055 Berlin, Germany; cg.jensen 'at' t-online.de

Technische Universität, Institut für Mathematik
D-10623 Berlin, Germany; pommeren 'at' math.tu-berlin.de

Abstract. Let \varphi : D \to D be analytic, m \in N and g0 \in H2. We define the gn \in H2 by

(*) gn+1(z) = (gn(z) \varphi(z)z-m)+ for n \in N0

where (...)+ denotes the analytic part of the Laurent series. We derive explicit formulas for the coefficients bn,k of the gn.

The recursion (*) comes from the study of the random variables

Sn+1 = S0 + X1 + ... + Xn - mn,

where the X\nu are i.i.d. with generating function \varphi. Ruin occurs when Sn becomes negative. We have bn,k = P(Sn = k, not yet ruined).

2000 Mathematics Subject Classification: Primary 30B10, 60E05, 91B30.

Key words: Generating functions, Laurent separation, ruin, barrier.

Reference to this article: G. Jensen and Ch. Pommerenke: On a function-theoretic ruin problem. Ann. Acad. Sci. Fenn. Math. 32 (2007), 523-543.

Full document as PDF file

Copyright © 2007 by Academia Scientiarum Fennica