TRANSFINITE EXTENT

Marius Overholt and Glenn Schober

1. Introduction

In this paper, we shall consider a set function $e(E)$ for compact sets in the complex plane \mathbf{C}, that we shall call the transfinite extent of E. It is closely connected with the transfinite diameter $d(E)$, which was introduced by M. Fekete [2].
F. Leja [5] generalized the transfinite diameter to an écart $v(E, \varphi)$ of E with respect to a generating function φ. Here φ is a continuous, nonnegative, symmetric function $\varphi: M^{m} \rightarrow \mathbf{R}$ of $m \geq 2$ variables on a metric space (M, ϱ), satisfying the additional condition that $\varphi\left(p_{1}, \ldots, p_{m}\right)=0$ if $p_{j}=p_{k}$ for some $j \neq k$.

Put, for any finite subset $\left\{p_{1}, \ldots, p_{n}\right\} \subseteq M, n \geq m$,

$$
V\left(p_{1}, \ldots, p_{n}\right)=\prod_{1 \leq j_{1}<\cdots<j_{m} \leq n} \varphi\left(p_{j_{1}}, \ldots, p_{j_{m}}\right)
$$

and let

$$
V_{n}(E)=\max _{p_{j} \in E} V\left(p_{1}, \ldots, p_{n}\right)
$$

Then Leja [5] showed that

$$
V_{n+1}(E)^{1 /\binom{n+1}{m}} \leq V_{n}(E)^{1 /\binom{n}{m}}
$$

and so

$$
v(E, \varphi)=\lim _{n \rightarrow \infty} V_{n}(E)^{1 /\binom{n}{m}}
$$

exists.
If $M=\mathbf{C}, \varrho\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$, and $\varphi=\varrho$, then $v(E, \varphi)=d(E)$, the transfinite diameter of E. If, in the same space, φ is chosen to be the area of the triangle $O z_{1} z_{2}$, then $v(E, \varphi)$ is the original écart of Leja [5, 6]. It is connected with convergence questions for homogenous polynomials of two real variables.

The transfinite extent is defined by choosing $\varphi\left(z_{1}, z_{2}, z_{3}\right)$ to be the area of the triangle in \mathbf{C} spanned by the points z_{1}, z_{2}, z_{3}, and by putting

$$
e(E)=v(E, \varphi)
$$

It exists for any compact set $E \subset \mathbf{C}$.

The work of the second author was supported in part by a grant from the National Science Foundation.

2. Elementary properties

Proposition 1. Let E and F be compact sets in \mathbf{C}.
(a) $E \subseteq F$ implies $e(E) \leq e(F)$.
(b) $e(r E)=r^{2} e(E)$ for any $r \in \mathbf{R}$.
(c) $e(f E)=e(E)$ for any area-preserving affine map $f: \mathbf{C} \rightarrow \mathbf{C}$.
(d) $e(L)=0$ for any line segment $L \subset \mathbf{C}$.

Proof. All these properties are obvious.
In the following, $\left[z_{1}, z_{2}, z_{3}\right]$ will denote the triangle spanned by z_{1}, z_{2}, z_{3}, and $\left|\left[z_{1}, z_{2}, z_{3}\right]\right|$ its area. We have

$$
V\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq j_{1}<j_{2}<j_{3} \leq n}\left|\left[z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right]\right| .
$$

Then

$$
e_{n}(E)=V_{n}(E)^{1 /\binom{n}{3}}
$$

is the n-extent of E, and $e_{n}(E) \rightarrow e(E)$ as $n \rightarrow \infty$. We will also define

$$
U\left(z_{1}, \ldots, z_{n}\right)=\prod_{1 \leq j_{1}<j_{2} \leq n}\left|z_{j_{1}}-z_{j_{2}}\right|
$$

and

$$
U_{n}(E)=\max _{z_{j} \in E} U\left(z_{1}, \ldots, z_{n}\right) .
$$

Then

$$
d_{n}(E)=U_{n}(E)^{1 /\binom{n}{2}}
$$

is the n-diameter of E, and $d_{n}(E) \rightarrow d(E)$ as $n \rightarrow \infty$, where $d(E)$ is the transfinite diameter if E. Let $\mathbf{D}=\{z:|z|<1\}$.

Proposition 2. For compact sets $E \subseteq \partial \mathbf{D}$, we have $e_{n}(E)=\frac{1}{4} d_{n}(E)^{3}$ and $e(E)=\frac{1}{4} d(E)^{3}$.

Proof. We use the relation

$$
\left|\left[z_{1}, z_{2}, z_{3}\right]\right|=\frac{1}{4}\left|z_{1}-z_{2}\right|\left|z_{1}-z_{3}\right|\left|z_{2}-z_{3}\right|
$$

for $z_{1}, z_{2}, z_{3} \in \partial \mathbf{D}$. The reason for this is that the radius of the circumscribed circle of a triangle equals the product of the lengths of its sides, divided by four times its area. Then we have

$$
\begin{aligned}
V\left(z_{1}, \ldots, z_{n}\right) & =4^{-\binom{n}{3}} \prod_{1 \leq j_{1}<j_{2}<j_{3} \leq n}\left|z_{j_{1}}-z_{j_{2}}\right|\left|z_{j_{1}}-z_{j_{3}}\right|\left|z_{j_{2}}-z_{j_{3}}\right| \\
& =4^{-\binom{n}{3}}\left(\prod_{1 \leq j_{1}<j_{2} \leq n}\left|z_{j_{1}}-z_{j_{2}}\right|\right)^{n-2}=4^{-\binom{n}{3}} U\left(z_{1}, \ldots, z_{n}\right)^{n-2} .
\end{aligned}
$$

