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TRANSFINITE EXTENT

Marius Overholt and Glenn Schober

1. Introduction

In this paper, we shall consider a set function e(E) for compact sets in the
complex plane C, that we shall call the transfinite extent of E. It is closely con-
nected with the transfinite diameter d(E), which was introduced by M. Fekete [2].

F. Leja [5] generalized the transfinite diameter to an écart v(E,¢) of E
with respect to a generating function ¢. Here ¢ is a continuous, nonnegative,
symmetric function ¢: M™ — R of m > 2 variables on a metric space (M, p),
satisfying the additional condition that ¢(p1,...,pm) = 0 if p; = px for some
J#k.

Put, for any finite subset {p1,...,pn} S M, n>m,
V(pl""’pn)z H (p(p]‘l""’pjm)’

1<) < <jm<n
and let

Vo(E) = max V(p1s.-yPn)

Then Leja [5] showed that
Vara (B)/C2) < v (B)V(R)

and so .
o(E, @) = lim V,(E)/(7)

exists.

M= C> Q(ZlaZZ) = |21 —Z2I’ and Y = 0, then ’U(E,(P) = d(E), the
transfinite diameter of E. If, in the same space, ¢ is chosen to be the area of the
triangle Oz;2,, then v(E,p) is the original écart of Leja [5, 6]. It is connected
with convergence questions for homogenous polynomials of two real variables.

The transfinite extent is defined by choosing ¢(z1, 22,23) to be the area of
the triangle in C spanned by the points zy, 25, z3, and by putting

e(E) = v(E, ).
It exists for any compact set E C C.
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2. Elementary properties

Proposition 1. Let E and F be compact sets in C.

(a) E C F implies e(E) < e(F).

(b) e(rE) = re(E) for any r € R.

(c) e(fE) = e(E) for any area-preserving affine map f: C — C.

(d) e(L) = 0 for any line segment L C C.

Proof. All these properties are obvious.

In the following, [21,22,23] will denote the triangle spanned by z;, z;, 23,
and |[zl,22,z3]| its area. We have

V(zt,...,2n) = H |[zj1’zj2’zjs]|'
1<51<j2<js<n

Then
en(E) = Vo(E)V/(3)

is the n-extent of E, and e,(E) — e(E) as n — oo. We will also define
U(z1y...y2p) = H |zj, — zj,]
1<j1<j28n
and
Un(E) = glg}xg U(z1y...,240).
Then .
dn(E) = U (E)M(3)

is the n-diameter of E, and d,(E) — d(E) as n — oo, where d(E) is the
transfinite diameter if E. Let D = {z : |2| < 1}.

Proposition 2. For compact sets E C 0D, we have en(E) = 1d,(E)® and
e(E) = 1d(E)3.

Proof. We use the relation
’[21, 22,23” = iln - 22|121 — z3l|zp — 23]

for 21, 29, 23 € OD. The reason for this is that the radius of the circumscribed
circle of a triangle equals the product of the lengths of its sides, divided by four
times its area. Then we have

— n
V(Zla--wzn) =4 (3) H 'zjl _zjzllz.h —zja”ij _Zjal
1<51<j2<ja<n

= 4—(2)( || T |> T 4=G)U (2, 2)" 2

1<j1<j28n
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From this it follows that
Va(E) = 4~ Gu, (B)2

and so

en(E) = idn(E)3a
which leads to the assertions above.

Examples. Since the transfinite diameter of the unit circleis 1, it follows that
e(0D) = %. Moreover, since the transfinite diameter of an arc on dD of length
1 is sin(l/4), it follows that its transfinite extent is §sin®(/4). Furthermore, by
using Proposition 1lbe, it is possible to calculate the transfinite extent of any arc
of any ellipse.

For any compact set E C 0D, we may estimate
en(E) = 1d,(E)® < 1d,(0D)dA(E)>.

