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Abstract. Given two polynomials P and Q and a class of functions (e.g., meromorphic,
entire, rational, polynomial), we study conditions under which there exist no nonconstant functions
f and g in the given class which satisfy the functional equation f(P (z)) = g(Q(z)) .

1. Introduction

Let P be entire and h meromorphic on the complex plane, C . For each
w ∈ C , the w -level set of P is the set

{

z : P (z) = w
}

. We will say that h is
a function of P if h is constant on the w -level set of P for every w . It is easy
to see that this is equivalent to the existence of a meromorphic function f on C

such that h = f ◦ P .
This paper and a sequel in preparation deal with the following problem. Let

k denote a given meromorphic function on C , and P , Q given polynomials. Look
for all pairs of meromorphic functions f , g on C such that

(1) f
(

P (z)
)

− g
(

Q(z)
)

= k(z).

As we shall see in the sequel, (1) is closely related to Dirichlet’s problem for
the Laplace equation, especially the question of the harmonic continuation of the
solution in the exterior of the domain where the problem is posed.

In this paper we consider the special case where k = 0. Then (1) becomes

(2) f
(

P (z)
)

= g
(

Q(z)
)

=: h(z),

in which case we say that h is a function of both P and Q . Thus we could phrase
our goal as follows: Given the polynomials P and Q and a class of functions
(meromorphic, entire or polynomials), we wish to determine all nonconstant func-
tions h of the given class which are functions of both P and Q . Clearly, for a
smaller class of allowable solutions, it is less likely that nonconstant solutions will
exist. For many pairs (P,Q) it will turn out that (2) has no nonconstant solution.
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This will in turn imply that on certain algebraic curves no nonconstant functions
of the given class can have vanishing real part, results of a type studied earlier in
[FNS]. Special cases of our investigation are a theorem of Rényi and Rényi [RR]
and its generalization by Fuchs and Gross [FG] concerning periodicity of functions
of the form (f ◦ P ) .

Another way of formulating the problem is as follows. Let M = M (C) ,
E = E (C) denote the meromorphic and entire functions on the complex plane,
respectively. For a given polynomial P , MP and EP denote, respectively, the
meromorphic and entire functions that are “functions of P ”. Then the question
of whether, for given polynomials P and Q , any nonconstant function h satisfies
(2) is the question of the existence of nonconstant functions in MP ∩ MQ .

An important tool in studying these questions is the notion of cyclic elements
in the group of invertible germs of analytic functions. This is classical but, as it is
not easy to find accessible references, we recall this material in Section 2. In order
to have a handy language for some of the considerations in this paper, we introduce
in Section 3 an infinite graph Γ(P,Q) induced by any given pair of polynomials
P , Q of degrees ≥ 2. Its nodes, or vertices, are the points of C . Two vertices z ,
ζ of Γ(P,Q) are connected by an edge if and only if at least one of the relations
P (z) = P (ζ) , Q(z) = Q(ζ) holds. It is then clear that h satisfying (2) takes the
same value at two points whenever they can be joined by a path (finite succession
of edges) of this graph. Thus, for example, if infinitely many distinct points lying
in a bounded region can be joined by paths to one and the same point, h must be
constant.

The balance of the paper is organized as follows. In Section 4 we present the
history of the problem. For expository purposes, we recap the original proofs of
a theorem of Rényi and Rényi [RR] and its generalization by Fuchs and Gross
[FG]. In Section 5 we link together the notions of Sections 2 and 3 to provide
an alternative mechanism for studying the problem and giving computer-assisted
proofs that certain functional equations (2) have no nonconstant meromorphic
solutions. We conclude in Section 6 with various further remarks.

2. The group of invertible germs

By a germ we shall mean a function ϕ analytic on some neighborhood of 0
in the complex plane satisfying ϕ(0) = 0. We say ϕ is invertible if ϕ′(0) 6= 0. In
this case, the equation w− ϕ(z) = 0 is uniquely solvable for z (for w sufficiently
near 0) and we get z = ψ(w) for some germ ψ . We will also denote ψ by ϕ[−1] ,
and call it the inverse of ϕ . It is easy to see that, under functional composition,
the invertible germs form a group, which we shall denote by G . The identity of
G is, of course, the germ e defined by e(z) ≡ z .

We summarize the main information we need in the following

Proposition 2.1. The following are equivalent for an element ϕ of G and
integer k ≥ 1 .
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(i) ϕ[k] is the identity of G , where ϕ[k] denotes ϕ ◦ ϕ · · · ◦ ϕ (k times).
(ii) There exists ψ ∈ G and a kth root of unity (denoted by ω ) such that

ϕ(z) = ψ[−1]
(

ωψ(z)
)

(in other words, ϕ is conjugate to the rotation ζ 7→ ωζ ).
(iii) There exists a function f holomorphic near 0 , having a Taylor expansion of

the form zk+ (higher order terms), such that f ◦ ϕ = f .

Proof. Assume first that (iii) holds. Then, f can be written as gk where g
is holomorphic near 0 and has the expansion

g(z) = z + (higher order terms).

Then (iii) implies that

g
(

ϕ(z)
)k

= g(z)k

so there is some kth root ω of 1 such that

g
(

ϕ(z)
)

= ωg(z).

This yields (ii), with ψ = g .
Now assume (ii) holds. Then

ϕ[2](z) = ϕ
(

ϕ(z)
)

= ψ[−1]
(

ωψ
(

ϕ(z)
))

ψ[−1]
(

ωψ
(

ψ[−1]
(

ωψ(z)
))

)

= ψ[−1]
(

ω2ψ(z)
)

Proceeding iteratively, we conclude that

ϕ[k](z) = ψ[−1]
(

ωkψ(z)
)

= z,

proving (i).
Finally, we will show that (i) implies (iii). Assume (i) holds, and let

f(z) := zϕ(z)ϕ[2](z) · · ·ϕ[k−1](z).

Clearly f is holomorphic near z = 0 and its power series has the form

zk + (higher order terms).

Moreover, f
(

ϕ(z)
)

= f(z) , verifying (iii).

Remark. An element ϕ of G satisfying (i) for some k is said to be cyclic.
The order of ϕ is then the smallest k such that ϕ[k] is the identity. It is easy
to see that ϕ is cyclic of order k if and only if (ii) holds for some ψ ∈ G and
primitive kth root ω of unity.
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3. Reentrant graphs

Our basic question is closely linked with a purely combinatorial one: Let P ,
Q be polynomials with complex coefficients, of degrees p , q , respectively. We
assume p ≥ 2 and q ≥ 2. We define a graph (with infinitely many nodes) Γ(P,Q)
as follows: The nodes are the points of the complex plane, C . Given two points
z1 , z2 (z1 6= z2 ) of C , we connect them by an edge if and only if at least one
of the relations P (z1) = P (z2) , Q(z1) = Q(z2) holds. Moreover, we “color” the
edge “red” if the first relation holds, “blue” if the second holds, and “red/blue” if
both hold. This colored graph is denoted Γ(P,Q) .