From this it follows that

$$
V_{n}(E)=4^{-\binom{n}{3}} U_{n}(E)^{n-2}
$$

and so

$$
e_{n}(E)=\frac{1}{4} d_{n}(E)^{3}
$$

which leads to the assertions above.
Examples. Since the transfinite diameter of the unit circle is 1 , it follows that $e(\partial \mathbf{D})=\frac{1}{4}$. Moreover, since the transfinite diameter of an arc on $\partial \mathbf{D}$ of length l is $\sin (l / 4)$, it follows that its transfinite extent is $\frac{1}{4} \sin ^{3}(l / 4)$. Furthermore, by using Proposition 1bc, it is possible to calculate the transfinite extent of any arc of any ellipse.

For any compact set $E \subseteq \partial \mathbf{D}$, we may estimate

$$
e_{n}(E)=\frac{1}{4} d_{n}(E)^{3} \leq \frac{1}{4} d_{n}(\partial \mathbf{D}) d_{n}(E)^{2}
$$

Schur [12, p. 385] credits to Pólya the observation that the maximum of the product $U\left(z_{1}, \ldots, z_{n}\right)$ for points $z_{1}, \ldots, z_{n} \in \overline{\mathbf{D}}$ is $n^{n / 2}$ and that it occurs for equally spaced points on $\partial \mathbf{D}$. It follows that

$$
d_{n}(\partial \mathbf{D})=U\left(1, e^{2 \pi i / n}, \ldots, e^{2 \pi i(n-1) / n}\right)^{1 /\binom{n}{2}}=n^{1 /(n-1)}
$$

and so

$$
e_{n}(E) \leq \frac{1}{4} n^{1 /(n-1)} d_{n}(E)^{2}
$$

This inequality is invariant under translations and dilations of the set E. Thus we have proved the following

Proposition 3. If E is a compact set lying on some circle, then $e_{n}(E) \leq$ $\frac{1}{4} n^{1 /(n-1)} d_{n}(E)^{2}$ and $e(E) \leq \frac{1}{4} d(E)^{2}$.

It is quite possible, but not proved, that the inequalities of Proposition 3 remain valid for arbitrary compact sets E. However, for arbitrary compact sets we have the following estimates.

Proposition 4. For any compact set $E \subset \mathbf{C}$, we have $e_{n}(E) \leq \frac{\sqrt{3}}{4} d_{n}(E)^{2}$ and $e(E) \leq \frac{\sqrt{3}}{4} d(E)^{2}$.

Proof. Given a triangle with side lengths a, b, c and θ the angle opposite a, we have

$$
\frac{A^{3}}{(a b c)^{2}}=\frac{1}{8} \frac{\sin ^{3} \theta}{\frac{b}{c}+\frac{c}{b}-2 \cos \theta}
$$

where A is the area of the triangle, using the law of cosines. Since $b / c+c / b \geq 2$, this yields

$$
\frac{A^{3}}{(a b c)^{2}} \leq \frac{1}{16}(\sin \theta)(1+\cos \theta) \leq \frac{3 \sqrt{3}}{64}
$$

and so $A \leq \frac{\sqrt{3}}{4}(a b c)^{2 / 3}$ for any triangle, with equality only for equilateral triangles.
Now let $\xi_{1}, \ldots, \xi_{n} \in E$ be such that

$$
V\left(\xi_{1}, \ldots, \xi_{n}\right)=V_{n}(E)
$$

Then

$$
\begin{aligned}
V\left(\xi_{1}, \ldots, \xi_{n}\right) & \leq\left(\frac{\sqrt{3}}{4}\right)^{\binom{n}{3}} \prod_{1 \leq j_{1}<j_{2}<j_{3} \leq n}\left(\left|\xi_{j_{1}}-\xi_{j_{2}}\right|\left|\xi_{j_{1}}-\xi_{j_{3}}\right|\left|\xi_{j_{2}}-\xi_{j_{3}}\right|\right)^{2 / 3} \\
& =\left(\frac{\sqrt{3}}{4}\right)^{\binom{n}{3}}\left(\prod_{1 \leq j_{1}<j_{2} \leq n}\left|\xi_{j_{1}}-\xi_{j_{2}}\right|\right)^{2(n-2) / 3} \\
& \leq\left(\frac{\sqrt{3}}{4}\right)^{\binom{n}{3}} U_{n}(E)^{2(n-2) / 3}
\end{aligned}
$$

which yields the desired inequalities by taking the $\binom{n}{3}$-root on both sides and letting $n \rightarrow \infty$.

Remark. In the special case $n=3$, the inequality $e_{3}(E) \leq \frac{\sqrt{3}}{4} d_{3}(E)^{2}$ is sharp when E is any equilateral triangle T or when E is any compact subset of T that contains its vertices.

