Annales Academia Scientiarum Fennicee
Series A. I. Mathematica
Volumen 17, 1992, 123-137

CUTTING MARKOVIAN TREES

Paavo Salminen
Abo Akademi, Matematiska Institutionen, SF-20500 Abo, Finland

Abstract. In this paper a path transformation of a branching Markov process is studied
in which, roughly speaking, all finite branches are erased with unit speed from the tip of the
branch for a given time g, 0 < ¢ < co. To have a more applicable touch we, in fact, transform
killed branching processes. Killing is done at a terminal line. This notion is introduced as a
generalization of the notion of terminal time. It is proved that the transformed process is again a
branching Markov process and its law is characterized. This may be viewed as a generalization of
a classical result of Harris [5], and a more recent result of Neveu [9].

1. Introduction

To start with we describe shortly a result of Harris [5] (see also Athreya and
Ney [2; p. 50]). Let Z := {Z; : t > 0} be a Galton-Watson process with the
offspring distribution {px : k = 0,2,...}. Let F be the generating function of
p. Then the probability of extinction, g, is the smallest nonnegative root of the
equation t = F(t). Assume 0 < ¢ < 1, and introduce

F(1—-q)s+q)—gq

F(s):= 4 ,

0<s<1.

It is easily seen that F' is the generating function of the distribution p with

~ 1 (l> k _l—k
Pk = — (1“Q)q bi, k=172a-"$
(11) l—qg ¢

po = 0.
Let Z be a Galton-Watson process with the offspring distribution p. Because
po = 0 the probability of extinction for Z is zero.

To describe a path transformation which leads to 7 we introduce some ter-
minology adapted from Neveu [8].

Definition 1. A tree w is a subset of the space

U= |JN3ju{0}, Ny:={12..},
n=1

satisfying the conditions
1) 0€w,
(2) if uv €w then u € w,

(3) for all u € w there exists v*(w) € N4 such that if uj € w for some j € N4
then 1 <j < v¥*(w).
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Elements in U are called particles. To explain the notation uv in (2), let
u = (i1,...,ts) € U, v=(j1,--+,Jr) € U then uv = (i1,...,%,J1,.--,Jr) € U.
The variable v* in (3) gives the number of descendants of the particle u. A
particle v is called an ancestor of a particle u, denoted v < wu, if there exists
w € U such that u = vw. Defining fu = v and uf = u it is seen that for every
u€ U wehave u <u and § < u.

Every particle u in a tree w is now marked with a positive number (*, called
the lifetime of u. Further, the life interval of u is defined to be (a*,"*), where

a" = ZC”, a® =0,
v<u
,Bu :___ch=au+<u.
v<u
The space of all marked trees is denoted with €, and is used as the canonical
sample space for nonexplosive Galton-Watson processes. Elements in § are still
denoted with w, and we write u € w meaning that u is a particle in the marked
tree w.

For u € U and w € Q let Q* := {w: u € w}, and introduce a mapping
6*: Q* — Q by setting v € 8* ow if and only if uv € w. We say that the branch
starting from u in w is finite if w* := " ow is a finite tree, i.e. the number of
particles in w* is finite. The space of all finite marked trees is denoted with Q.

Define a mapping e: 8 — QU{t}, where { stands for the void tree, as follows:

(i) In the case w & Ny let u € eow if and only if u € w and w* & Q.
(ii) In the case w € Qf let eow = 1.
In other words, e o w contains only the infinite branches of the tree w.

Let P, o be the law of a nonexplosive Galton-Watson process Z. Here p
denotes the offspring distribution and « is the parameter for the exponentially
distributed lifetimes. We are interested in the image of the law P, , under the
mapping e. The following result is extracted from Athreya and Ney [2; p. 49].

Theorem 1. For Ae¢ # :=o{v*,(*: veU, weQ*}U{{}
Pyo(w € A):=P,a(eow € A) = ge1y(4) + (1 — ¢)P;.a(4),

where the offspring distribution p is given in (1.1) and ¢4y is Dirac’s measure
at t.