A path on Γ(P,Q) is a sequence of directed edges such that the initial point of
each edge after the first is the endpoint of the preceding. The path is proper if the
edges comprising it alternate in color. A red/blue edge may be considered as red,
or blue as desired; thus, the sequences (red, red/blue, red, red/blue) and (red/blue,
red/blue) alternate. A closed proper path has, of course, an even number of edges.
(It is easy to see that if we were to allow, say, two or more consecutive “red” edges,
they could always be replaced by just one, so the requirement that paths be proper
is not really restrictive.) We will call a closed proper path consisting of m edges
an m-cycle.

Clearly, if h ∈ MP ∩ MQ , then h(z) = h(z1) for each z reachable from z1
by a path of finite length along Γ(P,Q) . (An alternative formalism, in terms of
equivalence relations is given at the end of this section.)

We will say that Γ(P,Q) has the clustering property if, within some bounded
region D , there are infinitely many distinct points connected to some fixed point
z1 along Γ(P,Q) . Then, obviously, if Γ(P,Q) has the clustering property, each
function in MP ∩ MQ is constant.

Γ(P,Q) has the weak clustering property if there is a compact set K ⊂ C

such that for every positive integer N , there is a point connectable to N distinct
points of K .

Proposition 3.1. If Γ(P,Q) is weak clustering, then MP ∩ MQ consists
only of constants.

Proof. Suppose not, and h ∈ MP ∩MQ is nonconstant meromorphic. Then,
by assumption, for each N we have z1, z2, . . . , zN in K such that

h(z1) = h(z2) = · · · = h(zN ) = wN .

Then, either wN → ∞ or else {wN} has a bounded subsequence. Clearly, it is
sufficient to treat the second case, since otherwise we consider 1/h . So, by passing
to a subsequence if necessary, we may assume wn → λ ∈ C . Let now γ be a
contour surrounding K , on which h(z) does not take the value λ . Then, for large
N , h does not take the value wN on γ . Now

JN :=
1

2πi

∫

γ

h′(z)

h(z) − wN
dz
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is the number of roots of h(z) = wN inside γ , minus the number of poles of h .
As N → ∞ , the former is at least N , so JN → +∞ . However,

lim
N→∞

JN =
1

2πi

∫

γ

h′(z)

h(z) − λ
dz

which is finite.

We define the graph Γ(P,Q) to be reentrant if there exists a compact set
K ⊂ C such that every ζ ∈ C can be connected to some point in K by a path in
Γ(P,Q) .

A relationship between reentrant graphs and our basic question is set forth in
the following theorem.

Theorem 3.1. If Γ(P,Q) is reentrant and h1 and h2 belong to MP ∩MQ ,
then there exists a nontrivial polynomial π with π(h1, h2) = 0 .

Proof. The hypothesis that h1 and h2 belong to MP ∩ MQ implies that
there exist fi , gi meromorphic on C with

(3)

{

h1(z) = f1
(

P (z)
)

= g1
(

Q(z)
)

,

h2(z) = f2
(

P (z)
)

= g2
(

Q(z)
)

.

By a well-known procedure (cf. [AS, p. 52]) there exists a nontrivial polynomial
π such that the meromorphic function h = π(h1, h2) has no poles in

{

|z| ≤ R
}

.
Also, because of equation (3), h1 and h2 (and hence h) are constant along the
vertices of each proper path in Γ(P,Q) . Therefore, all values taken by h in C are
taken in

{

|z| ≤ R
}

, which implies that h is a bounded entire function. Hence h
is constant.

Corollary 3.1. If h is any entire function satisfying (2) for suitable entire
f , g and Γ(P,Q) is reentrant, then h is constant.

We will use the notation n(z∗, h) to denote the multiplicity at z∗ of the
nonconstant meromorphic function h . That is, n(z∗, h) is the order of the zero of
h−h(z∗) at z∗ if h is analytic at z∗ , and is the order of the pole at z∗ otherwise.

Remarks. 1. The multiplicity of a nonconstant meromorphic function differs
from 1 only on the isolated set where it has a pole of order larger than 1 or where its
derivative is zero. Thus, the multiplicity of a nonconstant meromorphic function
is bounded on compact sets.

2. Let P and f be nonconstant meromorphic functions with P analytic at z∗
and f analytic at w = P (z∗) . Then there exists p∗ analytic at z∗ with p∗(z∗) 6= 0
so that

P (z) − w = (z − z∗)
n(z∗,P )p∗(z).

Using a similar formula for f near w and taking compositions, it follows that

n(z∗, f ◦ P ) = n(z∗, P )n
(

P (z∗), f
)

.

The same formula also holds when f has a pole at P (z∗) .
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Proposition 3.2. If Γ(P,Q) is reentrant (with associated compact set K ),
there is, to each nonconstant h ∈ MP ∩ MQ , an integer N = Nh such that
(a) all poles of h have multiplicity ≤ N
(b) for each a ∈ C , all roots of h(z) = a have multiplicity ≤ N .

Proof. Pick any point z in C for which h(z) = a . There is a path (z, z1, . . . ,
zn, ζ) connecting it to a point ζ ∈ K .

Suppose first that P ′ and Q′ are nonzero at all vertices of this path. If, say
P (z) = P (z1) , then it follows from Remark 2 above that the multiplicities of the
a -points which h has at z and z1 are the same. Continuing along the chain to
ζ we see that the multiplicity in question is that of the a -point at ζ . But this is
bounded independently of a by Remark 1 above.

In case, as we move along the path, we reach a point where P ′ , say, vanishes
to order r , then the multiplicity of the a -point can be multiplied by r + 1 in
the passage. Taking account that there are at most (degP ) − 1 such points (and
similarly for Q), we see that the multiplicity of h at ζ cannot exceed that at z
by more than a factor C depending only on the degrees of P and Q .

Theorem 3.1 demonstrates that it is of interest to have conditions which imply
that the graph Γ(P,Q) induced by a pair of polynomials P and Q is reentrant.
The next theorem gives such a condition:

Theorem 3.2. Let P and Q be monic polynomials of degrees p and q ,
respectively. Suppose that the rational function

R(z) =
P (z)q

Q(z)p

is nonconstant and that its Laurent expansion about ∞ has the form

(4) R(z) = 1 + az−s + O
(

|z|−s−1
)

where s ≥ 1 and a 6= 0 . If

(5) neither p nor q divides s and at least one of them does not divide 2s,

then Γ(P,Q) is reentrant.

Remarks. 1. Before giving the proof, we give some examples that illustrate
the theorem.