3. Null-sets

We consider compact null-sets E for the transfinite extent, i.e., $e(E)=0$. From Proposition 4 it is clear that any null-set for the transfinite diameter is a null-set for the transfinite extent. And from Proposition 2 we see that on the unit circle $\partial \mathbf{D}$ the null-sets for transfinite extent and transfinite diameter actually coincide. It is clear, though, that there are null-sets for the transfinite extent that are not null-sets for the transfinite diameter: for instance, all line segments.

Proposition 5. A compact null-set for transfinite extent has zero area.
Proof. Let E be compact with positive area, and let $C(r)$ be the circle $|z|=r$. Since $E \cap C(r)$ is closed in $C(r)$, the linear measure of $E \cap C(r)$ exists; we will denote it by $l(r)$. By Fubini's theorem

$$
\int_{0}^{\infty} l(r) d r=\operatorname{Area}(E)>0
$$

and so there exists an $r_{0}>0$ with $l\left(r_{0}\right)>0$. Then

$$
e(E) \geq e\left(E \cap C\left(r_{0}\right)\right)=\frac{1}{4 r_{0}} d\left(E \cap C\left(r_{0}\right)\right)^{3}>0
$$

since a set of positive length has positive capacity.
Proposition 6. Let E_{1} and E_{2} be compact sets in \mathbf{C}, and let the area of any triangle spanned by $E=E_{1} \cup E_{2}$ be bounded above by $A>0$. Then

$$
h\left(\frac{e(E)}{A}\right) \leq h\left(\frac{e\left(E_{1}\right)}{A}\right)+h\left(\frac{e\left(E_{2}\right)}{A}\right)
$$

where $h(x)=(\log (1 / x))^{-1 / 2}$.
Proof. Let $V\left(z_{1}, \ldots, z_{n}\right)$ attain its maximum $V_{n}(E)$ on E at ξ_{1}, \ldots, ξ_{n}. Let k of the points ξ_{j} lie in E_{1}, the other $n-k$ in E_{2}. Using the estimate

$$
\left|\left[\xi_{j_{1}}, \xi_{j_{2}}, \xi_{j_{3}}\right]\right| \leq A
$$

when not all of $\xi_{j_{1}}, \xi_{j_{2}}, \xi_{j_{3}}$ lie in E_{1} or lie in E_{2}, we get

$$
V\left(\xi_{1}, \ldots, \xi_{n}\right) \leq V_{k}\left(E_{1}\right) V_{n-k}\left(E_{2}\right) A^{\binom{k}{1}\binom{n-k}{2}+\binom{k}{2}\binom{n-k}{1} .}
$$

We take the logarithm on both sides and divide by $\binom{n}{3}$ to get

$$
\log e_{n}(E) \leq \frac{\binom{k}{3}}{\binom{n}{3}} \log e_{k}\left(E_{1}\right)+\frac{\binom{n-k}{3}}{\binom{n}{3}} \log e_{n-k}\left(E_{2}\right)+\frac{\log A}{\binom{n}{3}}\left(\binom{k}{1}\binom{n-k}{2}+\binom{k}{2}\binom{n-k}{1}\right)
$$

If we let $n \rightarrow \infty$ through a suitable subsequence, then $k / n \rightarrow \lambda(0 \leq \lambda \leq 1)$ and we obtain

$$
\log e(E) \leq \lambda^{3} \log e\left(E_{1}\right)+(1-\lambda)^{3} \log e\left(E_{2}\right)+\left(1-(1-\lambda)^{3}-\lambda^{3}\right) \log A
$$

or

$$
\log \frac{A}{e(E)} \geq \lambda^{3} \log \frac{A}{e\left(E_{1}\right)}+(1-\lambda)^{3} \log \frac{A}{e\left(E_{2}\right)}
$$

The right-hand side attains its maximum as a function of λ when

$$
\lambda^{2} \log \frac{A}{e\left(E_{1}\right)}=(1-\lambda)^{2} \log \frac{A}{e\left(E_{2}\right)}
$$

Substitution yields the desired inequality.

Proposition 6 is an analogue of a result that seems to have been first proved, but not published, by Fekete for the transfinite diameter. The proof above closely follows one given by Pommerenke [8, Theorem 11.4].

From Proposition 6 one can easily conclude that if $E_{1}, E_{2}, E_{3}, \ldots$ are compact null-sets for transfinite extent, and $E=E_{1} \cup E_{2} \cup E_{3} \cup \cdots$ is compact, then E is a null-set for transfinite extent.

By a standard technique of potential theory, see Carleson [1] or Pommerenke [8], $e(E)$ can be extended to an outer capacity $e^{*}(E)$, and the requirement that E be compact could be removed from the statements of most of our theorems.

