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CUTTING MARKOVIAN TREES

Paavo Salminen
Åbo Akademi, Matematiska Institutionen, SF-20500 Åbo, Finland

Abstract. In this paper a path transformation of a branching Markov process is studied

in which, roughly speaking, all finite branches are erased with unit speed from the tip of the
branch for a given time g, 0 < g < oo. To have a more applicable touch we, in fact, transform
killed branching processes. Killing is done at a terminal line. This notion is introduced as a
generalization of the notion of terminal time. It is proved that the transformed process is again a
branching Markov process and its law is characterized. This may be viewed as a generalization of
a classical result of Harris [5], and a more recent tesult of Neveu [9].

1. Introduction

To start with we describe shortly a result of Harris [5] (see also Athreya and
Ney [2; p. 50]). Let Z ,: {2, : t ) 0} be a Galton-Watson process with the
offspring distribution {p1 : k : 0, 2,. . .}. Let F be the generating function of
p. Then the probability of extinction, g, is the smallest nonnegative root of the
equation 1 : F(t). Assume 0 < g < L, and introduce

r((r -q)s+q) -qr(r) :-

It is easily seen that f is

 1
P*-. L-q

1-q
of the distribution p with

k-\,2,...,
( 1.1)

the

»
r>k

generating function

(l) ,' - q)n q'-o p,,

p, -0.
Let 2 be a Galton-Watson process with the offspring distribution p. Because

Fo : 0 the probability of extinction for Z is zero.
To deslribe a path transformation which leads to 2 we irrtroduce some ter-

minology adapted from Neveu [8].

Deffnition L. A tree u is a subset of the space

u:-ÖNiu{o},
n:1

satisfying the conditions

(1) 0ew,
(2) if uue e then ue u,
(3) for all u e w there exists ," (r) € N-,.

N-.,. :: {L,,2,...},

such that if uj e w for some j € N..
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Elements in U are called particles. To explain the notation uu in (2), let
u:(h,,...,i") €(I ,u:(ir,"',i,) € Ur then ur:(it,...,i",it,...,i,)e U.
The nariable uu itr (3) gives the number of descendants of the particle u. A
particle u is called an ancestor ofa particle u, denoted u ( u, ifthere exists
u€u suchthat n:ut!. Defining $u:u ar,du0:u itisseenthatforevery
ueUwehaveuluand0(u.

Every particle u in a tree ar is now marked with a positive number (", called
the lifetime of u. Further, the life interval of u is defined to be (o",B"), where

au:- ! e',
a<u

p":-!e':su
a1u

The space of all marked trees is denoted with Q, and is used as the canonical
sample space for nonexplosive Galton-Watson processes. Elements in O are still
denoted with ar, and we write u € c..r meaning that u is a particle in the marked
tree qr.

For u € Cr and c,; € O let O" ,: {r: u e tl}, and introduce a mapping
0u: dlu --+ Q by setting o € 0u o ar if and only if. uu €. t;. We say that the bra^nch
starting from u in c..r is finite if u)u :: 0u o ut is a finite tree, i.e. the number of
particles in ar" is finite. The space of all finite marked trees is denoted with O1.

Define a mapping e: f,) --r OU {t} , where t stands for the void tree, as follows:
(i) In the case u /Qt let u € eou if. and only if u € ar and w" /Qt.
(ii) Inthecase we Qy let eor:1.
In other words, e o u.r contains only the infinite branches of the tree u,r.

Let Pp,o be the law of a nonexplosive Galton-Watson process Z. Here p
denotes the offspring distribution and a is the parameter for the exponentially
distributed lifetimes. We are interested in the image of the law Pp,o under the
mapping e. The following result is extracted from Athreya and Ney [2; p.49].

Theorem 1. For Ae7/t :: o{uu,(", u eU, w € O"} U {t}
f'r,o(, € A) :: Po,o(e o w e A): qe111(,4) + (1 - q)Pp,.(, ),

where the offspring distribution p is given in (1.1) and e111 is Dirac's measure
at t.