(a) Let P (z) = (z − 1)3 and Q(z) = z3 . Here, R(z) = (1 − z−1)9 = 1 −
9z−1 + · · · , so s = 1 and the hypotheses of the theorem are satisfied. In this case
the conclusion can be verified directly, since it is easy to see that the vertices of
Γ(P,Q) reachable from ζ are exactly the orbit of ζ under the group generated by
the maps z 7→ (2 − z) and z 7→ ωz , where ω = e2πi/3 .
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(b) If P and Q are monic of the same degree p ≥ 3 and (P −Q) is neither
constant nor of degree p/2, the conditions of our theorem are again satisfied.
Indeed, (P/Q) − 1 = (P − Q)/Q is, for large z , asymptotic to czk−p where
k = deg(P−Q) and c 6= 0. Thus P/Q = 1+czk−p+· · · , (P/Q)p = 1+pczk−p+· · ·
and so the s in equation (4) is (p−k) and (5) holds by virtue of the conditions on
(P −Q) . To see why (P − Q) may not be of degree p/2, consider the following
example: Let P (z) = z4 + 2z2 + 1 and Q(z) = z4 . Then P is P1(z

2) and Q is
Q1(z

2) (with P1(z) = (z + 1)2 and Q1(z) = z2 ). Now there exists a nonconstant
entire function, f , with f(P1) = f(Q1) . And so, composing with z2 , we get a
nonconstant entire solution to f(P ) = f(Q) . Notice that here p = 4 and the
degree of (P −Q) is p/2 = 2.

(c) If P = Tp and Q = Tq , where Tp and Tq are Chebyshev polynomials of
the first kind, the hypotheses of the theorem do not hold. Verifying this is simple
if we replace Tp(z) and Tq(z) by the monic polynomials 2Tp(z/2) and 2Tq(z/2),
respectively, which we now relabel as P and Q , respectively. To check condition
(4), we suppose that p < q and seek first to determine the degree of

P (z)q −Q(z)p =
(

2 cos
(

p cos−1(z/2)
))q

−
(

2 cos
(

q cos−1(z/2)
))p

.

If we replace cos−1(z/2) by t and express cos(pt) and cos(qt) in terms of complex
exponentials, the degree we seek is the largest r such that a ur term appears in

(up + u−p)q − (uq + u−q)p.

Now upq cancels and the next term in the expansions is a constant times up(q−2)

(since p < q ). Thus (P − Q) is of degree p(q − 2), the s of (4) is 2p and so
condition (5) is not satisfied. Also, since Tp ◦Tq = Tq ◦Tp = Tpq , the points of the
graph Γ(P,Q) to which a given ζ can be connected is simply the finite set where
Tpq takes on the same value that it does at ζ , and so the graph Γ(P,Q) is not
reentrant.

2. If d denotes the greatest common divisor of (p, q) , then R in (4) may be
replaced by

P (z)(q/d)

Q(z)(p/d)

with no resulting change in the value of s .

3. Note that condition (5) implies that max(p, q) ≥ 3.

Proof of Theorem 3.1. The first step in the proof is contained in:

Proposition 3.3. Given P and Q satisfying the hypotheses of the theorem,
there exist positive numbers M , t with t < 1 such that for |ζ| > M , one of the
following holds:
(i) there exists z satisfying P (z) = P (ζ) and

∣

∣Q(z)
∣

∣ ≤ t|Q(ζ)| ; or,

(ii) there exists z satisfying Q(z) = Q(ζ) and
∣

∣P (z)
∣

∣ ≤ t
∣

∣P (ζ)
∣

∣ .
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Suppose that this proposition is proved. The theorem may then be deduced as
follows: Let K =

{

z : |z| ≤M
}

∪
{

z :
∣

∣P (z)Q(z)
∣

∣ ≤ 1
}

. Then K is compact. Now,
start with any ζ , |ζ| > M and apply the proposition. Suppose that (i) holds, and
let P (z1) = P (ζ) ,

∣

∣Q(z1)
∣

∣ ≤ t
∣

∣Q(ζ)
∣

∣ . Then
∣

∣P (z1)Q(z1)
∣

∣ ≤ t
∣

∣P (ζ)Q(ζ)
∣

∣ . (Note
that this last inequality would have followed similarly in the case that (ii) holds.)
We continue inductively as follows: Suppose that zj has been produced with
∣

∣P (zj)Q(zj)
∣

∣ ≤ tj
∣

∣P (ζ)Q(ζ)
∣

∣. If |zj | ≤M , then zj belongs to K and we are done.

If |zj | > M , apply the proposition again to find zj+1 with
∣

∣P (zj+1)Q(zj+1)
∣

∣ ≤

t
∣

∣P (zj)Q(zj)
∣

∣ . The inductive hypothesis then implies that
∣

∣P (zj+1)Q(zj+1)
∣

∣ ≤

tj+1
∣

∣P (ζ)Q(ζ)
∣

∣ . In this way we produce a path in Γ(P,Q) for which we either

eventually reach a zj with |zj | ≤M or else a zj with
∣

∣P (zj)Q(zj)
∣

∣ ≤ 1 by virtue

of the inequality
∣

∣P (zj)Q(zj)
∣

∣ ≤ tj
∣

∣P (ζ)Q(ζ)
∣

∣ . Consequently, in either case, we
enter K after finitely many steps. Thus, the proof of the theorem will be complete
once this proposition is proved.

Proof of Proposition 3.3. In the proof of this proposition, we will need the
following lemma:

Lemma 3.1. Let P be monic of degree p . Then there exist constants C1 ,
C2 such that for all ζ ∈ C , |ζ| ≥ C1 , the roots of P (z) = P (ζ) distinct from ζ
satisfy

(6) |zj − ωjζ| ≤ C2; j = 1, 2, . . . , p− 1

where ωj = e2πij/p .

Proof. Let {zj}
p−1
j=1 denote the roots of

(7) P (z) = P (ζ)

other than ζ . We will show that for j = 1, 2, . . . , p− 1, zj = ωjζ + O(1).
First, fix j and a > 0 and let Dj(a) denote the disk

{

|z−ωjζ| < a|ζ|
}

. Easy
estimates show that there exist positive constants C1 and a so that if |ζ| > C1 ,

∣

∣(zp − ζp) −
(

P (z) − P (ζ)
)
∣

∣ < |zp − ζp|

for z on ∂Dj(a) . Then, by Rouché’s theorem,
(

P (z)− P (ζ)
)

has inside this disk
as many zeroes as (zp − ζp) , namely 1.

To get more precise information, consider (for fixed j, 1 ≤ j ≤ p − 1) the
polynomial

k(t) = P (ωjζ + t) − P (ζ).

Thus k has p roots. By our first estimate, it is easy to see that there are p−1 roots
t1, . . . , tp−1 (corresponding to (ωjζ + t) ∼ ωkζ with k 6= j ) satisfying |ti| ≥ a|ζ|
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for some a > 0 depending only on P . Thus, the product of these roots of k is, in

absolute value, ≥
(

a|ζ|
)p−1

. But, the product of absolute values of all the roots

of k is
∣

∣P (ωjζ) − P (ζ)
∣

∣ , which is ≤ A|ζ|p−1 . We conclude that the other root of
k has absolute value ≤ A/ap−1 , which we now call C2 . This completes the proof
of the lemma since we have shown that to each j there is a root of P (z) = P (ζ)
with |z − ωjζ| ≤ C2 .