Next, let h be a measure function, i. e., $h(x)$ is defined and continuous for $x \geq 0, h(0)=0$, and $h(x)$ is increasing. We define a measure $\Omega_{h}(E)$ for compact sets $E \subset \mathbf{C}$ as follows:

$$
\Omega_{h}(E)=\lim _{\varepsilon \rightarrow 0} \inf _{E \subset \cup G_{j}} \sum_{j}(h \circ g)\left(\operatorname{Area}\left(G_{j}\right)\right)
$$

where $g(x)=(x / \pi)^{1 / 2}$, and the infimum is taken over all finite coverings of E by ellipses G_{j} with Area $\left(G_{j}\right) \leq \varepsilon$. The classical Hausdorff measure is given by (E compact)

$$
\Lambda_{h}(E)=\lim _{\varepsilon \rightarrow 0} \inf _{E \subset \cup \Delta_{j}} \sum_{j}(h \circ g)\left(\operatorname{Area}\left(\Delta_{j}\right)\right)
$$

where the infimum is taken over all finite coverings of E by disks Δ_{j} with Area $\left(\Delta_{j}\right) \leq \varepsilon$. Since ellipses include disks, it is clear that

$$
\Omega_{h}(E) \leq \Lambda_{h}(E)
$$

Null-sets for the measure Ω_{h} are connected with null-sets for transfinite extent as follows.

Proposition 7. Let $h(x)=\left(\log \frac{1}{x}\right)^{-1 / 2}$. Then $\Omega_{h}(E)=0$ implies $e(E)=0$ for compact sets $E \subset \mathbf{C}$.

Proof. Let the area of any triangle spanned by E be bounded above by $A>0$. Let G_{j} be a finite covering of E by ellipses with Area $\left(G_{j}\right) \leq \varepsilon$. Put $E_{j}=E \cap G_{j}$, and assume

$$
\varepsilon \leq \frac{\pi A^{2}}{e(\overline{\mathbf{D}})^{2}}
$$

Then, using Proposition 6 and Proposition 1, we have

$$
\begin{aligned}
h\left(\frac{e(E)}{A}\right) & \leq \sum_{j} h\left(\frac{e\left(E_{j}\right)}{A}\right) \leq \sum_{j} h\left(\frac{e\left(G_{j}\right)}{A}\right) \\
& =\sum_{j} h\left(\frac{e(\overline{\mathbf{D}})}{\pi A} \operatorname{Area}\left(G_{j}\right)\right) \leq \sum_{j}(h \circ g)\left(\operatorname{Area}\left(G_{j}\right)\right)
\end{aligned}
$$

Thus

$$
h\left(\frac{e(E)}{A}\right) \leq \Omega_{h}(E)
$$

and so the assertion above follows.
We note that for $h(x)=\left(\log \frac{1}{x}\right)^{-1 / 2}$ the measure Ω_{h} has more null-sets than the measure Λ_{h} : for instance,

$$
\Omega_{h}([0,1])=0, \quad \Lambda_{h}([0,1])=+\infty
$$

Proposition 7 is an analogue of a result about harmonic measure and hence capacity due to Lindeberg [7].

4. A connection with curvature

Proposition 8. Let Γ be a C^{2} arc in the plane, z_{0} an interior point of the arc, and κ the unsigned curvature of Γ at z_{0}. Then

$$
\kappa=32 \lim _{\varepsilon \rightarrow 0} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}}
$$

where D_{ε} is the closed disk with center z_{0} and radius ε.
Proof. We may without loss of generality assume that $z_{0}=0$ and that the tangent to Γ at the origin is the x-axis. Then Γ is the graph of a function $y=f(x)$ in a sufficiently small neighborhood of $z=0$.

We first consider the case $\kappa=0$. If Γ reduces to a line segment near $z=0$, the assertion to be proved is obvious. If not, then

$$
h(u)=\max _{-u \leq x \leq u}|f(x)|>0
$$

for $u>0$. Since $\kappa=0$, the function $f(x)=o\left(x^{2}\right)$ near the origin, and so $h(\varepsilon)=o\left(\varepsilon^{2}\right)$ as $\varepsilon \rightarrow 0$. Furthermore, for small ε we have $\Gamma \cap D_{\varepsilon} \subseteq R_{\varepsilon}$ where R_{ε} is the axes-parallel rectangle centered at $z=0$ of length 2ε and height $2 h(\varepsilon)$. Now

$$
e\left(\Gamma \cap D_{\varepsilon}\right) \leq e\left(R_{\varepsilon}\right)=\varepsilon h(\varepsilon) e\left(R_{0}\right)
$$

where R_{0} is the square of side length 2 . Thus

$$
\lim _{\varepsilon \rightarrow 0} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}} \leq \lim _{\varepsilon \rightarrow 0} \frac{\varepsilon h(\varepsilon) e\left(R_{0}\right)}{\varepsilon^{3}}=0
$$

and the asserted equality has been established for the case $\kappa=0$.
We now suppose that $\kappa>0$. We may without loss of generality assume that the circle of curvature C of Γ at $z=0$ lies above the x-axis. Clearly C is the graph of a function $y=g(x)$ near $z=0$.

We have

$$
f(x)=\frac{1}{2} \kappa x^{2}+j(x) \quad \text { and } \quad g(x)=\frac{1}{2} \kappa x^{2}+k(x)
$$

near $x=0$, with $j(x)=o\left(x^{2}\right)$ and $k(x)=o\left(x^{2}\right)$ as $x \rightarrow 0$.
Consider an arbitrary triple $a<b<c$ of points in $[-\varepsilon, \varepsilon]$, with ε so small that Γ and C are graphs above $[-\varepsilon, \varepsilon]$. To this triple there corresponds a triangle with vertices lying on Γ, namely the triangle spanned by $(a, f(a)),(b, f(b))$ and $(c, f(c))$, and a triangle with vertices lying on C, namely the triangle spanned by $(a, g(a)),(b, g(b))$ and $(c, g(c))$. So by orthogonal projection from the real axis, we have a bijective correspondence between triangles lying above $[-\varepsilon, \varepsilon]$ with vertices on Γ, and triangles lying above $[-\varepsilon, \varepsilon]$ with vertices on C.