More recently, Neveu [9] considered a transformation, called erasure, operat-
ing on the space of finite trees. To recall this let ((tr) :: supu€@ 0" b. the lifetime
of a tree ar, and for 0 < p < oo define a mapping en: dly - Ol U {t} as follows:

(i) u€eoo@ ifa,ndonlyif u€w and((0"oo))p.
(ii) For all u € eeoe set (u(e, oar) : min{("(c.,),e(0" or) - p}.
(iii) e, o a, : t, if ((o) < p.

For (sub)critical Galton-Watson processes we have (see Neveu [9])

d,o r: 0r

+ (".
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Theorem 2. For A e 'ff :- o{r",e" : u € U, a €

f'1,,(, € A):: Pp,o("so@ € A) - ) eet}(/) +

having the offspring distribution pe given by

t25

CI") u {t}

(1 _ ) n)Pfi,,(A),

a G alton-Wat son process

Åpcrol (k) 
) , k - 0,1,

It is quite obvious that Theorem 2 is also valid for nonexplosive supercritical
Galton-Watson processes, there is no problem to extend en to O. Note, however,
that infinite branches are not cut. Further, because g : Iims*- lr, Theorem 1

is obtained in some sense from the extended version of Theorem 2.
The aim of this note is to generalize Neveu's result to a larger class of branch-

ing Markov processes. In Ikeda, Nagasawa and Watanabe [7; Section 5.5 ] one
finds a generalization of Harris' transformation, see also Hering [6] or Asmussen
and Hering lL; p. 2a21. In these works the approach is analytic and the point of
view of a path transformation is not adopted.

In the next section we introduce the notion of terminal line. A terminal line is
"the initial point" for the erasure. In the third section erasure or cutting theorems
are proved. This is done under some regularity assumptions which allow us, among
other things, to use the Martin-boundary theory. In [10] these results are applied
to branching Brownian motion processes to obtain a ratio limit theorem for the
number of particles in the erased process and the original one. This generalizes a
result in Athreya and Ney [2; p. 51].

2. Terminal lines

Let O be the space of marked trees as defined above. The particles u € {J
are now additionally marked with "cadlag" functions l!, I" - E, where E is a
locally compact space having a countable base and .Iu r= [0, (u), c.r € f,)' . Further,
we set 1tt : 7l for 7 < j <u' and 1i : L for all t >_ e" or .,t - ä for all
t > <" where A and ä are fictitious states isolated from .8. This new space is
still denoted with O and is used as the canonical path space for a non-explosive
branching Markov process X. 'We assume that the process X has a constant
creation rate o, i.e. for every u € [/ the lifetime (" is exponentially distributed
with parameter o. Particles are sent to the state A at creation times. For this
process there is no use for the extra cemetery point ä. The non-branching part,
x, of X is taken to be an exponentially with parameter tr killed conservative
standard process having the state space E U {A}. In the next section further
regularity assumptions are imposed. The process x is considered in the canonical
sample space (D, 9) of. cadlag functions, denoted 7, having the cemetery points Ä
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a^nd ä as above. Finally, the offspring distribution, zr(y) ,: {p.(y),n :0,2,. . .} ,

A € E , of X is assumed to be such that X is non-explosive (for a condition see

Athreya and Ney [2; p. 104]).
Next we introduce some relevant o-algebras on O (cf. Chauvin [3]). Firstly,

foreveryu€Ulet

.91 :: "{t!@): 0 ( s < tA ("(tu), ar € O"},

a,nd define recursively

9o :: "b3 rcu € oe - o),
9u ::9' v 9!Y o{v" : r,; € O'},

where u is u's parent, i.e. there exists , € N such that u: uj. IntuitivelYr 9u
contains the information on the branch leading to the particle z. To include the
history of the particle itself set

d! :: g" V .q:,
,d§::Y 

">o 
d! Y o{v" : t; € O"}.

The following notions are introduced in Chauvin [3].