Schur [12, p. 385] credits to Pélya the observation that the maximum of the product
U(z1,...,2,) for points zj,...,2, € D is n™? and that it occurs for equally
spaced points on 0D. It follows that

dn(aD) — U(]., 621ri/n, . ’e2wi(n—1)/n)1/(;) — nl/(n—l),

and so

en(E) < inl/("_l)dn(E)"’.

This inequality is invariant under translations and dilations of the set E. Thus
we have proved the following

Proposition 3. If E is a compact set lying on some circle, then e,(E) <
int/(n=1d,(E)? and e(E) < Ld(E)?.

It is quite possible, but not proved, that the inequalities of Proposition 3
remain valid for arbitrary compact sets E. However, for arbitrary compact sets
we have the following estimates.

Proposition 4. For any compact set E C C, we have e,(E) < @dn(E)2
and ¢(E) < Y3J(E)?.
Proof. Given a triangle with side lengths a, b, ¢ and 6 the angle opposite
a, we have
Al 1 sin® 4
(abc)? - g%+§—2cost9
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where A is the area of the triangle, using the law of cosines. Since b/c + c/b>2,
this yields
3v3

4° < —l—(s'ne)(l +cosf) < —
(abc)? = 16 = 64

andso A < @(abc)zl % for any triangle, with equality only for equilateral triangles.
Now let ¢;,...,€, € E be such that

V(&,...,&n) = Vo(E).
Then

)
V(fl, - 7671) < (\/Tg) H (lﬁ.h - 612 '|§j1 - §j3||£j2 - §j3|)2/3

1<1<j2<js<n
V3 (3) 2(n—2)/3
= (T) ( H €5 — 3N
1< <j28n

which yields the desired inequalities by taking the (g) -root on both sides and
letting n — oo.

Remark. In the special case n = 3, the inequality e3(E) < %%(E)2 is
sharp when E is any equilateral triangle T or when E is any compact subset of
T that contains its vertices.

3. Null-sets

We consider compact null-sets E for the transfinite extent, ie., e(E) = 0.
From Proposition 4 it is clear that any null-set for the transfinite diameter is a
null-set for the transfinite extent. And from Proposition 2 we see that on the
unit circle 0D the null-sets for transfinite extent and transfinite diameter actually
coincide. It is clear, though, that there are null-sets for the transfinite extent that
are not null-sets for the transfinite diameter: for instance, all line segments.

Proposition 5. A compact null-set for transfinite extent has zero area.

Proof. Let E be compact with positive area, and let C(r) be the circle
|z| =r. Since ENC(r) is closed in C(r), the linear measure of E N C(r) exists;
we will denote it by I(r). By Fubini’s theorem

/00 I(r)dr = Area(E) > 0,
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and so there exists an ro > 0 with I(ro) > 0. Then
1
e(E) 2 e(ENC(ro)) = —d(EN C(re))’ >0
0

since a set of positive length has positive capacity.

Proposition 6. Let E, and E; be compact sets in C, and let the area of
any triangle spanned by E = E; U E; be bounded above by A > 0. Then

() =1 (13) ++(5)

where h(z) = (log(1/z))

Proof. Let V(zi,...,2y,) attain its maximum V,(E) on E at &,...,{,. Let
k of the points §; lie in E;, the other n — k in E,. Using the estimate

|[£j1a Ejza §j3” <A
when not all of §;,,¢;,,¢;, liein E; or liein E;, we get
V(..o n) € V(B Vaek(BE)ADCZ)HG)(TH).

We take the logarithm on both sides and divide by (’;) to get

(:) e (nk)oe log A / kv (n—k n—k
(g) logex(E1) + (3) logen—k(E2) + () ((1)( )+(2)( ))

logen(E) <

If we let n — oo through a suitable subsequence, then k/n — A (0 <A <1)and
we obtain

loge(E) < Mloge(E1) + (1 — X)Ploge(Ey) + (1 — (1= X)* =A%) log 4

or

A A

log ——= > A%log ——+ (1 —X)*lo )

AB) oy 9

The right-hand side attains its maximum as a function of A when
A A
A1 =(1-A)’log ——.
Og C(El) ( ) Og e(E2)

Substitution yields the desired inequality.
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Proposition 6 is an analogue of a result that seems to have been first proved,
but not published, by Fekete for the transfinite diameter. The proof above closely
follows one given by Pommerenke (8, Theorem 11.4].