More recently, Neveu [9] considered a transformation, called erasure, operat-
ing on the space of finite trees. To recall this let {(w) := sup, ¢, B* be the lifetime
of a tree w, and for 0 < ¢ < oo define a mapping e,: 25 — Qs U {f} as follows:

(1) u € epow if and only if u € w and ((6* ow) > p.
(ii) Forall u € e, 0w set (*(ep0w) = min {(*(w),((* ow) — o} .
(i) epow =1, if ((w) < p.
For (sub)critical Galton-Watson processes we have (see Neveu [9])
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Theorem 2. For Ae # :=o{v*,(*: veU, weQ*}U({i}
lsﬁ,a(w € A):=Ppa(e,ow € A) = ’\95{1}(A) +(1- ’\e)Pg,a(A),

where A, := P, o(( < p) and the measure Pg’ o 8overns a Galton-Watson process
having the offspring distribution p® given by

R 1oy, (1) ek k
pi = q{gpl(k)Ag (1—)\9) —/\96{0}(16)}, k=0,1,

It is quite obvious that Theorem 2 is also valid for nonexplosive supercritical
Galton-Watson processes, there is no problem to extend e, to Q. Note, however,
that infinite branches are not cut. Further, because ¢ = limy—,c A,, Theorem 1
is obtained in some sense from the extended version of Theorem 2.

The aim of this note is to generalize Neveu’s result to a larger class of branch-
ing Markov processes. In lkeda, Nagasawa and Watanabe [7; Section 5.5 ] one
finds a generalization of Harris’ transformation, see also Hering [6] or Asmussen
and Hering [1; p. 242] . In these works the approach is analytic and the point of
view of a path transformation is not adopted.

In the next section we introduce the notion of terminal line. A terminal line is
“the initial point” for the erasure. In the third section erasure or cutting theorems
are proved. This is done under some regularity assumptions which allow us, among
other things, to use the Martin-boundary theory. In [10] these results are applied
to branching Brownian motion processes to obtain a ratio limit theorem for the
number of particles in the erased process and the original one. This generalizes a
result in Athreya and Ney [2; p. 51].

2. Terminal lines

Let © be the space of marked trees as defined above. The particles v € U
are now additionally marked with “cadlag” functions v*: I* — E, where E is a
locally compact space having a countable base and I* := [0,¢*), w € Q*. Further,
we set 757 = y¢_ for 1 < j < v* and 4} = A for all ¢ > (* or 7¢ = 8 for all
t > ¢* where A and O are fictitious states isolated from E. This new space is
still denoted with © and is used as the canonical path space for a non-explosive
branching Markov process X. We assume that the process X has a constant
creation rate a, i.e. for every u € U the lifetime (* is exponentially distributed
with parameter a. Particles are sent to the state A at creation times. For this
process there is no use for the extra cemetery point d. The non-branching part,
x, of X is taken to be an exponentially with parameter a killed conservative
standard process having the state space E U {A}. In the next section further
regularity assumptions are imposed. The process X is considered in the canonical
sample space (D, 2) of cadlag functions, denoted +, having the cemetery points A
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and 8 as above. Finally, the offspring distribution, 7(y) := {pa(y),n =0,2,... },
y € E, of X is assumed to be such that X is non-explosive (for a condition see
Athreya and Ney [2; p. 104]).

Next we introduce some relevant o-algebras on Q (cf. Chauvin [3]). Firstly,
for every u € U let

Fti=o{7(w): 0<s <tA((w), we Q')
and define recursively

@ =o{y):we =0},
@ =9"'VIZFILVo{rv': weN},
where v is u’s parent, i.e. there exists j € N such that u = vj. Intuitively, ¥*

contains the information on the branch leading to the particle u. To include the
history of the particle itself set

o =9V F)
HE =V & Vo{v': we "}
The following notions are introduced in Chauvin [3].
Definition 2. A family 7:= {r*: v e U}, r*: (Q*, &%) — [0,{*] U {oo},
of non-negative random variables is called a stopping line if
(i) forall u € U " is a stopping time for &/* := {2/} : s > 0},
(ii) given a particle u € L, (w) := {u: 7%(w) < oo}, w € Q, there does not exist

a particle v such that v < u and v € L(w).

Remark. This definition differs slightly from the one in [3] in that 7% may
attain “the value” +oo, and, therefore, u € L, in the case 7% = (*.

Definition 3. A mapping 6*: Q*N{¢(* >t} > Q, ue U, t >0, is called a
shift operator if it has the properties:
(1) v € 6} ow if and only if uv € w.
(i) fuv €Ew, v#0, and ¢* >t then y*(6} ow) = y**(w).
(i) (O(62 ow) = C*(w) — ¢.
(iv) If0 < s < (* —t then Y2(6} ow) = 72, (w).