Let A be the area of the triangle with vertices $(a, f(a)),(b, f(b)),(c, f(c))$ and A^{*} the area of the triangle with vertices $(a, g(a)),(b, g(b)),(c, g(c))$. Since

$$
\begin{aligned}
& A=\left|\frac{f(a)+f(b)}{2}(b-a)+\frac{f(b)+f(c)}{2}(c-b)-\frac{f(a)+f(c)}{2}(c-a)\right| \\
& A^{*}=\left|\frac{g(a)+g(b)}{2}(b-a)+\frac{g(b)+g(c)}{2}(c-b)-\frac{g(a)+g(c)}{2}(c-a)\right|
\end{aligned}
$$

we have

$$
\frac{A^{*}}{A}=\left|\frac{\frac{g(a)-g(b)}{a-b}-\frac{g(c)-g(b)}{c-b}}{\frac{f(a)-f(b)}{a-b}-\frac{f(c)-f(b)}{c-b}}\right| .
$$

If we apply the generalized mean value theorem to the expression inside the absolute value brackets, we obtain

$$
\frac{A^{*}}{A}=\left|\frac{(\zeta-b) g^{\prime}(\zeta)-(g(\zeta)-g(b))}{(\zeta-b) f^{\prime}(\zeta)-(f(\zeta)-f(b))}\right|
$$

where $a<\zeta<c$. Now apply the generalized mean value theorem again, on the interval from b to ζ, to conclude that

$$
\frac{A^{*}}{A}=\left|\frac{g^{\prime \prime}(\xi)}{f^{\prime \prime}(\xi)}\right|
$$

Since $f, g \in C^{2}$ and $f^{\prime \prime}(0)=g^{\prime \prime}(0)=\kappa>0$, it follows that

$$
A^{*}=A(1+o(1))
$$

for $\varepsilon \rightarrow 0$, uniformly with respect to a, b, c. Therefore

$$
\frac{A^{*}}{\varepsilon^{3}}=\frac{A}{\varepsilon^{3}}(1+o(1))
$$

and it follows that

$$
\lim _{\varepsilon \rightarrow 0} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}}=\lim _{\varepsilon \rightarrow 0} \frac{e\left(C \cap D_{\varepsilon}\right)}{\varepsilon^{3}} .
$$

Now

$$
e\left(C \cap D_{\varepsilon}\right)=\kappa^{-2} e\left(\partial \mathbf{D} \cap D_{\varepsilon \kappa}\right)=\frac{\kappa^{-2}}{4} d\left(\partial \mathbf{D} \cap D_{\epsilon \kappa}\right)^{3}=\frac{\kappa^{-2}}{4} \sin ^{3}\left(\frac{L_{\varepsilon \kappa}}{4}\right)
$$

where $L_{\varepsilon \kappa}$ is the length of the arc on $\partial \mathbf{D}$ cut out by a circle of radius $\varepsilon \kappa$. We have

$$
L_{\varepsilon \kappa}=4 \arcsin \left(\frac{1}{2} \varepsilon \kappa\right)
$$

and thus

$$
e\left(C \cap D_{\varepsilon}\right)=\frac{\kappa \varepsilon^{3}}{32} .
$$

So

$$
\lim _{\varepsilon \rightarrow 0} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}}=\lim _{\varepsilon \rightarrow 0} \frac{e\left(C \cap D_{\varepsilon}\right)}{\varepsilon^{3}}=\lim _{\varepsilon \rightarrow 0} \frac{\kappa \varepsilon^{3}}{32 \varepsilon^{3}}=\frac{\kappa}{32}
$$

and thus the asserted equality is true.
Proposition 8 suggests a definition for generalized (unsigned) curvature of a compact set Γ at a point $z_{0} \in \Gamma$:

$$
\kappa\left(\Gamma ; z_{0}\right)=32 \lim _{\varepsilon \rightarrow \infty} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}}
$$

where D_{ε} is the closed disk with center z_{0} and radius ε.
It is clear that $\kappa\left(\Gamma ; z_{0}\right)$ may easily fail to exist, though by replacing $e()$ by outer transfinite extent $e^{*}()$, and limes by limes superior, in the definition for $\kappa\left(\Gamma ; z_{0}\right)$, we may obtain a generalized curvature $\kappa^{*}\left(\Gamma ; z_{0}\right)$ that exists for any point z_{0} of any plane set Γ, and satisfies $0 \leq \kappa^{*}\left(\Gamma ; z_{0}\right) \leq \infty$.

Proposition 9. Let Γ be a compact set with positive area. Then $k\left(\Gamma ; z_{0}\right)$ $=\infty$ for almost all points $z_{0} \in \Gamma$.