From Proposition 6 one can easily conclude that if E;, E,, E3, ... are
compact null-sets for transfinite extent, and E = E; UE, U E3 U --- is compact,
then E is a null-set for transfinite extent.

By a standard technique of potential theory, see Carleson [1] or Pom-
merenke (8], e(E) can be extended to an outer capacity e*(E), and the require-
ment that E be compact could be removed from the statements of most of our
theorems.

Next, let h be a measure function, i. e., h(z) is defined and continuous for
z 20, h(0) =0, and h(z) is increasing. We define a measure 4(E) for compact
sets E C C as follows:

Qx(E) = gl_x}}) EérLlJfG’j E(h o g)(Area(G)))
j

where g(z) = (z/x)'/?, and the infimum is taken over all finite coverings of E by
ellipses G; with Area(G;) < e. The classical Hausdorff measure is given by (E
compact)

e—0 ECUA

Aw(E) = lim inf Z(h o g)(Area(A;))

where the infimum is taken over all finite coverings of E by disks A; with
Area(A;) < e. Since ellipses include disks, it is clear that
Qn(E) < An(E).

Null-sets for the measure Q) are connected with null-sets for transfinite extent as
follows.

Proposition 7. Let h(z) = (log %)-1/2. Then Q4(E) =0 implies e(E) =0
for compact sets E C C.

Proof. Let the area of any triangle spanned by E be bounded above by
A > 0. Let G; be a finite covering of E by ellipses with Area(Gj) < e. Put
E; = ENG,, and assume

TA?
< —_—
©= (D)

Then, using Proposition 6 and Proposition 1, we have
e(E) e(E;) e(G;)
— 1 < — 7)< NTI

h( 1 ) < ; h( =) < ; M =5

= Z h(e(g)Area(Gj)> <) (hog)(Area(Gy)).

s

J
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Thus
h(%@) < Qu(E)

and so the assertion above follows. 1/
We note that for h(z) = (log 1)~ /? the measure Q2 has more null-sets than
the measure Ap: for instance,

Q([0,1]) =0,  Ax([0,1]) = +oo.

Proposition 7 is an analogue of a result about harmonic measure and hence ca-
pacity due to Lindeberg [7].

4. A connection with curvature

Proposition 8. Let ' be a C? arc in the plane, z, an interior point of the
arc, and k the unsigned curvature of I at zo. Then

k = 32 lim e(m-]—aDc)
e—0 13

where D, is the closed disk with center z, and radius €.

Proof. We may without loss of generality assume that z9 = 0 and that the
tangent to I' at the origin is the z-axis. Then I is the graph of a function
y = f(z) in a sufficiently small neighborhood of z = 0.

We first consider the case kK = 0. If ' reduces to a line segment near z = 0,
the assertion to be proved is obvious. If not, then

h(u) = _irézféulf(a:)l >0

for v > 0. Since k = 0, the function f(z) = o(z%) near the origin, and so
h(e) = o(e?) as € — 0. Furthermore, for small ¢ we have I'N D, C R. where
R. is the axes-parallel rectangle centered at z = 0 of length 2¢ and height 2h(¢).
Now

e('ND,) < e(R.) = eh(e)e(Ry)
where Ry is the square of side length 2. Thus

lim e(I'nD,) < lim eh(szi(Ro) _

e—0 £ e—0

0

and the asserted equality has been established for the case k = 0.

We now suppose that « > 0. We may without loss of generality assume that
the circle of curvature C of T' at z = 0 lies above the z-axis. Clearly C is the
graph of a function y = g(z) near z = 0.



