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ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS I
K. F. BARTH and D. A. BRANNAN 1 2

1. Introduction

This paper begins a study of the asymptotic tracts of functions that are either
harmonic or subharmonic in the plane. An asymptotic tract of such a function u(z) is
a component of the set {z:u(z)=c} for some c€R; we will often, without loss of
generality, suppose that ¢=0 and u(z)=0 in the tract. In this paper we deal with
the relationship between the size (“‘angular width”) of asymptotic tracts and the
growth of the function itself; in a second paper we will emphasise the topological
properties of tracts. Our main tools here will be a modification of a theorem of
Tsuji [9; Theorem III. 67, p. 112], [10] to prove positive results and the Ahlfors—
Warschawski distortion theorem to show that these results are best possible.

In Section 2 we prove:

Theorem 1. Let u(z) be subharmonic, non-negative and non-constant in the plane.
Suppose that every sufficiently large circle centred at the origin meets the set
{z: u(z)=0}. Let {D,} be an enumeration of the family, &F,of components of
{z: u(z)>0}. Then:

(a) Each component, D, is unbounded.
(b) u is unbounded in each component Dy.
(c) Let the order, g, of u(z) in each tract D, be defined by the formula:

. log |u(z)|
&%= 8, Togld

Then 3, 1/0,=2, where 1/g, is taken as zero whenever g,= + .

Theorem 1(c) can be thought of as an analogue of the Denjoy conjecture for
harmonic functions (see remarks at end of Section 2), and is closely related to theo-
rems of Kjellberg [5; Theorem II, p. 349] and Heins [3; Theorem 5.1, p. 74]. Sections
3 and 4 contain an array of examples showing that Theorem 1 is best possible; in
particular we will prove:
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Theorem 2. Let g, be defined as in Theorem 1(iii). Corresponding to each of the
Sollowing situations there exists such a function harmonic in the entire plane:
(@ 0:=2;
(b) 2i_1 1/ew=2 for any given n=2;
©) 21 1/ow=2, where infinitely many of the g, are finite;
(d) For any given ¢ with O<o<2 and any given n=1, 3} _, 1/o,=0, where all
other 9’s are + oo;

(e) For any given o with 0<o<2, 37 1/o,=0 where the sum is taken over all
finite o, (of which there is an infinite number) and all other ’s are + .

Some of the above examples can be constructed by other methods, but we prefer
to use the Ahlfors—Warschawski approach since it provides a unified treatment of
them all.

The next theorem is an extension of [1; Theorem 1, p. 363]. We make an assump-
tion on the “angular width” of the tract, and thus obtain a more precise estimate of
the growth of u(z) on I' (see below). Note that (c) (below) is always satisfied if a=2,
so that our result includes [1; Theorem 1].

Theorem 3. Let the function u(z) be subharmonic in an unbounded domain D
whose complement meets every sufficiently large circle centred at the origin, and let
a0 (o) denote the length of the set Dn{z: |z|=0}. Suppose, in addition, that:

(@) lim,_.;, sup,¢p u(z)=0, where £ is any finite boundary point of D;
(b) u(zy)=0 for some zy€D; and
(©) for some =0, some a=0 and all sufficiently large r

v

1 fr dG' _1
logrJr al(c) — am’
Let ¢(r) be a positive increasing function of r such that [ @ (1)t~ @+ dt< + o,
Then there exists a path I' going to infinity in D such that

Jim inf £

2oy T

Just as in [1; p. 368] we observe that we could choose I' in Theorem 3 such that

u(2)
=+
z=zel @(|2])

The theorem of Tsuji plays the same role in the proof of Theorem 3 that the Carle-
man—Milloux inequality played in the proof of [1; Theorem 1, p. 363]; it takes into
account “how big” (in the angular sense) C—D is.

Finally, in Section 6 we construct an example (Theorem 4) that shows that Theo-
rem 3 is essentially best possible.
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2. Proof of Theorem 1

(a) Let D be any member of &. Then the function

u(z) if zeD
”(z)={0 if 24D

is also subharmonic in the plane.

Assume, on the contrary, that D is bounded, and choose an R>0 such that D
lies in Dg={z: |z|<R}. Then u(z)=0 on 0Dy, and so u(z)=0 in Dy by the har-
monic comparison principle. Hence D=@. This contradiction shows that D must
be unbounded.

(b) The Phragmén—Lindelof generalised maximum principle [6], [8; p. 176]
shows that since u is non-constant in each D, then necessarily u is unbounded above
in each D,.

It follows from a result of Talpur [7] that each D, must contain a path going to
o on which u(z)—+ oo.

(c) Our main tool here is the following lemma, which is a straightforward
modification of a result of Tsuji [9; Theorem III. 68, p. 117]:

Lemma 1. Let D be a domain in the plane whose boundary meets every circle
{z:\z|=r} foreach r=r,. Let u(z) be a non-constant function subharmonic in D such
that lim sup,¢p, ;-4p (2)=0, and let x be any constant with 0<x<1. Then if u(z) is
unbounded above in D,

logMy(r) = nf: E)%—c(x),

where My (r)=sup {u(z2): |z|=r, z€D}, 10(t) is the length of the set DN\ {z: |z|=t},
and c(x) is some constant depending only on x.

First choose any positive integer n; then choose some ry=r,(n)>0 such that
the components D,(1=k=n) in & all meet {z:|z|=r,}. Since u(z) is unbounded
in D,, it follows from Lemma 1 (with »x=1/2) that

riz dt
log Mp, (r) = 77:fro W—Cna
where the constant ¢, depends on the choice of r,, and so on min {|z|: zEdD,,
1=k=n} — that is, on n.
Take any &>0. It follows from the definition of g, that for all sufficiently large »

log Mp, (r) < (o, +¢) logr,
so that, for r=>2r,,

r2  dt
(oc+€)logr > nf,o W—cn.