Remark. One can produce finer asymptotics of the roots as follows: Again,
let

k(t) := P (ωjζ + t) − P (ζ) =
[

P (ωjζ) + tP ′(ωjζ) + · · ·+ tp
]

− P (ζ).

If t0 denotes the root of k with |t0| ≤ C2 , this gives

∣

∣P (ωjζ) − P (ζ) + t0P
′(ωjζ)

∣

∣ ≤ C3

(

1 + |ζ|
)p−2

.

Hence,

t0 =
P (ζ) − P (ωjζ)

P ′(ωjζ)
+ O

(

|ζ|−1
)

.

This estimate will be needed later.

To complete the proof of the proposition, we first try, with zj as in the lemma,
to find j with

(8) P (zj) = P (ζ) and
∣

∣Q(zj)
∣

∣ ≤ t
∣

∣Q(ζ)
∣

∣

for some t < 1. We assume M ≥ C1 , so that (6) holds. Now,

(9)
∣

∣

∣

Q(ζ)

Q(zj)

∣

∣

∣

p

=
∣

∣

∣

P (zj)
q

Q(zj)p

∣

∣

∣
·
∣

∣

∣

Q(ζ)p

P (ζ)q

∣

∣

∣
=

∣

∣R(zj)
∣

∣ ·
∣

∣R(ζ)
∣

∣

−1
.

Also, from (4), we have, putting a = Aeiα , A > 0

(10)
∣

∣R(reiθ)
∣

∣

2
= 1 + 2Ar−s cos(sθ − α) + O(r−s−1)

for large r . Writing ζ = ̺eiϕ , zj = rje
iθj , we get from (9) and (10):

(11)

∣

∣

∣

Q(ζ)

Q(zj)

∣

∣

∣

2p

=
(

1 + 2Ar−s
j cos(sθj − α) + O(r−s−1

j )
)

·

·
(

1 + 2A̺−s cos(sϕ− α) + O(̺−s−1)
)−1

= 1 + 2Ar−s
j cos(sθj − α) − 2A̺−s cos(sϕ− α) + O(̺−s−1)
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Now, by (6),

(12)
∣

∣rje
iθj − ̺ei(ϕ+(2πj/p))

∣

∣ ≤ C2; j = 1, 2, . . . , p− 1.

Also, |rj − ̺| ≤ C2 , so |1 − rj/̺| ≤ C2̺
−1 and (12) implies

∣

∣eiθj − ei(ϕ+(2πj/p))
∣

∣ ≤ C3̺
−1

(where, henceforth all Cj denote constants that can depend only on P and Q).
Consequently,

(13)
∣

∣θj −
(

ϕ+ (2πj/p)
)
∣

∣ ≤ C4̺
−1.

From these estimates it is clear that if we replace rj and θj by ̺ and ϕ+ 2πj/p ,
respectively, in the right side of (12) we only introduce an error that is O(̺−s−1) .
Hence

∣

∣

∣

Q(ζ)

Q(zj)

∣

∣

∣

2p

= 1 + 2A̺−s
[

cos
(

s
(

ϕ+ (2πj/p)
)

− α
)

− cos(sϕ− α)
]

+ O(̺−s−1)

for j = 1, 2, . . . , p− 1. Suppose now there is a constant λ(p, q) > 0 such that

(14) max
1≤j≤(p−1)

[

cos
(

s
(

ϕ+ (2πj/p)
)

− α
)

− cos(sϕ− α)
]

≥ λ(p, q)

(where λ(p, q) does not depend on ϕ , α). Then, for some j ∈ {1, 2, . . . , p− 1}

∣

∣

∣

Q(ζ)

Q(zj)

∣

∣

∣

2p

≥ 1 + 2Aλ(p, q)̺−s + O(̺−s−1).

This leads easily to

∣

∣Q(zj)
∣

∣ ≤
[

1 − δ̺−s + O(̺−s−1)
]

·
∣

∣Q(ζ)
∣

∣

for some δ > 0 depending only on p , q , P , Q . Thus,

(15)
∣

∣Q(zj)
∣

∣ ≤ [1 − δ̺−s] ·
∣

∣Q(ζ)
∣

∣

holds for some j ∈ {1, 2, . . . , p− 1} , if |ζ| = ̺ ≥ C5 . We thus have: If (14) holds,
then for |ζ| ≥ C5 , we can find z with P (z) = P (ζ) and

∣

∣Q(z)
∣

∣ ≤ t
∣

∣Q(ζ)
∣

∣ for some
t < 1 . This t = t(ζ) is uniformly less than 1 on bounded ζ -sets.

Let us examine condition (14). If it fails, there is an example of this with
α = 0, as we see by putting ϕ− (α/s) = ϕ′ . Now, the function

F (ϕ) = max
1≤j≤(p−1)

[

cos s
(

ϕ+ (2πj/p)
)

− cos sϕ
]
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is continuous, of period 2π , and so if it is positive for each ϕ , it is bounded below
by a positive constant λ(p, q) . This can only fail if all the inequalities

(16) cos s
(

ϕ+ (2πj/p)
)

− cos sϕ ≤ 0, j = 1, 2, . . . , p− 1

hold. In exactly the same way we can show that, for |ζ| ≥ C6 , unless all the
inequalities

(17) cos s
(

ϕ+ (2πk/q)
)

− cos sϕ ≥ 0, k = 1, 2, . . . , q − 1

hold, there is a point z with Q(z) = Q(ζ) and
∣

∣P (z)
∣

∣ ≤ t
∣

∣P (ζ)
∣

∣ (here again, t < 1
and is bounded away from 1 on bounded ζ -sets).

Thus, the proposition, and the theorem, will be demonstrated once we show:
the inequalities (16) and (17) cannot all hold. Indeed, we will show that a contra-
diction follows from the assumption that they all hold. Summing (16) from j = 1
to p − 1, and (17) from k = 1 to q − 1 gives −p cos sϕ ≤ 0 and −q cos sϕ ≥ 0,
respectively (here it is crucial that e2πis/p and e2πis/q are both different from 1).
Hence cos sϕ = 0 and (16), (17) become

(18) − sin(2πjs/p) sin sϕ ≤ 0, j = 1, 2, . . . , p− 1

and

(19) − sin(2πks/q) sin sϕ ≥ 0, k = 1, 2, . . . , q − 1.

But at least one of p , q (say, p) does not divide 2s . Then (18) cannot hold,
because sin sϕ = ±1, and the numbers sin(2πs/p) and sin

(

2π(p − 1)s/p
)

are
nonzero and negatives of one another. Thus, either the term with j = 1 or that
with j = p − 1 is positive in (18). This completes the proof of Proposition 3.3
and, thereby, the proof of Theorem 3.1.