284 Marius Overholt and Glenn Schober

We have
f@)=bea? +i(@)  and  g(z) = bra + k)

near ¢ = 0, with j(z) = o(2?) and k(z) = o(z?) as z — 0.

Consider an arbitrary triple a < b < ¢ of points in [—¢,¢], with ¢ so small
that I' and C are graphs above [—¢, ¢]. To this triple there corresponds a triangle
with vertices lying on I', namely the triangle spanned by (a, f(a)) , (b, f(b)) and
(c, f (c)) , and a triangle with vertices lying on C, namely the triangle spanned
by (a,9(a)), (b,9(b)) and (c, g(c)). So by orthogonal projection from the real
axis, we have a bijective correspondence between triangles lying above [—¢, €] with
vertices on I', and triangles lying above [—¢,¢] with vertices on C.

Let A be the area of the triangle with vertices (a, f(a)), (b, f(3)), (e, f(c))
and A* the area of the triangle with vertices (a,g(a)), (b,9(b)), (c,g(c)). Since

PEREGESONRIS UL CIRF (OES (G a)‘,

A% — ‘g(a) + g(b)(b _a)+ g9(b) 42-9(6) (c—b) - g(a) + g(c) (c— a)l’

2 2
we have
A* g(a)—g(b) _ g(c)—g(b)
a0 a—b c—b
A T | f@=f®) _ f-f®) |"
a—b c—b

If we apply the generalized mean value theorem to the expression inside the abso-
lute value brackets, we obtain

A€ =5g'(©) = (9(¢) — 9(b))
A (C=B)F(Q) ~ (F(O) — F(B))

where a < ( < c¢. Now apply the generalized mean value theorem again, on the
interval from b to (, to conclude that

A _ lg"ﬁ)_ ‘
A (6
Since f, g € C? and f"(0) = ¢"(0) = & > 0, it follows that

A = A(1 + (1))
for € — 0, uniformly with respect to a, b, c. Therefore

A* A
o = a(l+0(1))
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and it follows that
1me(l"ﬁDe) lim e(CﬂD)

e—0 63 e—0 5
Now

K2 K2 L.y
e(CND,)=rx"2e(0D N Dey) = Td(aD ND.)? = Tsin?’( 1 )

where L., is the length of the arc on D cut out by a circle of radius ex. We
have
L. = 4arcsin(%ers)

and thus R
KE
> (TnD.) . «CnDy :
e(I'N D, . € NnD, KkE™ K
= =lip——F— =lmas=5

and thus the asserted equality is true.
Proposition 8 suggests a definition for generalized (unsigned) curvature of a
compact set I’ at a point zo € I':

5(T; 20) = 32 Jim @

where D, is the closed disk with center 25 and radius €.

It is clear that x(T;zp) may easily fail to exist, though by replacing e()
by outer transfinite extent e*(), and limes by limes superior, in the definition for
k(T'; z0) , we may obtain a generalized curvature «*(T'; z9) that exists for any point
zo of any plane set I', and satisfies 0 < k*(I'; 29) < 00.

Proposition 9. Let I' be a compact set with positive area. Then k(I; zo)
= oo for almost all points zy € T.

Proof. Let zy be a point of density of I'. Then there exists some g9 > 0 such
that if € < g, then

Area('N D,) > -g—sz

where D, is the closed disk with center 2y and radius €. We have
€ T
/ [(r)dr = Area(T'N D,) > 562
0

where {(r) is the length of I'N C,, and C, is the circle around z, of radius r.