Let 7 be a stopping line. Then we introduce random shift operators 83: Q* N
{¢* > 1} > Q, u € U, as “deterministic” shift operators above having 7* in the
place of ¢.

For the next definition let for w €  and a stopping line 7

D,(w):={u €U : there exists v € U,v < u,v € L,(w)},

where 7 is a stopping line. The set D, is called the set of strict descendents of
the line 7.
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Definition 4. A stopping line 7 is called a terminal line if u ¢ D,(w) and
t < 7%(w) implies that t + 7% 0 8} = 7%, where w € Q* and 0 < t < (*.

Definition 5. Let 7 be a terminal line. A mapping k,: Q0 — Q is called a
killing operator if it has the properties
(i) vekrow ifand only if v €Ew, v € D,(w),
(ii) for v € krow
if v ¢ L;(w) then ¥*(k; ow) = v¥(w),
if v € Ly(w) then

v (w), t<TY;
Wsrow) = {F 15T

Using the definitions above it is easily seen that we have the following, intu-
itively obvious but fundamental, result.

Proposition 1. Let 7 be a terminal line. Then 6* ok, ow = k. 0% o w,
where u € kr ow and 0 < s < T* A (™.

Let & :={% : t >0} be the canonical filtration in Q satisfying the usual
conditions and generated basically by the variables
1) {v*,¢*,7v*}: Q* —> (Z4,Rey,D) for a* +(* < t,
(i) {(y¥:a*+s<t<a*+(}.
For a terminal line 7 we also introduce the “stopped” o-algebras ¢ := {%; :
t > 0} satisfying the usual conditions and generated by the variables
(i) {v*¢* 7"} Q* - (Z4,Rey,D) for a* +(* <t and u¢ D, UL,,
(i) {y¥:a*+s<tA(a*+7*),u€L,}.
Denote with P, the measure on (Q, £) (Feo := Vi>0.%:) induced by the
process X . Let 7 be a terminal line. We are interested in the image of P, under
the mapping k., denoted with P_, i.e. for A € Foo

PweAd) =P (krowe A).

Let #(y) := 7%(w), where the particle § in the tree w carries the function v as
the mark. Then, ¥ may be and is considered as a terminal time for the process x.
The measure induced by x on (D, 2) (2 := Vi>0%:, 9: := 0{7s: s <t} with
the usual conditions) is denoted with P*. Let P* be the law of the process %
obtained from x by killing it at 7, i.e. the sample paths of % are

Yt t<CA7’;7
‘?t= A, CSt,CSf',

9, 7<t <.

We assume that
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(A) the process (X, PX) is a standard Markov process on the state space (E., &),
where E, := E. U {A, 9}, E; := {z € E: P} =0) =0} and & is the
associated o-algebra on E..

See Sharpe [11; p. 71] for the conditions for this to hold. Clearly, (A) is a property

for the terminal time 7 and, hence, also for the terminal line 7.

Proposition 2. Under (A) the measure P governs on the space (€,%) a
non-explosive branching Markov process, denoted X. Its non-branching part is
identical in law with X, and the offspring distributions of X and X coincide, i.e.
for k=0,2,3,...

PP =k|1=0)=P.( =k|+{=0).

Proof. The claim concerning the offspring distribution is obviously true. Note,
however, that P (v? = 0) # P.(v* = 0). To verify the Markov property let for
t>0 L;:={u: a* <t < B*} be the population living at time ¢. Then defining

oWt = t—a*, fora*<t<pg"
T oo, fort<a®or f* <t

it is seen that of := {o®* : u € U} is a stopping line and L,¢ = L; (cf.
[3]). Further, set 6y = ¥, and 7 := 7%;. Let now G, and for every u € U,
F* be positive, bounded ¥, - and, respectively, ¢ -measurable random variables.
Consider, for z € E,,

E.(GMyer, F* 0 6Y) = E;(G o k- IlugL,on, F* 0 6} 0 ;)
=E.(G ok Ilyer on, F* 0 k7 0 6})
= E.(G ok E;(Tuerion, F* 0 k7 06} | 37 0 k7, u € Ly 0 k7))
= E.(GE, (Muer, F* 0 6} | 77, u € Ly)),

where we have used Proposition 1 and the Markov property of X. This proves
the Markov property of X . For the branching property we have

Ez(nuGLtFu o é: | %) = Ez(nueLtFu 0 é;‘ |75 v € Lt)
= E,(HuELtF“ 0Ky O 5;‘ | 9 0o kryu € Ly 0 n,.)
= HuGLtox,. Ext“(Fu)v
where we have used the Markov property of X, Proposition 1, and the branching

property of X . Finally, it is easily seen that the non-branching part of X is as
claimed. Thus, the proof is complete.