Before closing this section, we remark on a more general formulation of the
basic combinatorial problem underlying Γ(P,Q) . Given two equivalence relations,
≡1 and ≡2 , on a set (like C), there is induced a new equivalence relation ≡1,2

as the “smallest” equivalence relation ∼ such that x ≡1 y or x ≡2 y implies that
x ∼ y . Since the relation “x ≡1 y or x ≡2 y” is not transitive, we must define
x ∼ y so that it holds if and only if there is a finite sequence z1, . . . , zn such that
“x ≡1 z1 or x ≡2 z1 ”, and “z1 ≡1 z2 or z1 ≡2 z2 ”, and · · · “zn ≡1 y or zn ≡2 y”
all hold. Thus, the equivalence classes are precisely sets of vertices of the graph
gotten by joining two points whenever they are either 1-equivalent, or 2-equivalent,
that are connected with one another, that is components of Γ(P,Q) . In particular,
if the underlying set is C and we define z1 ≡P z2 to mean that P (z1) = P (z2) ,
then ≡P,Q is the equivalence relation corresponding to components of Γ(P,Q) .
Thus, we can reformulate, for example, the definition of weak clustering, as: To
each compact K ⊂ C and N there is a set of N distinct points in K which are
≡P,Q equivalent.
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4. History of the problem

In one sense, our problem originates in work of F. Marty ([M1] and [M2])
and T. Shimizu ([Shi1], [Shi2] and [Shi3]) from the 1930’s dealing with the non-
Möbius (and even, non single-valued) automorphisms of analytic functions. These
questions were later taken up and given a systematic exposition by Gunnar af Häll-
ström in several papers of which we especially mention [H1] and [H2]. Paper [H1]
contains numerous references to the work of Marty and Shimizu. In [H1, p. 13],
af Hällström writes (we translate from the German): “Here the question arises
whether, given (rational) functions f1, . . . , fm a rational (nonconstant) function g
can be found which is simultaneously a rational function of each of the fj .” This
is essentially the problem studied in the present paper, except that

(i) the question as posed by af Hällström is more general in that m functions
are allowed rather than 2, and these may be rational, not merely polynomials,
while

(ii) his question is also less general in that g is required to be rational, not merely
meromorphic.

However, apart from noting some trivial examples where no g exists, he does
not go further into the problem. In Section 6 below we shall present a method
that yields nontrivial necessary conditions for the existence of a (nonconstant)
rational g .

Another case of our problem turned up in the work of Rényi and Rényi [RR],
who proved: EP ∩Eper 1 is trivial when degP ≥ 3. (Here, Eper 1 is the set of entire
functions of period 1.)

Their proof is very easy. Suppose that f ∈ EP has period 1. Look at a
large disk D =

{

z : |z| < R
}

and let z0 ∈ ∂D be a point where
∣

∣f(z0)
∣

∣ =

maxz∈D

∣

∣f(z)
∣

∣ . By periodicity f takes the same value f(z0) at all points z0+ in-
teger. If any of these enters D , then f is constant by the maximum modulus
theorem. If none of them enters D , then clearly z0 is close to either the north
pole or south pole of ∂D . But if degP = p ≥ 3 and R is fairly large, then
Lemma 3.1 shows that f takes the value f(z0) at points close to (e2πij/p) · z0 ,
j = 1, 2, . . . , p− 1. Since p ≥ 3, at least one of these numbers has imaginary part
of absolute value much less than R , so f(z0) = f(z1) for some z1 whose integer
translates really enter D . (In terms of earlier terminology: the graph induced by
P and the “periodicity 1” partition is reentrant.)

Fuchs and Gross [FG] showed that a suitably modified theorem holds also
for meromorphic functions, and the proof is very similar. Before turning to this,
however, let us look at some examples: Let P (z) = (z − a)p , Q(z) = (z − b)q

where p , q are at least as large as 2 and a 6= b . h ∈ MP means h(z1) = h(z2)
whenever (z1 − a)p = (z2 − a)p . That is, z1 − a = ω(z2 − a) for ω some pth root
of unity. In other words, MP is the set of meromorphic functions invariant under
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the group generated by the substitution

(20) z 7→ ωz + (1 − ω)a, ω = e2πi/p.

Likewise, MQ is the set of meromorphic functions invariant under

(21) z 7→ λz + (1 − λ)b, λ = e2πi/q.

It is now fairly easy to decide when Γ(P,Q) has any of the basic properties
embodied in earlier definitions. For example, it is clustering if p = q ≥ 7, it is
reentrant (but not weak clustering) for p = q = 3. There are a finite number of
choices of p ≥ 2, q ≥ 2 such that (20), (21) generate a properly discontinuous
group; in these cases, and only these, MP ∩ MQ is nontrivial.

What Fuchs and Gross really prove is: If p = degP and cos 2π/p is irrational,
then the graph Γ generated by P and “periodicity 1” is clustering. Here is an
outline of the proof. We will use ≡ to denote the equivalence relation generated
by ≡P and ≡per 1 (notation as introduced in the last paragraph of Section 3). We
will assume without loss of generality that P (z) = zp + czp−k + · · · with k ≥ 2.
This can be accomplished, if necessary, by replacing P by P ◦ ϕ , where ϕ is a
linear polynomial. Then, if N is a large integer, the remark following Lemma 3.1
implies that the roots of P (z) = P (N) are ωjN + O(N−1) , j = 1, 2, . . . , p .

Therefore,

0 ≡ N ≡ Nω2 + O(N−1) ≡ Nω2 +N + O(N−1)

≡ ω(Nω2 +N) + O(N−1) +M ≡ 2N cos 2π/p+M + O(N−1)

where M is any integer. Assume here that ω2 + 1 6= 0, so that Nω2 + N is
large when N is. If now cos 2π/p is irrational, then we can, for each ξ ∈ R find a
sequence Nj → ∞ , Mj → ∞ such that 2Nj cos 2π/p+Mj → ξ . Thus, 0 is ≡ to a
sequence which converges to ξ . Now, cos 2π/p is irrational unless p = 1, 2, 3, 4, 6.
To see this, note that, since ω+ω = 2 cos 2π/p , ω satisfies the quadratic equation
z2 − 2(cos 2π/p)z + 1 = 0. So, if cos 2π/p = r/s , where r , s are relatively prime
integers, we see that s must be 1 or 2 since otherwise ω is not an algebraic integer.
Thus cos 2π/p = 0, ±1, ±1/2 corresponding to p = 4, 1, 2, 3, 6, respectively. So,
for p = degP not equal to 1, 2, 3, 4, or 6, MP contains no nontrivial periodic
function.

Fuchs and Gross also find the exceptional cases: If cos 2π/p is rational, then
we have, for each z :

z ≡ z + n (for all integers n) ≡ ω2(z + n) + O(n−1)

≡ ω2(z + n) + n+ O(n−1) ≡ ω2z + (ω2 + 1)n+ O(n−1)

≡ ωz + (ω + ω)n+ O(n−1).
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If ω2 + 1 = 0 (that is, p = 4), then letting n approach infinity we get a sequence
(all terms of which are equivalent to z ) converging to ω2z and thus h(z) = h(ω2z) .
That is, for p = 4, h(z) = h(−z) . If, on the other hand, ω2 + 1 6= 0, then, since
(ω+ ω) is rational, there are arbitrarily large n such that n(ω+ω) is an integer.
Letting n → ∞ through such values, we get a sequence converging to ωz all of
which are equivalent to z and thus h(z) = h(ωz) . The complete theorem is gotten
by a few more similar steps and we will not give them here. It leads to the choices
P (z) = (z − a)p for arbitrary a .