Deffnition 2. Afamily r::{ru u€U}, ru:({lu,dä)- [0,("]U{*},
of non-negative random variables is caJled a stopping )ine if
(i) for aJlu€U ru isastoppingtimefor du;:{d!, s}0},
(ii) given a particle u € L,(u) ;: {u : r"(r) < m}, w € {1, there doesnot exisf

aparticle u sucå that v 1u and u e L.(u).
Remark. This definition difers slightly from the one in [3] in that ru ll;.ay

attain "the value" {oo, a^nd, therefore, u € L, in the case r' : e" .

Deflnition 3. Amapping 0i: O" n{(" > t} -- O, u € U, t)0,iscalled a

shift operator if it has the properties:

(i) u€0iouif andonlyif uue w.
(ii) If uu e u,, +0, and e" >t then l'(0i ow):1""(w).
(iii) (e(01 ou) - C@) -t.
(iv) If 0 ( s ( e" -t then fl(Oy oa;): t!+r(a).

Let r be a stopping line. Then we introduce random shift operators d|: O" fl
{(" > r"} - O, u € U, as "deterministic" shift operatorsabovehaving r" inthe
place of t.

For the next definition let for a; € O and a stopping line r
D,(r);: {u € U: there exists u €(I,u 1u,u e L"(w)\,

where r is a stopping line. The set D" is called the set of strict descendents of
the line r.
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Deffnition 4. A stopping line r is caJled a terminal Line if u / D,(w) and
t <r"(w) implies that t+re ogt:r",where t,.l € O" and 0 S, < (".

Deflnition 6. Let r be a terminal line. A mapping rc,: O -» Q is caJled a
killing operator if it has the properties
(i) ue Krot! if andonlyif u€u,u/D,(u),
(ii) for u e K?ou

if u / L,(r) then 1o(n, oar): .,t"(r),
ifu€L,(a)then

Using the definitions above it is easily seen that we have the following, intu-
itively obvious but fundamental, result.

Proposition L. Let r be aterminalline. Then 0! o rc,ou): nro0! ow,
whereue nrow and 0(s(r"Ae".

Let I :: {9r: I > 0} be the canonical filtration in O satisfying the usual
conditions and generated basically by the variables

(i) {r", e",.y"}; O'-» (Za,Req,D) for a" }(" (-t,
(ii) {r} i du +s ( t ( @" +("}.

For a terminal line r we also introduce the "stopped" o-algebras I ,: {9r,
, > 0) satisfying the usual conditions and generated by the variables
(i) {r", e",.y"}: O' -- (Za,&eq,D) for q" I e" ( t and u / D,l) L,,
(ii) {r} i au +s ( tA(o" + r"),u I L,}.

Denote with P. the measure on (O, g*) (9* :: yt>ogt) induced by the
process X. Let r be a terminal line. We are interested in the image of P. under
the mapping rcr, denoted with P. , i.". for A e ,9oo

P.1"e A):P.(n,oue A).

Lef ?(l:= re(a),, where the particle 0 in the tree c,.r carries the function 7 as
the mark. Then, f may be and is considered as a terminal time for the process x.
The measure induced by x on (Drg) (9::Yt>ogt, 91 :: o{^1": s < t} with
the usual conditions) is denoted with P*. Let P* be the law of the process *
obtained from x by killing it at f , i.e. the sample paths of rt are

( lr, t 1e Ai,
ir- { a, (at, ( (i,

We assume that
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(A) the proc€s§ (*, P*) is a standard Markov process on the state space (fr,, E ) ,

where fr, ,:.8, U {4, 0}^, D, :- {r e E z Pä(t : 0) : 0} artd E, is the

associated o-algebra on Er.
see sharpe [11; p. 71] for the conditions for this to hold. clearly, (A) is a property

for the terminal time f and, hence, also for the terminal line r.
Proposition 2. Ilnder (A) the measure P. gor"tr" on the space (O, g*) a

non-explosive branching Matkov process, denoted X. Its non-btanching patt is
identical in law with *., and the offspring distributions of X and X coincide, i.e.

fork:012,3,...
f,.@o:tlloc - A): p.(ra :t ltt - A).