Proof. Let z_{0} be a point of density of Γ. Then there exists some $\varepsilon_{0}>0$ such that if $\varepsilon \leq \varepsilon_{0}$, then

$$
\text { Area }\left(\Gamma \cap D_{\varepsilon}\right)>\frac{\pi}{2} \varepsilon^{2}
$$

where D_{ε} is the closed disk with center z_{0} and radius ε. We have

$$
\int_{0}^{\varepsilon} l(r) d r=\operatorname{Area}\left(\Gamma \cap D_{\varepsilon}\right)>\frac{\pi}{2} \varepsilon^{2}
$$

where $l(r)$ is the length of $\Gamma \cap C_{r}$, and C_{r} is the circle around z_{0} of radius r. Now

$$
\int_{0}^{\varepsilon / 2} l(r) d r \leq \int_{0}^{\varepsilon / 2} 2 \pi r d r=\frac{\pi}{4} \varepsilon^{2}
$$

and so

$$
\int_{\varepsilon / 2}^{\varepsilon} l(r) d r>\frac{\pi}{4} \varepsilon^{2}
$$

Now assume that for $\varepsilon / 2 \leq r \leq \varepsilon$, we have $l(r) \leq k r$. Then we obtain

$$
\frac{\pi}{4} \varepsilon^{2}<\int_{\varepsilon / 2}^{\varepsilon} l(r) d r \leq \int_{\varepsilon / 2}^{\varepsilon} k r d r=\frac{3}{8} k \varepsilon^{2}
$$

and thus $k>2 \pi / 3$. So we see that there exists some $r_{0}, \varepsilon / 2 \leq r_{0} \leq \varepsilon$, such that $l\left(r_{0}\right) \geq 2 \pi r_{0} / 3$. Thus

$$
\begin{aligned}
& e\left(\Gamma \cap D_{\varepsilon}\right) \geq e\left(\Gamma \cap C_{r_{0}}\right)=\frac{1}{4 r_{0}} d\left(\Gamma \cap C_{r_{0}}\right)^{3} \\
& \quad \frac{r_{0}^{2}}{4} d\left(r_{0}^{-1}\left(\Gamma \cap C_{r_{0}}\right)\right)^{3} \geq \frac{r_{0}^{2}}{4} \sin \left(\frac{\pi}{6}\right)^{3} \geq \frac{\varepsilon^{2}}{128}
\end{aligned}
$$

and so

$$
\kappa\left(\Gamma ; z_{0}\right)=32 \lim _{\varepsilon \rightarrow 0} \frac{e\left(\Gamma \cap D_{\varepsilon}\right)}{\varepsilon^{3}}=\infty
$$

5. The n-extent problem

The n-extent problem $(n \geq 3)$ is the extremal problem

$$
\sup _{\Gamma} e_{n}(\Gamma)
$$

where the supremum is taken over all continua Γ of capacity 1 . In this section we shall see that extremal continua for the 3 -extent problem are symmetric threepointed stars, and so they coincide with the extremal continua for the 3 -diameter problem (cf. [3, 9, 11]). Therefore it is somewhat of a surprise when we show that extremal continua for the 4 -extent and 4 -diameter problems are different.

We have

$$
\sup _{\Gamma} e_{n}(\Gamma)=\sup _{f \in \Sigma} e_{n}(\mathbf{C} \backslash f(|\zeta|>1))
$$

where Σ denotes the familiar class of normalized univalent functions $f(\zeta)=\zeta+$ $\sum_{k=0}^{\infty} b_{k} \zeta^{-k}$ in $|\zeta|>1$. Since Σ is compact modulo translations, it follows that the supremum is always assumed.

Now suppose that Γ is extremal for the n-extent problem. Then there exist points $z_{1}, \ldots, z_{n} \in \Gamma$ such that

$$
e_{n}(\Gamma)=\left(\prod_{1 \leq j_{1}<j_{2}<j_{3} \leq n}\left|\left[z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right]\right|\right)^{1 /\binom{n}{3}}
$$

In order to compute areas, we shall use the formula

$$
\left|\left[z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right]\right|=\frac{1}{2}\left|\operatorname{Im}\left\{\left(z_{j_{1}}-z_{j_{3}}\right)\left(\bar{z}_{j_{2}}-\bar{z}_{j_{3}}\right)\right\}\right|
$$

Thus it will be convenient to denote

$$
A_{j_{1} j_{2} j_{3}}=\operatorname{Im}\left\{B_{j_{1} j_{2} j_{3}}\right\} \quad \text { where } \quad B_{j_{1} j_{2} j_{3}}=\left(z_{j_{1}}-z_{j_{3}}\right)\left(\bar{z}_{j_{2}}-\bar{z}_{j_{3}}\right)
$$

so that $\frac{1}{2}\left|A_{j_{1} j_{2} j_{3}}\right|$ is the area of the triangle $\left[z_{j_{1}}, z_{j_{2}}, z_{j_{3}}\right]$.
Since $e_{n}(\Gamma)>0$ for an extremal Γ, all $A_{j_{1} j_{2} j_{3}}$ are non-zero and we may replace the functional $e_{n}(\Gamma)$ by the equivalent functional

$$
\operatorname{Re} \sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \log A_{j_{1} j_{2} j_{3}} .
$$

