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TRANSFINITE EXTENT

Marius Overholt and Glenn Schober

1. Introduction
In this paper, we shall consider a set function e(E) for compact sets in the

complex plane C, that we shall call the transfinite extent of E . lt is closely con-
nected with the transfinite diameter d(.8), which was introduced by M. Fekete [2].

F. Leja [5] generalized the transfinite diameter to an åcafi u(8,9) of. E
with respect to a generating function g. Here p is a continuous, nonnegative,
symmetric function g: M* + R of m ) 2 variables on a metric space (M, p) ,

satisfying the additional condition that p(pr,. . . ,p^) : 0 if pi : pk for some
j*k.

Put, for any finite subset {pr,. . .,pn} e M , n ) m,

V(Pr, " ' tPn) -

and let
V"(E)

Then Leja t5l showed that

P(Pir, " ' rPj,-),

exists.
If. M : C, Q(zr,zz) : lr, - "rl, and p - p, then r(E,p) : d(E), the

transfinite diameter of. E . If, in the same space, g is chosen to be the area of the
triangle Oz1z2, then ,(E,p) is the original 6cart of Leja [5, 6]. It is connected
with convergence questions for homogenous polynomials of two real variables.

The transfinite extent is defined by choosing g(4,zzrz3) to be the area of
the triangle in C spanned by the points Zt,tz2tz3, and by putting

e(E) :'(E,P)'
It exists for any compact set .E C C.

The work of the second author was supported in part by a grant from the National Science

Foundation.
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2. Elementary properties

Proposition L. Let E and F be compact sets in C.
(u) Ee F impliese(E) <e(r).
(b) e(r.E) : r2e(E) for any r € R.
(c) e(f E) : e(E) for any area-preserving afrne map f : C --+ C.
(d) e(z) : 0 for any line segment L c C.

Proof. All these properties are obvious.
In the follo-wing, lrr,rr,z3] will denote the triangle spanned by 4, z2t Zst

and l[zr ,rz,zsll its area. We have

v(rr'...tzn) - II llri'zjz,zjrll.
r (j1(j2 (js(n

Then
e*(E) : V,(E)|/(Z)

is the n-extent of E, and e.(E) - e(E) as r, --+ oo. We will also define

U("r,...,,2n) : II lri, - ri,l
L1it1jz1n

and
U"(E) : 

Teä 
U(rr,. .., zn).

Then
d,(E) : U,(E)r/(\)

is the n-diameter of, E, and d"(E) --+ d(E) as n -) oo, where d(E) is the
transfinite diameter if E. Let D: {z: lzl < 1}.

Proposition 2. For compact seis .E E AD, we have e"(E): ld^7e)3 and
e(E): Ia@)r.

Proof. We use the relation

llzr, zz, rrll : ilr, - ,zllzr - zsllz2 - z3l

for z1 t zz t zs € AD. The reason for this is that the radius of the circumscribed
circle of a triangle equals the product of the lengths of its sides, divided by four
times its area. Then we have

V("r,...,2n): 4-(ä) ff lrj, - ,j,ll"i, - zi,llzi, - zi"l
lljt1jz1js1n

: 4-(ä) (,.r,U,=- l'i' - 'i'')"-' : +-G)uP"' ' ' 
' ")n-2'
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From this it follows that

v*(E): +-(Z)u,(E)n-z

and so

""(E) 
: 1d,1n13,

which leads to the assertions above.

Examples. Since the transfinite diameter of the unit circle is 1, it follows that
e(äD) : |. Moreover, since the transfinite diameter of an arc on äD of length
I is sin(l/a), it follows that its trans nite extent is f sin3(I/+). F\rrthermore, by
using Proposition 1bc, it is possible to calculate the transfinite extent of any arc
of arry ellipse.

For any compact set E e 0D, we may estimate

"*(E) 
: ;a.1A13 < Id"(0D)d.(E)r.

Schur 112, p.385] credits to Pdlya the observation that the maximum of the product
[J(rr,...,2n) for points ztt...tzn eD is nn/2 and that it occurs for equally
spaced points on äD. It follows that

d*(aD) - u (1, e2ni/n , , "zni(,-t) 
/")r /(;) : n7 /(n-r) 

,

and so

e,(E) < f,nrl@-r) d.(E)' .

This inequality is invariant under translations and dilations of the set E. Thus
we have proved the following

.Proposition 3. If E is a compact set lying on sorme circle, then e^(D) <
Lnr/(n-r)4n(E)2 and 

"(E) 
< La@)r.