Proof. The claim concerning the offspring distribution is obviously true. Note,

however, that P.(/0 : q +P.(uO :0). To verify the Markov property let for
t ) 0 Lt;: {u : a" I t < P"} be the population living at time t. Then defining

u.t lt-o", foro'1t1A",o t:l*, fori(a"orB"4t

it is seen that ot :: {stu,t : u € t/} is a stopping line and L} : fu (cf.

[3]). Further, set 6y :: 0!t and il :: 1lt. Let now G, arrd for every u € U ,

F" be positive, bounded 91- and, respectivelyr 9.o-measurable random variables.

Consider, for x € Er,

E"l GfrueLtPu

o Krtu € Lto ""))

where we have used Proqosition 1 and the Markov property of X. This proves

the Markov property of X. For the branching property we have

Er(fI" €LtFu o if ,u € Lt)

6i I ii o Krt u e Lt o o,)

where we have used the Markov property of Ji, Proposition L, and the branching
property of X. Finally it is easily seen that the non-branching part of X is as

claimed. Thus, the proof is complete.

Remark. This result is intuitively obvious and certainly well known. The
proof above is given to show how the introduced machinery works, in this respect.

o 0f ) - Er( G o KrTIue,LloKrF" o 6i o nr)

- E ,(G o Krfl,r€ Lto*rP' o Kr " 0i)

- Er(C o KrBr(fI, €LtoKrF' o n, o 6i I if

- fl,(G E" (n" eLtF" o 6i I ii , " € t r)),

6i t q 
: ; ; [ il ::',I",'.u: .' "

fI,€ Lrn,fr *i(tr'" ),



A: {o: for every a €. n, oo; there exists z such that u 1u, u

For a killed tree rc, o t.,, we define now the extinction time 7 via

(3.1) T(w):{sun{o" *r' : ueL'(w)}, if'weA,
I oo, otherwise.

As an example consider the following family of random variables

-u.- {e", if u":o;
' '- \ -, otherwise.

Clearly, this is a terminal line and the corresponding extinction time is
one.
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3. Cutting a tree

1. Let r be a terminal line and rc, the killing operator associated with it.
tr\rrther, Iet

€ L,\.

the "usual"

Deftnition 6. Fbr a given p > 0 amapping cn: Q --+ Ou{t} is called a
cutting or erasure operator if it has the properties

(a) u € riQ i:cQoKrou if andonlyif u e Krotr), T(ltoKrou;)> g,
(b) for a€u8:

oKrou))-g;
o ,);

(c) for T(n, ou) < p: cpo K,otr : t.
In other words, informally speaking, in a cn-transformed tree r.re all finite

branches are made p units (measured in time from the terminal line) shorter than
in the killed tree Kr o (t. Note that the definition of cn makes, after some obvious
changes, perfectly good sense also in the case "p: +-',. This mapping in which
all finite branches (measured from r ) are cutted is denoted with coo .

2. Consider now, as introduced in Section 2, a branching proces. * :
{*r,P.} killed at a terminal line r, and recall the notatior, *": {7r,p*} for
its non-branching part. It is assumed that
(B) the semigroup associated with the process * is a Feller-Dynkin semigroup (in

the terminology of Williams [12; p. 115]) having the strong Feller property
i.e. for all t > 0 and / bounded and measurable the mapping , -- BI(/(zr))
(a e E,) is continuous.

(i) C"@n): min {('(*, or), rQ| o K,r ou)) - a},

(ii) ti@n)-( A,, if("(rn)<tand(,(rn) :T(03
( A, if e"(rn) < t and ('(rn) - eo(o,



r<n
|o@,y) ,: I exp(-at)p(t;x,y) dt

Jo

exists for every a ) 0, r,y e Er, and is such that the function

f
0.(f ,v) ,: I m(da)f(x)§o(*,y)

JE,

is continuous and bounded for all / € C"(8,)-
(D) (i) There exists a finite measure p orL 8, such that the function

fq(y):: I p,(dr)ss(r,y), ae 8,,
JE,
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Moreover, we make use of the Martin-boundary theory to analyse the process *
and, therefore, impose the following assumptions to get results strong enough:

(C) (i) * has a jointly measurable transition density with respect to a o-finite
measure nz. This density is denoted with p(t; n,a), t ) 0, c, a e D,'

(ii) Green's function

is positive and continuous.