If we perform a Schiffer boundary variation (cf. [10]) of the form

$$
w^{*}=w+\frac{\varepsilon}{w-z}+o(\varepsilon)
$$

within Σ, it induces a variation

$$
z_{j}^{*}=z_{j}+\frac{\varepsilon}{z_{j}-z}+o(\varepsilon)
$$

of the z_{j} 's and thus a variation $A_{j_{1} j_{2} j_{3}}^{*}$ of the $A_{j_{1} j_{2} j_{3}}$'s. A calculation shows that $\operatorname{Re} \log A_{j_{1} j_{2} j_{3}}^{*}=\operatorname{Re} \log A_{j_{1} j_{2} j_{3}}-\frac{1}{A_{j_{1} j_{2} j_{3}}} \operatorname{Im}\left\{\varepsilon\left(\frac{B_{j_{1} j_{2} j_{3}}}{z_{j_{1}}-z}-\frac{\bar{B}_{j_{1} j_{2} j_{3}}}{z_{j_{2}}-z}\right\} \frac{1}{z_{j_{3}}-z}\right)+o(\varepsilon)$.

Thus Schiffer's fundamental lemma [10] leads to the differential equation

$$
\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq n} \frac{i}{A_{j_{1} j_{2} j_{3}}}\left(\frac{B_{j_{1} j_{2} j_{3}}}{z_{j_{1}}-z}-\frac{\bar{B}_{j_{1} j_{2} j_{3}}}{z_{j_{2}}-z}\right) \frac{d z^{2}}{z_{j_{3}}-z}>0
$$

for the n-extent problem. That is, an extremal continuum Γ for the n-extent problem consists of analytic arcs satisfying this differential equation.

We now consider the 3 -extent problem. Then the differential equation has just one term, and by permuting z_{1}, z_{2}, z_{3} we may assume that $A_{123}>0$. Thus the equation takes the form

$$
i \frac{(B-\bar{B}) z+\bar{B} z_{1}-B z_{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)} d z^{2}>0
$$

where $B=B_{123}$. The quadratic differential appears to have three simple poles z_{1}, z_{2}, z_{3}. None of them is removable. For if z_{1} were removable, we would have

$$
(B-\bar{B}) z_{1}+\bar{B} z_{1}-B z_{2}=0
$$

or $B\left(z_{1}-z_{2}\right)=0$, which is impossible since $\operatorname{Im}\{B\}=A_{123}>0$ and $z_{1} \neq z_{2}$. The same reasoning shows that z_{2} is not removable. If z_{3} were removable, we would have

$$
(B-\bar{B}) z_{3}+\bar{B} z_{1}-B z_{2}=0
$$

and this leads to the conclusion that $z_{1}=z_{2}$, which is impossible.
Since Γ is a continuum, the trajectory arcs from z_{1}, z_{2}, z_{3} must join up at some point, and this point must be a zero of the quadratic differential; thus it must be a zero of the numerator $(B-\bar{B}) z+\bar{B} z_{1}-B z_{2}$. By a translation, we may arrange for this point to be origin. Thus $\bar{B} z_{1}-B z_{2}=0$, and since $B \neq 0$, it follows that $\left|z_{1}\right|=\left|z_{2}\right|$. By interchanging the role of z_{2} and z_{3}, say, we find that

$$
\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|
$$

Since $B-\bar{B}=2 i A_{123}$, the equation for the 3 -extent problem finally takes the form

$$
Q_{3}(z) d z^{2}>0 \quad \text { where } \quad Q_{3}(z)=\frac{-z}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)}
$$

This is the same differential equation as for the 3 -diameter problem, but we have arrived at it through a different choice of accessory parameters.

By rotation, we may assume that $z_{1}>0$. Then, following Kuz'mina [4, p. 92], there is by Lemma 1.2 of [4] a point $z_{0} \in\left(0, z_{1}\right)$ such that $Q\left(z_{0}\right)>0$. This implies $\left(z_{2}-z_{0}\right)\left(z_{3}-z_{0}\right)>0$. Thus z_{2} and z_{3} lie on conjugate rays issuing from the real point z_{0} inside the circle $|z|=r$ on which z_{1}, z_{2}, z_{3} lie. As a consequence, z_{2} and z_{3} are complex conjugates. Now it follows that the trajectory joining 0 to z_{1} is a straight line segment. Similar arguments with respect to z_{2} and z_{3} imply that trajectories from the origin to these points are also line segments. Finally, since the origin is a simple zero, these segments emanate at equal angles, and since the points z_{1}, z_{2}, z_{3} are simple poles, the segments terminate there. Thus we obtain the following.

Proposition 10. The extremal continua for the 3 -extent problem are symmetric three-pointed stars.

The functions in Σ that map onto the complement of symmetric three-pointed stars are translations and rotations of $f(\zeta)=\zeta\left(1+\zeta^{-3}\right)^{2 / 3}$. Its omitted set
$\Gamma=\mathbf{C} \backslash f(|\zeta|>1)$ is the star with tips at the points $z_{k}=2^{2 / 3} e^{2 \pi i(k-1) / 3}$, $1 \leq k \leq 3$. The triangle with these vertices has area $3^{3 / 2} / 2^{2 / 3}$. Thus

$$
e_{3}(E) \leq \frac{3^{3 / 2}}{2^{2 / 3}}
$$

is a sharp inequality for all continua E with capacity equal to one. In fact, we are led to the same result by combining the solution $d_{3}(E) \leq 3^{1 / 2} 2^{2 / 3}$ to the corresponding 3 -diameter problem [3, 9] with Proposition 4.