It is quite possible, but not proved, that the inequalities of Proposition 3
remain valid for arbitrary compact sets .8. However, for arbitrary compact sets
we have the following estimates.

Propositio n 4. For any compact set E C C, we have e^(E) a *a.@)'
and e(E) < *a@)' .

Proof. Given a triangle with side lengths a, b, c ar,d 0 the angle opposite
a, we have

Asl
(abc)z 8

sin3 d
brC
- 

_t_

ct b -2cosd
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where .4 is the area of the triangle, using the law of cosines. since å/c + cf b > 2,
this Yields 

År 1

&< fit,i"a)t1*cos E=#,
and so ,1, < S@oc)'/' fo, any triangle, with equality only for equilateral triangles.

Now let €r,... ,(n € E be such that

v((r,... ,€n) - v"(E).

Then

v(€,, ,€n) s (f) ,r, rI (r(,,
\ / 1(r, ljz<-jsSn

:(f) "'( -ILr(i,t1(r, ljzln

which yields the desired inequalities by taking
Ietting rL + oo.

- (r. ll(i, - (r, l)'''
z) /s

the (|) -root on both sides and

- €i,l l(i.

€i,l) ""-

R,emark. In the special case n : 3, the inequality es(E) < *ar@),
sharp when .E is any equilateral triangle ? or when E is any 

"o*pu"t 
subset

7 that contains its vertices.

3. Null-sets

We consider compact null-sets E for the transfinite extent, i.e., e(E) :6.
From Proposition 4 it is clear that any null-set for the transfinite diameter is a
null-set for the transfinite extent. And from Proposition 2 we see that on the
unit circle äD the null-sets for transfinite extent and transfinite diameter actually
coincide. It is clear, though, that there are null-sets for the transfinite extent that
are not null-sets for the transfinite diameter: for instance, all line segments.

Proposition 5. A compact null-set for transfinite extent has zero area.

Proof. Let E be compact with positive a.rea, and let c(r) be the circle
lrl : , . Since .O n C(r) is closed in C(r), the linear measure of .E n C(r) exists;
we will denote it by I(r). By F\rbini's theorem

is

of

lr* \r) 
d,r: Are u(E) ) o,
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and so there exists an rs ) 0 with I("0) > 0. Then

"(E) > e(o nc(,o)) : *,0@n c("s))3 > o

since a set of positive length has positive capacity.

Proposition 6. -Let E1 and E2 be compact sets in C, and let the atea of
any triangle spanned by E : E1U E2 be bounded above by A > 0. Then

^(*)=^(+) *o(?)
where h(x) : (log(t/c))-1l'z.

Proof. Let V(21,...,2n) attainits maximumV"(E) on E at €r,...,(r,. Let
k of the points (; lie in E1 , the other n - /c in Ez. Using the estimate

l[€i,,€i,,ei"]l I /
when not all of (;r,€j,,€j,lie in .81 or lie in .E2, we get

v(€r,.. . , €,) < vx(Er)v^-x(E)A?)(";*)+(i)(";').

We take the logarithm on both sides and divide UV (ä) to get

roge,(.E) 
= E 

los e1(E1) . ff tosen-p(il2) + #((f) (";o) + (å) (";.)).

If we let r, --+ oo through a suitable subsequence, then lcfn - ) (0 < .\ < 1) and
we obtain

loge(E) < ,\3loge(E1) + (1- ))'loge(D2) + (1- (1 - ))t -.\3)log,4

or

^r#)'\3rog #+(1 -'\)3rog #
The right-hand side attains its maximum as a function of ) when

.\2log #:(1-))2tog #
Substitution yields the desired inequality.
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Proposition 6 is an analogue of a result that seems to have been first proved,
but not published, by Fekete for the transfinite diameter. The proof above closely
follows one given by Pommerenke [8, Theorem 11.4].

From Proposition 6 one can easily conclude that if Er, Ez, Es, .. . are
compact null-sets for transfinite extent, and E : Erl) E2u Es U'.. is compact,
then .E is a null-set for transfinite extent.

By a standard technique of potential theory, see carleson [1] or pom-
merenke [8], e(.8) can be extended to an outer capacity 

"*(E), 
and tle require-

ment that .E be compact could be removed from the statements of most of our
theorems.