Remark. This result is intuitively obvious and certainly well known. The
proof above is given to show how the introduced machinery works, in this respect.
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3. Cutting a tree

1. Let 7 be a terminal line and «, the killing operator associated with it.
Further, let

A= {w: for every v € K, ow there exists u such that v < u, u € L.}

For a killed tree x, o w we define now the extinction time T via

(38.1) T(w) = {Sup {a*+7*: ue L (v)}, ifwe A4,

00, otherwise.

As an example consider the following family of random variables

Tu:{c, if 1 = 0;

0o, otherwise.

Clearly, this is a terminal line and the corresponding extinction time is the “usual”
one.

Definition 6. For a given ¢ > 0 a mapping c,: @ — QU {t} is called a
cutting or erasure operator if it has the properties
(a) veEw?:=cy,0k,0w ifand only if v € Ky 0w, T(68 o krow) > g,
(b) for v € we:
(1) ¢*(w®) = min {¢*(kr ow), T(8Y 0 kr o w) — o},
W(w), if0<t<(Hwe)
(i) ¢ (w®) = ¢ 9, if (Y(w?) <t and (*(w?) = T(6Y o kr o w) — p;
A, if (*(w?) <t and (*(w?) = (¥(kr ow);
(c) for T(krow) < p: cp0krow = 1.

In other words, informally speaking, in a c,-transformed tree we all finite
branches are made ¢ units (measured in time from the terminal line) shorter than
in the killed tree x, ow. Note that the definition of ¢, makes, after some obvious
changes, perfectly good sense also in the case “p = +00”. This mapping in which
all finite branches (measured from 7) are cutted is denoted with c,.

2. Consider now, as introduced in Section 2, a branchmg process X =
{X:,P.} killed at a terminal line 7, and recall the notation % = {7, P*} for
its non-branching part. It is assumed that

(B) the semigroup associated with the process % is a Feller-Dynkin semigroup (in
the terminology of Williams [12; p. 115]) having the strong Feller _property,
ie. forall ¢ > 0 and f bounded and measurable the mapping z — EX X(f(7e) )
(z € E;) is continuous.
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Moreover, we make use of the Martin-boundary theory to analyse the process X
and, therefore, impose the following assumptions to get results strong enough:

(C) (i) % has a jointly measurable transition density with respect to a o -finite
measure m. This density is denoted with p(t;z,y), t >0, =,y € E-.

(i1) Green’s function

oo
dalesv) = [ exp(-at)pltia,y) d
0
exists for every a >0, z,y € E,, and is such that the function

Galfry) = /E m(dz)f(2)da(z, V)

is continuous and bounded for all f € C.(E:).

(D) (i) There exists a finite measure p on & such that the function

a(y) = /E w(de)io(z,y), v € En,

is positive and continuous.

(i) For every a > 0 and f € C¢(E,) there exists a constant c} such that
for each a-excessive and p-integrable function h one has

m(fh) < c§u(h).

Under the assumptions (C) and (D) (cf. Dynkin [4]) the state space E, can be
Martin-compactified in such a way that: Any p-integrable excessive function h
has an integral representation in terms of the minimal excessive functions. Given
such a function h the representing measure, denoted with v? is connected with
the exit distribution of the h-transform of X via the formula

~ n t:
(3.2) PXh(¢ € dt, v € A) = dt / PE2Y) b Acé,
4 h(z)
where P%? is the measure associated with the h-transform and (¢ is the lifetime
of the process. Further, when restricted to &7, v* is absolutely continuous w.r.t.
m and satisfies

h(y) — EX(h
(3.3) vP(-) = lim (v) ~ B3 (h(x)) m(dy),
tlo J. t
see [4; p. 132].
For simplicity, we consider below the cutting operator in two separate cases:
(3.4a) 7® < ¢? as. on {r? < o0},
(3.4b) 7% =(? as. on {r? < o0}.