(ii) For every a ) 0 and f e C"(8") there exists a constant c! such that
for each o-excessive and pl-integrable function ä one has

*(f h) l clp,(n).

Under the assumptions (C) and (D) (cf. Dynkin [a]) the state space E, caIJ be

Martin-compactified in such a way that: Any p-integrable excessive function lz

has an integral representation in terms of the minimal excessive functions. Given

such a function ä the representing measure, denoted with uä is connected with
the exit distribution of the ä-transform of * via the formula

(8.2) P;,u(( € dt,y- e A) : at I 
p(t;"'v) rh(dr\. A e 8,,

rA h(r) 
v \q'1)

where P*,å i, the measure associated with the ä-transform and ( is the lifetime
of the process. Further, when restricted to Er, uh is absolutely continuous w.r.t.
rn and satisfies

(3.3)

see [4; p. 132].
For simplicity we consider below the cutting operator in two separate cases:

(3.aa) ,o < eo a.s. on {to < *},
(3.4b) ro : ($ a.s. on {to < *}.

The general case is a combination of these.

,ä(.) : f,ir/
h(v) - *(dv),Dä(n('v,))

t



Cutting Markovian trees 131

3. Assume that the terminal line r satisfies the condition (3.4a) above. Here
we need the following regularity assumption on the distribution of the extinction
time 7:
(E) Forevery 0 ( p< m and a € E

1

llffii''(n <T < e+h)::a(a'P)

exists and is a locally bounded function of c.
Recall the notation i for the terminal time of the non-branching part x

associated with the terminal line r a^nd that E, :: {r e E: P}(i : 0) : 0} .

Proposition 3. .Let X be a branching Markov process and r a terminal line
as described above. Assurne that X (a.nd r) satisfy (A)-(E). Then the function
u,Q :: P.(" > p) is, for every I ) 0 excessive for *.. Denote the u?-transform
of *. with *s : {7t,P:'n}. ?åen P*'e(i < -) : 0 for r / {ue: 0}, and
the representing measure uu of the function ue (with the normalization (4.2)) is
concentrated on E , i.e. F*,e1r C- € E,) : 7 , and given by

(3.5)

where F is tåe generating function

Proof. We prove first that uQ

have

,'(.) - I.l"fr, p) * a(po( y) +1 - r(1 - un(y)))] *(dy),

Using the assumption (B)
by the right continuity of

(3.7)

of the offspring distribu tion.

(3.6)

(3.8)

(3.9)

P,(T>p) >P,(T>a+t)

excessive for i(. Moreover,

it is seen that n -> un(*) is continuous. Consequently,
x at 0 and the normality, we obtain

P;' n (tc- e E,) - 1.

p). It is easily seen that uQ is

un (*) : 
L,ir 

PI (" n(2,;) 
.

Combining (3.6) and (3.7) it is seen that up is excessive for *. Next we prove
that the measure u' is concentrated on E, i.e.

{rn -0}g {rn -0}.
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We are interested in the ue-transform of *. To have a probabilistic ilterpretation
of this introduce a measurable mapping är: D --+ D U {t}, where t is the void
function, by setting (cf. Definition 6)

(3.10) (u) ar(r) - 1if 7 € {( < f},
(u) (a*(z)),: {T,, i::li i;i,, if 1 e{( > e, i > p},

(") eo(z) : i il 7 € {( <i, i < p}.

Standard computations show that for A e I

(3.1r ) € Alön(r) *i) - P;'"(t € A),

- P,(T < Q, eo > t, ro < t) + P,(T < Q, Co > t, ro > t)

P; (a,(t)

where Pf,' denotes the measure of the ue-transform of *. By the definition of
the mapping 8p, especially (3.10b), and (3.11) we have

P;'' (lc- € E,) - 1.

By (3.9) the function

hn ,: un
pe

is well-defined on {"0 * 0}. Further, äe is excessive for the us-transform, a^nd

the lzo-transform of the op-transform is identical in law with the up-transform of
*. Consequently, the measure Pä'' i. absolutely continuous with respect to the
mea,sure P;,o. Therefore Pf''(lc- / E,):0 implies P|'n(lc- d E,):0, i'e.