Next, let h be a measure function, i. e., h(a) is defined and continuous for
r ) 0, lr(0) :0, and ä(o) is increasing. we define a measure oa(E) for compact
sets ECC asfollows:

an@) - liq -i+L ffn o s)(Area(G1))._g Ecuci Li

where s@) : (alr)t/2, and the infimum is taken over all finite coverings of E by
ellipses G; with Area(G7) ( e. The classical Hausdorff measure is given bV @
compact)

Ln(E): 
J33 Eått, D(n " e)(Area(a;))

x

where the infi.mum is ta^ken over all finite coverings of E by disks Åi with
Area(A;) ( e. Since ellipses include disks, it is clear that

oa(E) < 
^a(E).Null-sets for the measure O7, are connected with null-sets for tra,nsfinite extent as

follows.

Propositio n 7. Let h(a) : (log r)-tlz . Then nn@): 0 jmpfies e(E) : g

for compact sets E C C.
Proof. Let the area of any triangle spanned by .E be bounded above by

4 t 0: L2t G1 be a finite covering of E by ellipses with Area(G) < r. put
Ei: E o Gi, and assume

Then, using Proposition 6

J

(v i e(D1z'
and Proposition 1, we have

^(*)=?^(ry)
:T 

^(*Area(Gi)) sf &oe)(A,ea(G)).



Thus

,(9) < or,(E)

and so the assertion above follows.
We note that for h(a) : (t"S t) -'l' the measure O7, has more null-sets than

the measure A1 : for instance,
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oa([0,1]) :0, Äu([0,1]) : +*.
Proposition 7 is an analogue of a result about harmonic measure and hence ca-
pacity due to Lindeberg [7].

4. A connection with curvature

Proposition 8. -Let I be a C2 a,rc in the plane, zs an interior point of the
a,rc, and n the unsigned curvature of I at zs. Then

n:32tgeP
where D" is the closed disk with center zs and radius e.

Proof. We may without loss of generality assume that zs : 0 and that the
tangent to I at the origin is the o-axis. Then I is the graph of a function
y : f (a) in a suffi.ciently small neighborhood of z : 0.

We first consider the case rc : 0. If I reduces to a line segment near z : 0,
the assertion to be proved is obvious. If not, then

h(u): ___??t,lr(r)l , o

for u > 0. Since rc : 0, the function f(*) : o(r2) near the origin, and so

h(e): o(e2) as e --+ 0. F\rrthermore, for small e we have ln D" C .R, where
.R" is the axes-parallel rectangle centered at z:0 oflength 2e and height zh(e).
Now

e(I n D") < r(ft") : eh(e)e(Ro)

where .Es is the square of side length 2. Thus

:gt4*Dsr,s4P:o
and the asserted equality has been established for the case rc : 0.

We now suppose that rc ) 0. We may without loss of generality assume that
the circle of curvature C of. I at z: 0 lies above the o-axis. Clearly C is the
graphof afunctiony:g(c) near z:0.



284 Marius Overholt and Glenn Schober

We have

f (*) : lna2 + i@) and s(*): lrcr2 + k(a)

near o:0,with j(*):o(o2) and k(r):o(r2) as a--+0.
Consider an arbitrary triple a <b < c of points in [-e,e], with e so small

that I and C are graphs above l-r,,rl. To this triple there corresponds a tria^ngle
with vertices lying on I, namely the triangle spanned by (r, l@)), (a,11a;) ana
(",1@)), and a triangle with vertices lying or C, namely the triangle spanned
by (r, s@)), (t,s(t)) a.nd (c, sk». So by orthogonal projection from the real
axis, we have a bijective correspondence between triangles lying above [-e, e] with
vertices on I, and triangles lying above [-r,rl with vertices on C.

Let A be the area of the triangle with vertices (a, /(a)) , (å, /(å)) , (", f ("))
and.A* theareaof thetrianglewithvertices (o,g(a)), (a,s(A)) , (",sG)). Since

^:l!@+!(Dt - 
o)*'/(r) t r(") G - b) - f (") lrf (")(" - ,)1,

/. : 
| 

*P6 - o). t9+@(" - å) - s(a) ! s(c)(" 
-,)1,

we have
g(a) - s(b) s(c) - s(b)A*

A

If we apply the generalized mean
lute value brackets, we obtain

aT-T
f(")-f(u) _ f(")-f(u)

a-b c-b

value theorem to the expression inside the abso-

where a < ( ( c. Now apply the generalized mean value theorem again, on the
interval from å to (, to conclude that

A* l s"(€) I

7:17(01
Since /, g eC2 and /r'(0) : g"(0): K) 0, it follows that

A*: A(7 +o(r))

for e -+ 0, uniformly with respect to a, b, c. Therefore

A* A/
? - ä(1 +,(1))



arrd it follows that
t* ,(r 1D") : tim 

e(c 1D.) .
c+0 €ö c+0 eo

Now

e(C n D") : n-ze(»Dn D"^) : lolAon D"")3 : +rt* (?)
where -L", is the length of the arc on 0D cut out by a circle of radius erc. We
have

L"*:4arcsin(ferc)
and thus

e(c n D"): #.
So

.. "(t n D,) .. e(C n D.) .. ne3 KjgäT-: j'jä d : jgä B%': sz
and thus the asserted equality is true.