Now
e/2 e/2 T
/ I(r)ydr < / 2nr dr = —¢?
0 0 4
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and so

/ I(r)dr > Te2.
e/2 4

Now assume that for ¢/2 < r < ¢, we have I(r) < kr. Then we obtain

Te2 < / (dr < [ krdr= Ske?
4 e/2 €/2 8

and thus k > 27/3. So we see that there exists some ry, £/2 < ry < ¢, such that
I(ro) > 27ro/3. Thus

TN D) > e(T'NChy) = 4—i—d(1" ne,,)?
0

1‘2 - 3 'r‘2 . T\3 62
Zod(rol(rﬂcro)) 2 fsln(g) Z ﬁ
and so
. eI nD,)
KT 20) = 32 lim == = 00

5. The n-extent problem
The n-extent problem (n > 3) is the extremal problem

sup en(T)
r

where the supremum is taken over all continua I' of capacity 1. In this section
we shall see that extremal continua for the 3-extent problem are symmetric three-
pointed stars, and so they coincide with the extremal continua for the 3-diameter
problem (cf. [3, 9, 11]). Therefore it is somewhat of a surprise when we show that
extremal continua for the 4-extent and 4-diameter problems are different.

We have
supen(I') = supe, (C\ f(I¢| > 1))
r fex

where ¥ denotes the familiar class of normalized univalent functions f(¢) = ¢ +
> reo bk % in || > 1. Since T is compact modulo translations, it follows that
the supremum is always assumed.

Now suppose that I' is extremal for the n-extent problem. Then there exist
points 21,...,2, € I" such that

ewm=( I l[zjl,zjz,zjan)l/m.

1<j1<j2<ja<n
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In order to compute areas, we shall use the formula
(2315 212> 23a)| = 3 |Tm { (25, = 230 )(Zj2 — Z3) } |-
Thus it will be convenient to denote
Ajijajs = Im{Bj j,55} where Bjjpj5 = (25 — 25 )(Zj, = Zis),
so that Z|Aj,j,j.| is the area of the triangle [z;,,zj,, 2j,].

Since en(I') > 0 for an extremal T', all A} j,;, are non-zero and we may
replace the functional e,(I') by the equivalent functional

Re Z log Ajl Joja-

1<j1<j2<js<n

If we perform a Schiffer boundary variation (cf. [10]) of the form
wr=wt —— o(e)
B w—z

within ¥, it induces a variation

[

+ o(e)

z] =z +
zj— 2z

*

of the z;’s and thus a variation A} ;,; of the A; ;,;;’s. A calculation shows that

Relog A ;,;, = RelogAjlj“‘a—mIm {6 ( Jjels _ Jials } P z)+o(s).
1J2J8 3

Zjp — % Zjp — %

Thus Schiffer’s fundamental lemma [10] leads to the differential equation

g Bjiiis  Bjijajs\ d2?
§ : ( J1J2J3 JlJ2Ja> >0
Zj —2 25, —2) Zj;— %

1<j1<j2<ja<n J1J2]8 3

for the n-extent problem. That is, an extremal continuum I' for the n-extent
problem consists of analytic arcs satisfying this differential equation.

We now consider the 3-extent problem. Then the differential equation has
just one term, and by permuting z;, 22, z3 we may assume that A;p3 > 0. Thus
the equation takes the form

(B—B)Z+le —B22

ey ey e L
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where B = Bj,3. The quadratic differential appears to have three simple poles
21, 22, z3. None of them is removable. For if z; were removable, we would have

(B—B)Zl +BZ]_ —BZZ =0

or B(z1 — z2) = 0, which is impossible since In{B} = Aj23 > 0 and 2; # 2;. The
same reasoning shows that z; is not removable. If 23 were removable, we would
have

(B—B)Z;;-{-le —B22 =0

and this leads to the conclusion that z; = 25, which is impossible.

Since T is a continuum, the trajectory arcs from z;, 25, 23 must join up at
some point, and this point must be a zero of the quadratic differential; thus it
must be a zero of the numerator (B — B)z + Bz; — Bz,. By a translation, we
may arrange for this point to be origin. Thus Bz; — Bz, = 0, and since B # 0, it
follows that |z;| = |22|. By interchanging the role of z; and z3, say, we find that

|z1] = |22| = |23].