(3.10), which also gives the claim P;'e(i < m) - 0. To compute the measure u'
we use the formula (3.3). Firstly, consider

(3.12) L-ue(a):P,(T < p) : P,(T < Q, (e >t)+P,(" < p, C0 <t).

Assume t <-Q, and denote the first term on the right hand side of (3.12) with 7r
and the second with 72. Then

(3.13.) Tr

Q, eo (t,
(<r)

P;(( e ds,

Tz-P"(T<

* I,'l, ^tc-€ dy,i) s) i pk(y)(Pr( T < a -r)) 
o,

k:2

(3.r3b)
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where we have used the assumption ,e * e0 a.s. on {r0 < oo} and the definition
of terminal line r in that

{eo < t, ro <t) = {ro < (e < r},

{C0 <t, r0 >t)= {(e 1t, r0- m} = {(0 <t, e0 < re}.

Fbom (3.12) and (3.13) it follows that

ue(y)-6;(Pr"Q>p-h))

: 
lro lr,pä(( e d,s, ^tc- € dz, i> 

")(po(r) + 1 -.F'(p, (T < s- r))).

Setting "Q: p{å" gives

ue(y) -tä("r(zu); ( v f > ä)

(3.14) : Pv(g + h> T > d * 
lru lr.Pä(( e ds,,'yc- e d,z, i > s)

x (po(r)+ 1 - r(P, (T < p+ n - s))).

Using the assumption (E) and the strong continuity of the Feller-Dynkin semi-
group it is seen that

. "n(il - Eä("n(ro)) _(s.15) 
lim -_-_=- - a(y, p) + o(no(a) + r - r(1 - "r(y))).

It follows, by the assumption (E), that the dominated convergence theorem is
applicable in the formula (3.3) for compact n e E" with rn(,A) ( oo, and this
gives (3.5).

Theorem 3. Let tåe assumptions in Proposition 2 be vaJid. Then the image
of the measurre F. under the mapping cn is given by

f'n1, etr') : p,("n or,., e ^F') : (1 - us(c))e111(tr') + us(r)F Q,@ e F),

where F e 9* and the measure Fe gouerns a branching Markov process having
' (") the ue -transform of * as the non-branching pa"rt,

(b) tåe offspring distribution:
forb:Lr2r.,,

f'?(r' : klt2-:y, tl: a)
t , f r,(u)(l)"',r,-(1 -ue1r;;r-*,:@

for lc :0
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i:(r': o I zl- : y,'tl- a) : ffi,
P102= I I z3- : y) = t -F:(t'c : o lt2- : y)

:

Proof. Consider first the non-branching part. For 0 ( s1 ( "' ( s, and

A; e E, we have

i'n(12, e Ar,... ,12^ e An, r, < (o)

: Pg(23, e Ar,...,1!. e An, sn< (o l' # I)
:ftr(l!, e At,..'"'/e"^ e A,, sn ( (0, s, <T - plT > p)

: fii,0!, e Ar,...,1!^ e An, sn ( (0,s, <T -(," > o

: ;[";(2,, e At,...,^tsn € An, s, < ( A i; un(1")),

which proves the claim. Next we study branching (cf. Neveu [9]). For ,t ) 1 let
Fi € 9*, i:Lr...rk, and consider

ftr,("' - k, 1| ,- e dy, ee e ds, Lioow € Fi, i :7,...,k)
: i1rr,(u0 ocno K,:k, fc-ocQo Kt e dy, C0 ocno n, ed,s,

0!o cnorc' € Fi, i :1,'.., 1t, T > e)

: ^l f ,, (uo : t, .ft,- e dy, eo € ds, (o 1ro, Co 1T - Q,
YQ( a) z-z\ / I=k

T"0ioKr.lp for l-k indices, € {1,...,1}, To0iorc,) Q

and dfl o co o nr € $ for the & other indices j)