The general case is a combination of these.
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3. Assume that the terminal line 7 satisfies the condition (3.4a) above. Here
we need the following regularity assumption on the distribution of the extinction
time T':

(E) Forevery 0< p< oo and z € E
1
1 <ot h) =
lim -P(e <T < e +h)=:a(z,0)

exists and is a locally bounded function of z.
Recall the notation 7 for the terminal time of the non-branching part x
associated with the terminal line 7 and that E, := {z € E: P¥(# =0) = 0}.

Proposition 3. Let X be a branching Markov process and 7 a terminal line
as described above. Assume that X (and 7) satisfy (A)~(E). Then the function
u := P (T > p) is, for every o > 0 excessive for X. Denote the u®-transform
of X with X¢ = {v,,P*¢}. Then P*¢(? < c0) = 0 for z ¢ {u? = 0}, and
the representing measure v* of the function u® (with the normalization (3.2)) is
concentrated on &, i.e. f’f"g('yc_ € E;) =1, and given by

@5 00 = [ [ow.0)+alml) +1- FO - uw) i)

where F' is the generating function of the offspring distribution.

Proof. We prove first that u? is excessive for X. For t > 0, 0 < p < 00 we
have

ul(z): =P (T>0)>P,(T>p0+1)
(3.6) >P,(T>o0+t ">t % >1)
= E3(P+.(T > 0)) = EX(u®(m)).

Using the assumption (B) it is seen that ¢ — u®(z) is continuous. Consequently,
by the right continuity of X at 0 and the normality, we obtain

(3.7) u?(a) = lim PX(u?(n).

Combining (3.6) and (3.7) it is seen that u® is excessive for %x. Next we prove
that the measure v* is concentrated on &, i.e.

(38) Pr(y-€E,) =1

For this consider the function v¢ := ls’z‘(f' > p). It is easily seen that v¢ is
excessive for X. Moreover,

(3.9) {v® =0} C {u® = 0}.
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We are interested in the v2-transform of X. To have a probabilistic interpretation
of this introduce a measurable mapping ¢,: D — D U {{}, where { is the void
function, by setting (cf. Definition 6)
(3.10) (a) ée(v) = v if vy € {¢ < 7},
v¢, fort+po< 7 . . .

(b) (&(7)), —{ 5, fort+o> 7 if ye{(>7, 7> o},

(c) &M =Tifye{(<? # <o}
Standard computations show that for A € 2

(3.11) Pr(co(n) € A4l8,(n) A1) = Pr(y € 4),

where P*? denotes the measure of the v¢-transform of X. By the definition of
the mapping ¢,, especially (3.10b), and (3.11) we have

Pr(y- € Er) = 1.

By (3.9) the function

b ¥

ve

is well-defined on {u® # 0}. Further, h? is excessive for the v¢-transform, and
the h¢-transform of the v@-transform is identical in law with the u2-transform of
%. Consequently, the measure P""’ is absolutely continuous with respect to the
measure P%?. Therefore P% ”(7<_ ¢ E;) = 0 implies P""’('yc_ g E;)=0,ie.
(3.10), which also gives the claim PX¢(7 < oo) = 0. To compute the measure v*
we use the formula (3.3). Firstly, consider

(312) 1-uf(z)=P,(T<o)=P,(T<o ¢(">t)+P,(T <o "<

Assume t < p, and denote the first term on the right hand side of (3.12) with T}
and the second with T,. Then

Ty =P, (T<o *>t, PP <t)+P,(T<o, ">t >1)

(3.13a) R R
=P¥(f<t< <)+P:(T/\C>t; P.,t(T<g—t)),
T, =P, (T<po ("<t, T <t)+P.(T <o (" <t, 7" > 1)
=Pi(T<(<t
(3.13b) (F<C<t)

t [e°)
+/0/EP’£(C € ds, v €dy,T > S)I;Pk(y)(Py(T <o-— S))k,
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where we have used the assumption 7% # ¢® a.s. on {r® < 0o} and the definition
of terminal line 7 in that

{P<t, P <t)={r" < <1},
{(P<t,P?>t)={"<t, P =0} ={"<t, (* <7}
From (3.12) and (3.13) it follows that
u®(y) —Ey (P, (T 20— h))
_ /Oh/ PX(C € ds, - €dz, 7> 8)(po(2) + 1~ F(PL(T < o — 5))).
Setting “0 = o+ h” gives
ul(y) — EX (u®(yn); (V7> h)
(3.14) =Py(g+h2T>g)+/0h/ PX(¢ € ds, 7¢- € dz, 7 > s)

X (po(z2) +1 = F(P(T < o+ h—3))).