Since B — B = 2iA;23, the equation for the 3-extent problem finally takes
the form

—z

(z—21)(z — 22)(z — 2z3)

Qs3(2)dz* >0 where Q3(2) =

This is the same differential equation as for the 3-diameter problem, but we have
arrived at it through a different choice of accessory parameters.

By rotation, we may assume that z; > 0. Then, following Kuz’mina 4, p. 92],
there is by Lemma, 1.2 of [4] a point z¢ € (0,21) such that Q(z) > 0. This implies
(22 —2z0)(23 — 20) > 0. Thus z; and 23 lie on conjugate rays issuing from the real
point 2o inside the circle |z] = r on which 27, 2, 23 lie. As a consequence, 2,
and z3 are complex conjugates. Now it follows that the trajectory joining 0 to z;
is a straight line segment. Similar arguments with respect to z; and z3 imply that
trajectories from the origin to these points are also line segments. Finally, since
the origin is a simple zero, these segments emanate at equal angles, and since the
points 2y, 22, z3 are simple poles, the segments terminate there. Thus we obtain
the following.

Proposition 10. The extremal continua for the 3-extent problem are sym-
metric three-pointed stars.

The functions in ¥ that map onto the complement of symmetric three-pointed
stars are translations and rotations of f(¢) = ((1 + ¢7%)?/3. Its omitted set
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I = C\ f(|¢| > 1) is the star with tips at the points z; = 22/3g2mi(k—1)/3
1 < k < 3. The triangle with these vertices has area 33/2/22/3. Thus

33/2
63(E) S 55/—3
is a sharp inequality for all continua E with capacity equal to one. In fact, we
are led to the same result by combining the solution dz(E) < 31/222/3 to the
corresponding 3-diameter problem [3, 9] with Proposition 4.

In contrast to the 3-extent and the 3-diameter problems, we shall now show
that the extremal continua, and hence solutions, for the 4-extent and 4-diameter
problems are different. Assume, to the contrary, that I' is a common extremal
for the two problems. Then I' satisfies the differential equations Q4(z)dz? > 0
for the 4-extent problem and R4(z)dz? > 0 for the 4-diameter problem [3, 4, 9],
where

Q4(Z) — E : 4 B, jajs _ Bj1j2js 1
Zjh "% ZjpTZ st—z’

1<j1<ja<jsga ~ 19208

R()= Y ——

1<j1<ja<4 (zjy = 2)(2j, — 2)

Since T satisfies both equations, it follows that the quotient Q4(2z)/R4(2) is real
and positive along I'. In particular,

9= zlingl(z —21)Q4(2) = Z _ By Z i(Zx — Z;)

Avir(ze — 21) Ay
2<j<k<4 1k(2k = 21) 2<j<k<4 17k

. -1
r= zILngl(z — z1)R4(2) = E

Z; — 2
2<5<e 9T A

have the property that g/r is real.

The extremal continua for the 4-diameter problem are known [4, Theorem 2.3]
and, for example, their endpoints form the vertices of a rectangle. After a trans-
lation and rotation, we may assume that

n=zx+y, z22=c—1y, 23=—T—1Y, 24=—C+1Y
where £ > 0 and y > 0. Then
A2z = Aja4 = Agza = 4oy

and so

)

g=i —2z n —2z — 2ty + -2y _ w'-i-z'y
4dzy 4y 4zy 1y
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_ 1 1 1Y (z+wy 1
"= <—22’y+—2x—2iy+—2x)_2( Ty +.z'+iy>'

roo iy
=114 =L
g ( +(z+zy>2)

must be real, and this is the case only if (z + iy)? is purely imaginary. In other
words, it must be that # = y. But in Kuz’mina’s solution [4, Theorem 2.3] to
the 4-diameter problem the endpoints of the extremal continuum do not form the
vertices of a square, and so we are finished. This yields the following.

Proposition 11. No continuum can simultaneously maximize the 4-extent
and the 4-diameter among continua of capacity one.
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