:#å"r,r,- e dv, e€ds, (<r)P, (u0:t14-:v', e0 <re)

xP,(? oKtoLtoa p for I-k indicesJ € {1,...,1}, Ton,o0l> p

andc,orrro0ieF1
for the /c other indices i l r0 : t,12- y, C0 < r0)
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: fu,tä(,, e ooo"är,(r)(l)(1 - uelr;1r-t

&

, fI F, (T o n, ) Q, ceo rc, e Fj)
j=l

: fi,tä(l, e dv)d,sir,(u)(i)f, -uo(il)'-oun(v)kEu*, e F),

where we have used Proposition 1, Markov and branching properties of X. Second-
Iy, the case k : 0 splits in two:

tro,("t : o, -yoc- e dy,loc: a, (e e ds)

1: 
;fo;e,(uo 

:0, t|- e da, eo e ds, ro > qa1

1^: 
un11"eä(r' e dY)dsPg(Y)

and

frn(r' : o,.yl,_ e av, loc: o, Co e ds)

: fi;,0! edy, eo nro ) s, p*s ( T < p*s*ds)

: #u'0! e d'Y)Pok < t< P * d')
@-\&,,

: fi"fi(t! e aild"*'
Combining the above computations with the fact that

€6

i ir,«r,(l) f, - un(v))'-rue(v)k- 1 - r,(1 - un(v))
Ic=l I=Ic

gives the desired offspring distribution. Finally, using (3.2), (3.5) and the fact that
u' is concentrated on E" it is seen that Pe governs a branching Markov process
of the claimed type. This completes the proof.

4. Assume that the terminal line r satisfies the condition (3.ab) above, i.e.
,0 : (e a.s. on {r0 < m}. In fact, we are interested in terminal lines generated
by variables of the type

ro- [e', if uo € I,fc-€ A;

L **, otherwise,
(3.16)

where I g {0, 2,. . .} , A e B(E). Note that the assumption (A) is not needed for
the next result because the non-branching part of X is unaltered when operating
with rcr. As above ue :: P.(T ) p).



136 Paavo Salminen

Theorem 4. Assume tåat (B)-(E) åold and let r be a terminal line of the

type (3.16) . Then the image of the measure P. under the mapping co is given by

frn1, e.P) :: f ,Gooa, € F) : (1- ue(o))e111(r) + ue(c)Fe,@ e F),

where F e 9* and the measure F' gor"t 
" 

a branching Markov process having

(a) tlre ue -transform of * as the non-branehing part,
(b) the offspring distribution: for k :1,2,.. .

i,: (r' : k I 1|- : y, .yoc : L)

fork-0

å 
pt(v,(;) un(v)o(1 - ua(v)) 

t-k

tqI

+ 1 A"(v)i pt(v) (;) ue(ilk(r - un(v))'-*) ,

(r"(u)
1

+ L t"1y)sz(a)Le@),Sr(v)

,W€

f':(ro: o I r3- : v,'rl- a) : ffi,
P:(t\: a I zf- : y) :t - p:(zl : o I toc- : y)

:,

where 1. denotes the indicator function of a set and

,er(y) : !rr(u) - !r,(u)(r - r'(y))t,
ia', ial

Sz(il :po(y) + t - r(t - "n(v)).
Proof being very similar to the proof of Theorem 3, is omitted. However
t out, using the notations in (3.12), that

T2::P,(T <p, Co <t, rs 1r)+P,(? <0, eo <t, re >t)

-P,(T < p, (e 1t, ,o: (o) + P,(T < p, ee <t, ro : a)
: P,(ue e I, 1c- e A, (o < t)

- [' [ ,](( e d,s, .,tc-e ay) ip,(y)(pr(r . p - r))'' Jo J o" 
Ä 

'\\ 
L sot 

't- - *t' 
,=,

Fr
* l, J^Pä(( 

e ds, 'tc- , or) 
,\p{y)(PuQ 

< p -,))',
iei

this gives, as in the proof of Proposition 2, the desired exit distribution.

poin

and
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Remark. When operating with coo the results above remain valid. In this
case, of course, the assumption (E) is not needed and the function a vanishes in
the statements.
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