Proposition 8 suggests a definition for generalized (unsigned) curvature of a
compact set I at a point zs € I:

rc(l;26):32,Ig"ry
where D, is the closed disk with center zs and radius e .

It is clear that rc(l;zs) may easily fail to exist, though by replacing e0
by outer transfinite extent e*0, and limes by limes superior, in the definition for
n(l; zs), we may obtain a generalized curvature rc*(I; z6) that exists for any point
zo of arry plane set I, and satisfies 0 ( rc*(f; zo) S m.

Proposition 9. Let I be a compact set with positive area. Then k(l;zs)
: oo for aJmost aJl points zs e I .

Proof. Let zs be a point of density of I. Then there exists some €o > 0 such
thatifeSeo,then

Area(I nD,) > 
,e2

where D" is the closed disk with center zs ar.d radius e. We have
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where I(r) is the length of f t-l C", and C, is the circle around z6 of radius r.
Now
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and so

I.[ow assume that for

Marius Overå olt and Glenn Scåober

€t2-( r =l:":l::' ,,I'= krrhen we obtain

arrd thus k > hr /3 . So we see that there exists soro€ rs , e 12 l ro ( e, such that
I("0) > 2a'rs/3. Thus

e(lnD") > r(I nC^): | ,l,ffnc--)g
4r, 

*t' t t vto )

*o4r'rrn c,.))' 
= ?,r"(ä)' . fi

and so

rc(r;zs):s2Jg3P:-.
5. The n-extent problem

The n-extent problem (n 2 3) is the extremal problem

sup e"(l)

where the supremum is taken over all continua I of capacity 1. In this section
we shall see that extremal continua for the 3-extent problem are symmetric three-
pointed stars, and so they coincide with the extremal continua for the 3-diameter
problem (cf. [3, 9, 11]). Therefore it is somewhat of a surprise when we show that
extremal continua for the 4-extent and 4-diameter problems are different.

We have
supe,(l) : sup""(C \ /(l4l > 1))

" ,.,
where E denotes the familiar class of normalized univalent functions /(() : ( +
»fo bxC-k i" l(l > L. Since E is compact modulo translations, it foliows that
the supremum is always assumed.

Now suppose that I is extremal for the n-extent problem. Then there exist
points ZLt. . ., zn el such that

"(r) - (,=r,Jlr"=,1 l'j"Zj"zjsr l)'/(Å) '
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In order to compute areas, we shall use the formula

287

llzi,,zi",'i"ll: Iltm {12v, - zi)(zi, - zil}l'

Thus it will be convenient to denote

Ajrjri":Im{Biriri"} where B jrjrjr: (rj, - zi)(Zj2 - 2j"),

so that llAiririrl is the area of the triangle fzi'zir,,zirl.
Since e"(f) > 0 for an extremal l, aII Ajrjrj, are non-zero and we may

replace the functional e"(l) by the equivalent functional

Re » log Ai,izia.
1(r,. 1jz1ja1n

If we perform a Schiffer boundary variation ("f. [10]) "f the form

?n*--u)+ € 
*o(e)u)-z

within », it induces a variation

,i : ,j * ** o(e)
.1 '

of the zi's ar,d thus a variation Ajrirj, of the Aj, jrjr 's. A calculation shows that

Re ros AI, i, i, : Re ros A i, j, i 
" - ofirr- {, (* -';fr} *)*o(e ).

Thus Schiffer's fundamental lemma [10] Ieads to the differential equation

» 
i (Bi,i,i, Br,i,i,\ dzz

,.i,.i,'.i"., A'u* \;t:= - ;= ) a" - "' 
o

for the n-extent problem. That is, an extremal continuum I for the n-extent
problem consists of analytic arcs satisfying this differential equation.