In [FNS] algebraic curves in the plane were exhibited with the property that
the real part of nonconstant meromorphic functions on C cannot vanish on them
(examples are the curves given in Cartesian coordinates as the graphs of y = xn ,
where n ≥ 3). Actually, [FNS] worked with entire rather than meromorphic
functions, but the main technique employed, based on invertible germs, applies to
the meromorphic problem without changes. The relation of the problem studied
in [FNS] to that of this paper can be seen as follows. Suppose, for example,
that f is nonconstant and meromorphic on C , and Re

(

f(z)
)

= 0 on the curve

Γ :=
{

(x, x3) : x ∈ R
}

. Then Re
(

f(x + ix3)
)

= 0, x ∈ R so, denoting the

meromorphic function f(z) by f∗(z) , we have f(x+ ix3) = −f∗(x− ix3) , x ∈ R .
By analytic continuation we have then

f(z + iz3) = g(z − iz3), z ∈ C

where g = −f∗ , and this is a relation of type (2) with P (z) = z + iz3 , Q(z) =
z− iz3 . It is important to observe that the failure of curves such as Γ above to be
level curves of harmonic functions is a global, not a local feature: There are indeed
functions holomorphic (and nonconstant) on a neighborhood of Γ, with real part
vanishing on Γ. It is only when we try to make this neighborhood sufficiently
large (e.g., the whole plane) that the task becomes impossible if we try to have at
worst polar singularities.

L. Flatto [Fl] extended this work on level curves by giving a complete descrip-
tion of some exceptional cases arising in [FNS].

Finally, the paper [Sha] adapted some of the ideas from [FNS] to the study of
the functional equation (2).

5. Eliminants

Let P , Q be polynomials with complex coefficients, of degrees p , q , re-
spectively, and let Γ(P,Q) denote the corresponding colored graph introduced
in Section 3. Suppose now that z1 , z2 are the endpoints of a red edge (that
is, P (z1) = P (z2)) and assume that neither z1 nor z2 is a critical point of P
(that is, both P ′(z1) and P ′(z2) are nonzero). Consider the function u(s, t) =
P (z2+t)−P (z1+s) . It is holomorphic on C2 and ∂u/∂s , ∂u/∂t are both nonzero
at (0, 0). By the implicit function theorem there is a function ϕ(s) holomorphic
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on a neighborhood of 0 such that ϕ(0) = 0 and u
(

s, ϕ(s)
)

= 0. Observe that,

since P
(

z2 + ϕ(s)
)

− P (z1 + s) = 0, we have

ϕ′(0) =
P ′(z1)

P ′(z2)
.

Thus, ϕ is an element of the group G of invertible germs at 0 considered in
Section 2. A similar consideration holds, of course, for “blue” edges. Thus, to
each directed edge of Γ(P,Q) whose endpoints are not critical points of P or Q
is associated an element ϕ of G .

Suppose now there exist nonconstant meromorphic functions f , g and h such
that

(22) h(z) = f
(

P (z)
)

= g
(

Q(z)
)

.

Let Φ denote a proper closed path in Γ(P,Q) with successive vertices (z1, z2, . . . ,
zm, z1) where m ≥ 2 is an even integer. Suppose none of these vertices is a critical
point of P or Q . We shall also suppose that no zj is a pole of h . Let ϕ1 denote
the element of G associated to the edge (z1, z2) by the above procedure, ϕ2 that
associated to (z2, z3) , etc. up to ϕm . Thus, we have the relations

P (z1) = P (z2), P (z1 + s) = P
(

z2 + ϕ1(s)
)

Q(z2) = Q(z3), Q(z2 + s) = Q
(

z3 + ϕ2(s)
)

P (z3) = P (z4), P (z3 + s) = P
(

z4 + ϕ3(s)
)

...

Q(zm) = Q(z1), Q(zm + s) = Q
(

z1 + ϕm(s)
)

.

By virtue of (22) we get from these relations

h(z1 + s) = f
(

P (z1 + s)
)

= f
(

P
(

z2 + ϕ1(s)
))

= h
(

z2 + ϕ1(s)
)

h(z2 + s) = g
(

Q(z2 + s)
)

= g
(

Q
(

z3 + ϕ2(s)
))

= h
(

z3 + ϕ2(s)
)

...

h(zm + s) = g
(

Q(zm + s)
)

= g
(

Q
(

z1 + ϕm(s)
))

= h
(

z1 + ϕm(s)
)

and so
h(z1 + s) = h

(

z2 + ϕ1(s)
)

= h
(

z3 + ϕ2

(

ϕ1(s)
))

= · · ·

= h
(

z1 + ϕm

(

ϕm−1

(

· · ·ϕ2(ϕ1(s))
)))

.

That is, for the germ ψ = (ϕm ◦ ϕm−1 · · · ◦ ϕ1) ∈ G we have

(23) h(z1 + s) = h
(

z1 + ψ(s)
)

.
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We call ψ the germ associated to the closed path Φ .
Thus, in view of the discussion in Section 2, we can assert: Under the as-

sumptions just made, ψ in (23) is, for some n ≥ 1 , an nth root of the identity in
the group G , and in particular ψ′(0)n = 1 . It is not hard to see this is true also
if the points zj are poles of h .

Using this, one can sometimes show that, for a given pair of polynomials P ,
Q there are no nonconstant meromorphic solutions f , g to (22). Essentially this
was done in [FNS] for the pair P (z) = z + izm , Q(z) = z − izm by finding a
closed proper path in Γ(P,Q) for which the associated ψ was not a cyclic element
of G (in fact ψ′(0) was not a root of unity). We illustrate this technique for
P (z) = z3 + z , Q(z) = z3 − z . To find z1 and z2 with P (z1) = P (z2) and
z1 6= z2 , we seek solutions to the equation P#(z1, z2) = 0, where

(24) P#(z, w) =
P (z) − P (w)

z − w
.

Similarly, to find z2 and z3 with Q(z2) = Q(z3) and z2 6= z3 , we solve the
equation Q#(z2, z3) = 0, where

(25) Q#(z, w) =
Q(z) −Q(w)

z − w
.

To find a 2-cycle z1 , z2 , z1 , the equations

P#(z1, z2) = z2
1 + z1z2 + z2

2 + 1 = 0

Q#(z2, z1) = z2
1 + z1z2 + z2

2 − 1 = 0

would have to be satisfied. Clearly, this system has no solutions. For a 4-cycle, we
need distinct points z1, z2, z3, z4 so that P (z1) = P (z2) , Q(z2) = Q(z3) ,P (z3) =
P (z4) and Q(z4) = Q(z1) . This translates into the system

z2
1 + z1z2 + z2

2 + 1 = 0

z2
2 + z2z3 + z2

3 − 1 = 0

z2
3 + z3z4 + z2

4 + 1 = 0

z2
4 + z4z1 + z2

1 − 1 = 0.