Using the assumption (E) and the strong continuity of the Feller-Dynkin semi-
group it is seen that

(315)  lim u(y) — E}%‘(ug(vh)) =a(y,0) + a(po(y) + 1 — F(1 — u®(y))).

It follows, by the assumption (E), that the dominated convergence theorem is
applicable in the formula (3.3) for compact A € & with m(A) < oo, and this
gives (3.5).

Theorem 3. Let the assumptions in Proposition 2 be valid. Then the image
of the measure P under the mapping ¢, is given by

Pl(we€F)=P,(cooweF)=(1- u®(z))e(y(F) + ul(z)Pe(w € F),

where F € %, and the measure f’? governs a branching Markov process having
(a) the u®-transform of X as the non-branching part,
(b) the offspring distribution:

for k=1,2,...
Pe(v’ =k | ‘r?_ =Y, 7? =A)
1 b I _
= @ T FO =) ;pz(y)(k>ue(y)k(1 —uf(y)

for k=0
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_ po(y)
A) = @ FI-F—w()

)

PP =048 =y, ¢ =

Pe(y =y =y)=1-P¢(12 =012 =v)

_ po(y) +1—F(1—ul(y))
(a(y, 0)/@) + po(y) +1— F(1 —ue(y))

Proof. Consider first the non-branching part. For 0 < s; < -+ < s, and
A; € & we have

v € An, sa < (Y)
(731€A1, ! € An s <P w# )
13(’7,16/11, .,’)’gnEAn, Sn<<0, 3n<T—Q|T>Q)

Il
'-u>

P78 €A1, 7! €An, sn<(Psn <T—(T>0)

P"(')/s1 €A1y, s, € An, sn < (AT u8(7s,)),

which proves the claim. Next we study branching (cf. Neveu [9]). For k > 1 let
Fj€e £x,j=1,...,k, and consider

f’i’(ua-——k, 72_ € dy, ¢¥ e ds, GéOWEFj, j=1,...,k)

1
= ug(m)Pr(Veoceoﬂr =k, 72_0%0&, € dy, Coocgox,. € ds,
gjOCQO/CTEFj,j_—.l k T>0)
= 1 [ (] [
_ug(x)zp l/_l '7(—Edy,C€dS <<T C<T-—Q’

T0000N1-<9 for | — k indices j € {1,...,1}, Toagonr>g
and Gj 0cy 0 Ky € Fj for the k other indices ])

=U’z(ﬂv)z:Px(%'Edy’C'Ed“‘ (<P (P =114 =y, "<

><P,£(To»c,000 < o for I — k indices j € {1,...,1}, To;fc,o()0 >0
andcgonroag € F;
for the k other indices j | V0 = l,'yg_ =y, (< Ta)
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= ePitn e s Son) () (1 - uw)

=k

k
X Hf’y(Tom, > 0, cp0 Ky € Fj)
i=1

) k
1 - l -k ~
- P € dds Yp) () (1 - w) utw)* [T Byl € ),
1=k j=1

where we have used Proposition 1, Markov and branching properties of X . Second-
ly, the case k = 0 splits in two:

P =0, 7v{_€edy, =4, (*eds)

1
= ——P:(/' =0, 7_edy, " eds, 7° > (%)

ue(z)

1 DX
= ug(l_)aPz(% € dy) dspo(y)

and
P2’ =0,4{_edy, v =0, (* € ds)

= ! P,(’y?edy, CG/\T¢>S,Q+SST<Q+S+ds)
ue(z)
1 - g
= x dy)P < d
ué'(:c)P’(% €dy)Py(o <T < p+ds)
1 a8 a(y, o)
= x dy)ds——==.
ug(z)aP,(% € dy)ds——

Combining the above computations with the fact that

> n) (Ilc> (1—uf(y) T uly)t =1- F(1 - ul(y))

k=1 l=k

gives the desired offspring distribution. Finally, using (3.2), (3.5) and the fact that
v* is concentrated on &, it is seen that P2 governs a branching Markov process
of the claimed type. This completes the proof.