In contrast to the 3 -extent and the 3 -diameter problems, we shall now show that the extremal continua, and hence solutions, for the 4 -extent and 4-diameter problems are different. Assume, to the contrary, that Γ is a common extremal for the two problems. Then Γ satisfies the differential equations $Q_{4}(z) d z^{2}>0$ for the 4 -extent problem and $R_{4}(z) d z^{2}>0$ for the 4 -diameter problem [3, 4, 9], where

$$
\begin{gathered}
Q_{4}(z)=\sum_{1 \leq j_{1}<j_{2}<j_{3} \leq 4} \frac{i}{A_{j_{1} j_{2} j_{3}}}\left(\frac{B_{j_{1} j_{2} j_{3}}}{z_{j_{1}}-z}-\frac{\bar{B}_{j_{1} j_{2} j_{3}}}{z_{j_{2}}-z}\right) \frac{1}{z_{j_{3}}-z} \\
R_{4}(z)=\sum_{1 \leq j_{1}<j_{2} \leq 4} \frac{-1}{\left(z_{j_{1}}-z\right)\left(z_{j_{2}}-z\right)} .
\end{gathered}
$$

Since Γ satisfies both equations, it follows that the quotient $Q_{4}(z) / R_{4}(z)$ is real and positive along Γ. In particular,

$$
q=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) Q_{4}(z)=\sum_{2 \leq j<k \leq 4} \frac{i B_{1 j k}}{A_{1 j k}\left(z_{k}-z_{1}\right)}=\sum_{2 \leq j<k \leq 4} \frac{i\left(\bar{z}_{k}-\bar{z}_{j}\right)}{A_{1 j k}}
$$

and

$$
r=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) R_{4}(z)=\sum_{2 \leq j \leq 4} \frac{-1}{z_{j}-z_{1}}
$$

have the property that q / r is real.
The extremal continua for the 4-diameter problem are known [4, Theorem 2.3] and, for example, their endpoints form the vertices of a rectangle. After a translation and rotation, we may assume that

$$
z_{1}=x+i y, \quad z_{2}=x-i y, \quad z_{3}=-x-i y, \quad z_{4}=-x+i y
$$

where $x>0$ and $y>0$. Then

$$
A_{123}=A_{124}=A_{134}=4 x y
$$

and so

$$
q=i\left(\frac{-2 x}{4 x y}+\frac{-2 x-2 i y}{4 x y}+\frac{-2 i y}{4 x y}\right)=\frac{x+i y}{i x y}
$$

$$
r=-\left(\frac{1}{-2 i y}+\frac{1}{-2 x-2 i y}+\frac{1}{-2 x}\right)=\frac{1}{2}\left(\frac{x+i y}{i x y}+\frac{1}{x+i y}\right) .
$$

Now

$$
\frac{r}{q}=\frac{1}{2}\left(1+\frac{i x y}{(x+i y)^{2}}\right)
$$

must be real, and this is the case only if $(x+i y)^{2}$ is purely imaginary. In other words, it must be that $x=y$. But in Kuz'mina's solution [4, Theorem 2.3] to the 4 -diameter problem the endpoints of the extremal continuum do not form the vertices of a square, and so we are finished. This yields the following.

Proposition 11. No continuum can simultaneously maximize the 4 -extent and the 4 -diameter among continua of capacity one.

References

[1] Carleson, L.: Selected problems on exceptional sets. - Van Nostrand, Princeton, 1967.
[2] Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. - Math. Z. 17, 1923, 228-249.
[3] Goluzin, G.M.: Method of variations in the theory of conformal representation II. - Mat. Sb. 21 (63), 1947, 83-117 (Russian).
[4] Kuz'mina, G.V.: Moduli of families of curves and quadratic differentials. - Proc. Steklov Inst. Math. 139, 1980 (Russian). English translation: American Mathematical Society, Providence, 1982.
[5] Leja, F.: Sur une constante liée à chaque ensemble plan fermé et sur son application. C. R. Acad. Sci. Paris 197, 1933, 21-22.
[6] Leja, F.: Une généralisation de l'écart et du diamètre transfini d'un ensemble. - Ann. Soc. Polon. Math. 22, 1949, 35-42.
[7] Lindeberg, J.W.: Sur l'existence des fonctions d'une variable complexe et des fonctions harmoniques bornées. - Ann. Acad. Sci. Fenn. Ser. A I Math. 11, 6, 1918.
[8] Pommerenke, Ch.: Univalent functions. - Vandenhoeck \& Ruprecht, Göttingen, 1975.
[9] Reich, E., and M. Schiffer: Estimates for the transfinite diameter of a continuum. Math. Z. 85, 1964, 91-106.
[10] Schiffer, M.: A method of variation within the family of simple functions. - Proc. London Math. Soc. 44, 1938, 432-449.
[11] Schiffer, M.: Sur un probème d'extrémum de la représentation conforme. - Bull. Soc. Math. France 76, 1938, 48-55.
[12] Schur, I.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. - Math. Z. 1, 1918, 377-402.

University of Tennessee
Department of Mathematics
Knoxville, TN 37916
U.S.A.

Indiana University
Department of Mathematics
Bloomington, IN 47405
U.S.A.