It can be seen that this implies that z4
1 + 1 = 0. Beginning with the choice of

z1 = ζ = eπi/4 , the above system then gives rise to the 4-cycle z1 = ζ , z2 = ζ3 ,
z3 = ζ5 , and z4 = ζ7 . Then, there must exist germs ϕ1 , ϕ2 , ϕ3 , ϕ4 satisfying

P (z1 + s) = P
(

z2 + ϕ1(s)
)

Q(z2 + s) = Q
(

z3 + ϕ2(s)
)

P (z3 + s) = P
(

z4 + ϕ3(s)
)

Q(z4 + s) = Q
(

z1 + ϕ4(s)
)

.
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Hence if h, f, g are nonconstant meromorphic solutions to (22), the above chain
produces ψ = ϕ4 ◦ ϕ3 ◦ ϕ2 ◦ ϕ1 with h(z1 + s) = h

(

z1 + ϕ(s)
)

. Then there must

exist a positive integer m (the valence of h at z1 ) so that ϕ[m] is the identity
map and

[

ψ′(0)
]m

= 1. Now

ψ′(0) = ϕ′
4(0)ϕ′

3(0)ϕ′
2(0)ϕ′

1(0) =
Q′(z4)

Q′(z1)

P ′(z3)

P ′(z4)

Q′(z2)

Q′(z3)

P ′(z1)

P ′(z2)
.

Then, from the definition of z1, z2, z3, z4 we get

ξ = ψ′(0) =
3(ζ7)2 − 1

3ζ2 − 1

3(ζ5)2 + 1

3(ζ7)2 + 1

3(ζ3)2 − 1

3(ζ5)2 − 1

3ζ2 + 1

3(ζ3)2 + 1

=

(

3ζ2 + 1

3ζ2 − 1

)4

=

(

3i+ 1

3i− 1

)4

=
−527

625
−

336

625
i.

But then,

ξ2 +
1054

625
ξ + 1 = 0,

and so ξ (although it is of modulus 1) is not even an algebraic integer and so is
not a root of unity. Consequently there can exist no nonconstant meromorphic
functions f and g for which f ◦ P = g ◦Q .

In case, for some proper closed path, the associated ψ turns out to be cyclic,
we can nevertheless draw a strong conclusion:

Theorem 5.1. Suppose that Γ(P,Q) contains a proper closed path of length
m (no vertices of which are singular points of P or Q) for which the associated ψ
is cyclic of order n . Then, to each point z ∈ C there exists a proper closed path
of length mn in Γ(P,Q) having z as a vertex.

Proof. The points of C reachable by a “red” edge starting at z1 are the roots
w of the equation P#(z1, w) = 0. Starting from w , the points reachable by a
“blue” edge are the roots ζ of Q#(w, ζ) = 0 (here, P# and Q# are as defined in
(24) and (25), respectively). Continuing in this fashion we arrive at the following
proposition:

The points w reachable from z by a proper path of length 2k are the roots w
of the equation Ek(z, w) = 0, where Ek (which we shall call the kth eliminant of
the ordered pair (P,Q)) is the polynomial obtained by eliminating t1, t2, . . . , t2k−1
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from the equations
P#(z, t1) = 0

Q#(t1, t2) = 0

P#(t2, t3) = 0

Q#(t3, t4) = 0

...

P#(t2k−2, t2k−1) = 0

Q#(t2k−1, w) = 0.

Returning to the proof of the theorem, suppose we have a proper closed path
Ψ ⊂ Γ(P,Q) of length m = 2k and vertices (z1, z2, . . . z2k, z1) with associated
germ ψ which is an nth root of the identity. For a point ζ = z1 + t with |t|
sufficiently small, the calculations made earlier show that the points

z1 + t, z2 + ϕ1(t), z3 + ϕ2

(

ϕ1(t)
)

, . . . , z1 + ϕ2k

(

· · ·
(

ϕ1(t)
)

· · ·
)

are the vertices of a proper path starting at ζ . The last point is z1 + ψ(t) where
ψ = ϕ2k ◦ · · · ◦ ϕ1 is, by assumption, an nth root of the identity in G . Iterating,
we see that z1 +ψ[r](t) is the endpoint of a proper path of length 2kr starting at
ζ (recall that ψ[r] denotes the rth iterate of ψ under composition). For r = n ,
ψ[r] is the identity, so the endpoint is ζ . That is, the path closes.

Consider now the eliminant Ekn(z, w) . For fixed z , its roots are all points
w attainable as the endpoints of proper paths of length 2kn starting at z . The
above discussion implies that Ekn(ζ, ζ) vanishes for all ζ on a neighborhood of
z1 , and hence identically. But this implies that, for each ζ ∈ C , there exists a
proper path of length 2kn starting at ζ and terminating at ζ .

This theorem allows one to give computer-assisted proofs that certain func-
tional equations (22) have no nonconstant meromorphic solutions. As an example,
consider the case P (z) = z3 , Q(z) = z3 + 3z2 + 9

2
z . To find a 2-cycle z1 , z2 , z1 ,

the equations
z2
1 + z1z2 + z2

2 = 0

z2
1 + z1z2 + z2

2 + 3(z1 + z2) +
9

2
= 0

must be satisfied. This occurs for z1 = 3ω/2 and z2 = 3ω2/2, where ω = e2πi/3 .
If ψ is the germ associated with this 2-cycle and ξ = ψ′(0), a calculation shows
that ξ = −1. Since this was a 2-cycle and −1 is a second root of unity, we conclude
by Theorem 5.1 that if h = f ◦ P = g ◦ Q admits a nonconstant solution, then
every point in the plane lies on a 4-cycle. However, the corresponding eliminant
E4(z, w) , when w is replaced by z , does not vanish identically. Indeed, it equals

15116544(4z2 + 6z + 9)3(16z4 + 24z3 + 72z2 − 54z + 81).
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Consequently, nearly all points in the plane do not lie on a 4-cycle in Γ(P,Q) and
thus h = f ◦ P = g ◦Q possesses no nonconstant meromorphic solution.

Remark. We have seen that, when Φ is a proper closed path in Γ(P,Q)
with vertices (z1, z2, . . . , zm, z1) and none of the zj is a zero of P ′ or Q′ , there is
associated with Φ a certain ψ ∈ G whose cyclicity is necessary for the existence
of nontrivial meromorphic f , g satisfying (2). It is easy to see that if ψ is
noncyclic, Γ(P,Q) has the weak clustering property. It is also trivial that Γ(P,Q)
is clustering if

∣

∣ψ′(0)
∣

∣ 6= 1. By virtue of the theorem of C.L. Siegel [Si], a sufficient

condition for strong clustering, in case
∣

∣ψ′(0)
∣

∣ = 1, is (writing ψ′(0) = e2πit ,

t ∈ R) that there exist positive numbers a, b such that
∣

∣t− (m/n)
∣

∣ > an−b holds
for all integers m,n > 1 . This holds, for example, if t is an algebraic irrational
number.