4. Assume that the terminal line 7 satisfies the condition (3.4b) above, i.e.
7 = (? as. on {r? < c0}. In fact, we are interested in terminal lines generated
by variables of the type

(3.16) 0= ¢b,  iflel, ‘yg_ € A;
+o00, otherwise,
where I C {0,2,...}, A € B(E). Note that the assumption (A) is not needed for

the next result because the non-branching part of X is unaltered when operating
with k.. As above u?:=P (T > p).
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Theorem 4. Assume that (B)—~(E) hold and let  be a terminal line of the
type (3.16). Then the image of the measure P, under the mapping c, is given by
Pe(we F):=P,(c,ow € F) = (1—ul(x))ey(F) +ul(z)P(w € F),

where F € o, and the measure P¢ governs a branching Markov process havin
. g g

(a) the u®-transform of X as the non-branching part,
(b) the offspring distribution: for k =1,2,...

P =k|v- =y, 7 =2)

1 ; ]
T La(®)51(y) + 1ac(y) Sz(y)( A(y)zpl ( ) W) (1 -uo(y) "

IQI

+1a:() Y milw) (D“Q(y)"(l ~ut)™),
=k

for k=10
po(y)(17¢(0) + 17(0)1 4¢(y))
1a(y)S1(y) + Lac(y)Sa(y) ’
Pyl =Alr=y)=1-P(y{ =0 |7 =y
_ 14(y)S1(y) + 1ac(y)S2(y)
(a(y, 0)/a) +14(¥)S1(y) + 1ac(y)Sa(y)’

where 1. denotes the indicator function of a set and

S =Y m) - Y p)(1-uw)',

ig? lgl
Sa(y) = po(y) + 1 — F(1 - u®(y)).

Proof being very similar to the proof of Theorem 3, is omitted. However, we
point out, using the notations in (3.12), that

Ty:=P,(T<o *<t, PP <t)+P,(T<o *<t, 1 >1)
=P, (T <o, C0<t, TG=C0)+P;(T<Q, C0<t, T”:oo)
=P. (el v €4 ("<t

+‘/(;/ch P’;(C € ds, Y¢- € dy);pl(y)(Py(T <o-— S))l

Pe(v® =098 =y, 28 =2) =

t
l
+ [[Prceds v ean) ¥ p)(PuT < o= )’
gt
and this gives, as in the proof of Proposition 2, the desired exit distribution.
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Remark. When operating with co, the results above remain valid. In this
case, of course, the assumption (E) is not needed and the function a vanishes in
the statements.

References

[1] AsMUsSEN, S., and H. HERING: Branching processes. - Birkhauser, Boston—Basel-Stutt-
gart, 1983.

[2] ATHREYA, K.B., and P.E. NEY: Branching processes. - Springer-Verlag, Berlin-Heidel-
berg-New York, 1972.

[3] CHAUVIN, B.: Product martingales and stopping lines for branching Brownian motion. -
Preprint no. 26, Université Pierre et Marie Curie, Laboratoire de Probabilités.

(4] DyYNKIN, E.B.: The space of exits of a Markov process. - Russian Math. Surveys 24:4,
1969, 89-157 (English translation of Uspekhi Mat. Nauk 24:4, 1969, 89-152).

[5] HaRris, T.E.: Branching processes. - Ann. Math. Statist. 19, 1948, 474-494.

(6] HERING, H.: The non-degenerate limit for supercritical branching diffusions. - Duke Math.
J. 45:3, 1978, 561-600.

7 IKEDA, N., M. NAGAsAwA, and S. WATANABE: Branching Markov processes III. - J.
Math. Kyoto Univ. 9:1, 1969, 95-160.

[8] NEVEU J.: Arbes et processus de Galton-Watson. - Ann. Inst. H. Poincaré Probab. Statist.

22:2, 1986, 199-207.
[9] NEVEU, J.: Erasing a branching tree. - Adv. in Appl. Probab. 1986, suppl. 101-108.

[10] SALMINEN, P.: A ratio limit theorem for erased branching Brownian motion. - Stochastic
Process. Appl. (to appear).

[11] SHARPE, M.: General theory of Markov processes. - Academic Press, Inc., San Diego,
1988.

[12] WIiLL1AMS, D.: Diffusions, Markov processes and martingales. - Wiley and Sons, London,
1979.