We now consider the 3-extent problem. Then the differential equation has
just one term, and by permutin I zt t zz , Z3 we may assume that Atzt ) 0. Thus
the equation takes the form
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where B : Bns
zlt zzt zg. None
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The quadratic differential appears to have three simple poles
of them is removable. For if zy were removable, we would have

(B-B)21+Bzr-Bz2:g

ot B(21 - rr) :0, which is impossible since Im{B} : Arzs> 0 and a + 22. The
sa,rne reasoning shows that z2 is not removable. If z3 were removable, we would
have

(B-B)zs+Bzr-Bz2:g
and this leads to the conclusion that zr : zz, which is impossible.

Since I is a continuum, the trajectory arcs from zt, 22, ,z3 rrrust join up at
some point, and this point must be a zero of the quadratic differential; thus it
must be a, zero of the numerator (B - B)z * Bzr - Bzz. By . translation, we
may a,rrange for this point to be origin. Thus Bzr - Bzz: 0, and since B + 0 , it
follows that lzl l: lrrl. By interchanging the role of z2 and .z3 , saf, we find that

lrrl - lrrl: lrrl.
Since B - B : 2iA12s,, the equation for the

the form
3 -extent problem finally takes

N-,H

QrQ) dzz > o where QrQ)- (z-z1)(z-zz)(z-4)

This is the same difierential equation as for the 3-diameter problem, but we have
arrived at it through a different choice of accessory parameters.

By rotation, we may assume that z1 > 0. Then, following Kuz'mina 14, p.92],
thereisbyLemmal.2of [a] apoint zo € (0,21) suchthat Q(26) > 0. Thisimplies
(22 - zs)(zs - "o) 

> 0. Thus z2 alc.d z3 lie on conjugate rays issuingfrom the real
point zs inside the circle lrl : , on which zt t 22, zs lie. As a conseqtrar'ce, 22

and z3 are complex conjugates. Now it follows that the trajectory joining 0 to z1

is a straight line segment. Similar arguments with respecl to z2 and z3 imply that
trajectories from the origin to these points are also line segments. Finally, since
the origin is a simple zero, these segments emanate at equal angles, and since the
points Zt, Zz, 23 äta simple poles, the segments terminate there. Thus we obtain
the following.

Proposition 10. The extremal continua for the !-extent problem ate sym-
met ric thr ee- p oint ed stars.

The functions in E that map onto the complement of symmetric three-pointed
stars are translations and rotations of /(O : ((1 + e-\2/3. Its omitted set
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I : C \ /(l(l > r) is the star with tips at the points zp : !2/322d(k-L)/3 ,

es@13{
22/3

is a sharp inequality for all continua E with capacity equal to one. In fact, we

are led to the same result by combining the solution dr(E) < gr/z2z/s to the
corresponding 3-diameter problem [3, 9] with Proposition 4.

In contrast to the 3-extent and the 3-diameter problems, we shall now show
that the extremal continua, and hence solutions, for the 4-extent and 4-diameter
problems are different. Assume, to the contrarS that I is a common extremal
for the two problems. Then I satisfies the differential equations Qa(z)dz2 > 0

for the 4-extent problem and .Ba(z) dzz > 0 for the 4-diameter problem [3,4, 9],
where

Qn(r) _
i, (Bjrjzjs Bi,,jrj"\ 1

,\f-" \rr', - , - ,J, 
-, ) zj, *'1(rt 1jz1js1a

Ru(r) -
-1

1(rr 1jz1a
(ri,-z)(rir-z)'

Since I satisfies both equations, it follows that the quotient Qa(z)lRa(z) is real
and positive along I. In particular,

q - ,1ä (z - ,t)Qa(z) - Atjx(zx - 21,)
2< j<k<4

-1

./_ \Llzt - zi)

T2< j<k<4

and

iB, jx

r - )ry,Q - z)Ra(z): »_
2<i34 zi - zt

have the property that qf r is real.
The extremal continua for the 4-diameter problem are known [4, Theorem 2.3]

and, for example, their endpoints form the vertices of a rectangle. After a trans-
lation and rotation, we may assume that

21 -fi*iyt zz-fr-iyt zs: -fr-iA, 24: -r*|y

where ff > 0 and y > 0. Then

Atzs:Atz+:AfiE-4uY

and so
.(-2*, -2r-2iy , -2iy\ r+iyq- '\+** 4.y W)- i*y'
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the 4-diameter problem the endpoints of the extremal continuum do not form the
vertices of a square, and so we are finished. This yields the following.

Proposition 11. No confinuum can simultaneously ma><imize the 4-extent
a,nd the  -diameter arnong continua of capacity one.
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