6. Remarks and questions

Polynomial solutions. A special case of polynomials P and Q for which there
exist polynomial solutions to (2) (that is, the existence of polynomials f and g
for which f ◦P = g ◦Q) is when P and Q commute under composition. J.F. Ritt
[R2] showed, roughly, that P and Q commute only when they are both powers of
z or when they are both Chebyshev polynomials of the first kind, or when they are
both iterates (under composition) of the same polynomial (here, for simplicity of
presentation, we have omitted some roots of unity as well as conjugacy involving
linear polynomials).

In another paper written a couple of years earlier, Ritt [R1] provides a useful
framework for studying the general question of polynomial solutions to (2) (see [J]
and [Fa] for related work). Following the terminology of factorization of integers,
Ritt called a polynomial composite if it can be represented as the composition of
two polynomials each of degree larger than 1, and prime otherwise. His solution to
the problem of representing a polynomial as a composition of prime polynomials
is summarized in A and B below:

A. Any two decompositions of a given polynomial into prime polynomials con-
tain the same number of polynomials; the degrees of the polynomials in one
decomposition are the same as those in the other, except, perhaps, for the
order in which they occur.

Two decompositions of a polynomial F into the same number of polynomials,

F = ϕ1ϕ2 · · ·ϕr, F = ψ1ψ2 · · ·ψr

are called equivalent if there exist r − 1 polynomials of the first degree

λ1, λ2, . . . , λr−1
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such that

ψ1 = ϕ1λ1, ψ2 = λ−1
1 ϕ2λ2, . . . , ψr = λ−1

r−1ϕr.

B. If F has two distinct decompositions into prime polynomials, we can pass
from either to a decomposition equivalent to the other by repeated switchings
of adjacent prime polynomials as follows: ϕiϕi+1 may be replaced by ψiψi+1

precisely when

ϕi = λ1π1λ2, ϕi+1 = λ−1
2 π2λ3

and

ψi = λ1ξ1λ2, ψi+1 = λ−1
2 ξ2λ3

and the pairs π1, π2 and ξ1, ξ2 are of the following three types:

(a) π1 = Tm , π2 = Tn , ξ1 = Tn , ξ2 = Tm , (Chebyshev polynomials),
(b) π1 = zm , π2 = zrg(zm) , ξ1 = zr[g(z)]m , ξ2 = zm , (g any polynomial),

(c) π1 = zr[g(z)]m , π2 = zm , ξ1 = zm , ξ2 = zrg(zm) , (g any polynomial).

Returning now to our question, suppose that P and Q are given and we seek
polynomials f and g for which f ◦ P = g ◦Q . But then, one must be able to go
from the decomposition f ◦ P to g ◦ Q by means of the above “switchings” (a),
(b), and (c). Thus, the question of the existence of polynomial solutions can be
answered by studying the decompositions of P and Q .

By way of example, consider P (x) := z2(z3 + 1) and Q(z) := z3 . P and
Q do not commute under composition, but there do exist polynomial solutions
f(z) := z3 , g(z) := z2(z + 1)3 to equation (2), in keeping with (c) above.

Rational solutions. Using the asymptotic formula for the roots z of P (z) =
P (ζ) (ζ large) given by Lemma 3.1 and the remark following, one can solve many
cases of the af Hällström problem mentioned in Section 4 above. We restrict
ourselves to one rather simple result, generalizations are straightforward and may
be left to the reader.

Theorem 6.1. Let P (z) = zp + azp−1 + · · · , Q(z) = zp + bzp−1 + · · · be
polynomials such that p ≥ 2 and a 6= b . Then MP ∩MQ contains no nonconstant
rational function.

Proof. By estimates from Section 3, for each j ∈ {1, 2, . . . , p} , P (z) = P (ζ)
has a root

zj = ωjζ +
P (ζ) − P (ωjζ)

P ′(ωjζ)
+ O

(

|ζ|−1
)

,

where ωj = e2πij/p . Simplifying, we get

(26) zj = ωjζ + (a/p)(ωj − 1) + O
(

|ζ|−1
)

.
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In other words, ζ is P -equivalent to each of the numbers zj given by (26), and
in like manner it is Q -equivalent to each of the numbers

z′j = ωjζ + (b/p)(ωj − 1) + O
(

|ζ|−1
)

.

Thus, by one P -step with j = 1 followed by a Q -step with j = p − 1, ζ is
transformed to (here, we denote ω1 by ω , so ωp−1 = ω )

ω
(

ωζ + (a/p)(ω− 1)
)

+ (b/p)(ω− 1)+ O
(

|ζ|−1
)

= ζ +
(a− b

p

)

(1−ω) + O
(

|ζ|−1
)

.

Consequently, by a P -step and then a Q -step, ζ is shifted to ζ + c , where c is
the nonzero number

(

(a − b)/p
)

(1 − ω) , modulo a O
(

|ζ|−1
)

error. It follows at
once that, given any N , if ζ is chosen large enough, there are points

ζ, ζ + c+ O
(

|ζ|−1
)

, ζ + 2c+ O
(

|ζ|−1
)

, · · · , ζ +Nc+ O
(

|ζ|−1
)

which are all distinct and are ≡P,Q to ζ . Clearly, no nonconstant rational function
can take the same value at all these points, once N is chosen sufficiently large.

In a similar way, we could show under the same hypotheses that MP ∩ MQ

cannot contain a nonconstant meromorphic function of sufficiently small order.

Uniformization. The functional equation (2) can also be looked at from a
slightly different point of view, very close to that in the papers of Marty, Shimizu
and af Hällström already mentioned. Namely, the equations w1 = P (z) , w2 =
Q(z) can be viewed as parametric equations of an algebraic variety

V :=
{

(w1, w2) ∈ C2 : ϕ(w1, w2) = 0
}

of complex dimension one in C2 . (Here ϕ is some polynomial in w1, w2 . Because
P and Q are polynomials, this variety (curve) is of genus zero, but it is more
natural now to allow ϕ to be an arbitrary irreducible polynomial).

Our basic question then takes the form: do there exist nonconstant meromor-
phic (or entire) functions f , g on C such that f(w1) = g(w2) whenever (w1, w2) ∈
V ? Yet another way to look at matters is this: The equation ϕ(w1, w2) = 0 can
be solved for w2 = A(w1) , where A is an (in general, multi-valued) algebraic
function. That there exist nonconstant meromorphic functions f and g with
f(w1) = g

(

A(w2)
)

is the same as requiring: to the given algebraic function A ,
there corresponds a nonconstant meromorphic function g on C such that g ◦ A
remains single-valued under all analytic continuations. The question then arises:
Which algebraic functions admit such a “uniformizing” g ? Notice that this is
quite a different problem from the classical uniformization problem.
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