218 K. F. BArTH and D. A. BRANNAN

Nowsince 0<0,(1)=2r for t=r,, it follows that

vz dt ri2 dt 1 [ r )
—_—= —=—1 —] > — oo,
”f,o 10,(0) ”f,o 2nr T2 OB as r

Hence as r becomes large we have that

o tOk(z) [1+0 (1011;;»)]’

(@+9logr>n [

which we can rewrite as

¢)) Qk:_g IOgr [ +0(logr]]/ v tgle) '

Now by the Cauchy—Schwarz inequality
2 dt)? _ ( riz 0,(1) )( rz dt )
(fro —t_) = f)'o t d’ f'o t@k(t) ’

vz dt r/2 0(t)
S, oo =% (:/zu,)f g

Fo

so that

Substituting this upper bound into (1) and summing over 1=k=n for any n,
we deduce that

n 1 logr-[1+0(1/logr)] priz ,<n dt
Sl =T wlpthry o G 6O
_ 2logr-[1+0(1/logn)]
log (r/2ro)

Letting r—oo gives that 37 _, 1/(o,+€)=2; and, since ¢>0 is arbitrary, that
-1 1/o,=2. Since nis arbitrary, the result follows.

Remark 1. The function u(z)=log™ |z| shows that for the result of Theorem
1(c) to hold some hypothesis such as that about ‘all sufficiently large circles” must be
necessary.

~ Remark 2. Since for any function U(z) harmonic in the whole plane the func-
tion u(z)=|U(z)| is subharmonic, it follows that the result of Theorem 1(c) can be
thought of as an analogue for harmonic functions of the Denjoy conjecture for entire
functions.

Remark 3. The function u(z)=|Re (z"?)|, n€N, is subharmonicin C; here &#
consists of n components in each of which the order of u is n/2. This shows that
equality can occur in (c).
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3. Proof of Theorem 2(a)

Firstly we will construct a harmonic function in an unbounded domain in the
plane; then the function harmonic in the plane that is obtained by approximating the
earlier function via Arakelian’s theorem has the desired property.

3.1. The auxiliary mappings. Let C; be a curve in the #-plane whose polar equa-
tion (in terms of (r, ¥)-polar coordinates) is given by t=ret¥® (4=0) where
V(r)=n—(1/2)O(r) for some function @ (r) continuous on [0, <) with the following
properties:

@ ©(0)=2mx, lirrn_g ) =0;

@) M ([0, =);
(iii) O (r) is strictly decreasing on [0, <);
@iv) rO’'(rn >0 as r—>oo;

) /w r@'(r)édr <+ oo

o) [Trle@dr < +e.

[For example, @ (r)=2r/(1+r)* is quite satisfactory for any choice of £>0.]
For use in what follows we first examine one consequence of conditions (i),
(iii) and (vi) on the function @. Since from (i) and (iii),

- O0(o) _ (o)
o[l-(12m)0(9)]  e[l—-(1/2m)O(D)]

for 1<g<<o, it follows from (vi) that

o (o)
I a=tmmewr =t

0

Now define

o (o)
I(r) = f1 o[I—(i/21) 0 (0)] de.

Since the above integrand is positive, I(r) is strictly increasing; and as it is bounded
above, there must exist some u=>0 such that

?2) I(r)>pu as r—oo,

Next, let D, be the component of C—C,; that contains the point 1. We can map
D, onto a ‘strip-like’ domain D, in the z-plane by means of the mapping

z= %Logt = %—{loglt]-f—iArgt},

where we take the principal values of Log and Arg. Hence if z=x+iy and |t|=r, we
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have that
(3) x=clogr, y=3Argt.
Since D, is symmetric in the real axis, so is D,; indeed:
D, ={z=x+iy: 2|y| < n—(1/2) O (e*)}.

Notice that 0, e as boundary points of D, correspond to — e, = as boundary points
of D,.
Next, let w=w(z) map D, onto the domain

D; = {w = u+iv: [v| < n/2}
with — e, + oo corresponding in each case. Finally we map D; onto the domain
Dy={{=<¢+in: & >—1}

with — oo, + e as boundary points of D, corresponding to —1, <« as boundary
points of D, by means of the mapping

{=e"—1.

First, we have to determine the pre-image, I';, in D; of the line I'y={{: Re {=0}
in D,. For the mapping D,~D;, we see from the Ahlfors—Warschawski distortion
theorem [11] — assuming that certain conditions are satisfied — that

SN = ds D
O] w(x+ly)--}»+o(l)+7tfo e(s)+m—0—(5
(as x— oo, uniformly in y), where 4 is some real constant and 0(x)=n—(1/2)0 (*).
The two conditions that must be satisfied for (4) to hold are:
W’ 0’(x)—>0 as x—-+oo, and

l) f (X)z dx< + oo.

In (i)’; 9’(x)— —ez"@ (€%); it follows from our hypothesns (iv) on the function @
that (i)’ is indeed satisfied.
In (ii)’, we have that

w § (x)2 o eO(e™) r@’ (r)? .
O [l apee v =1l imem ™
it follows from (5) and our hypothesis (v) on @ that requirement (ii)’ is also satisfied.
Consequently the formula (4) is valid.
Under the mappings between the various domains, let us specify that the follow-
ing points correspond:

6 {O+ir1 in D,, u+iv in Dy,
© x+iy in D, and rexp[xi(z—e(r)] in D.
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We take this last expression to be our definition of &(#)>0. Part of our work will
be to show that, for large values of |y|, e(#) is very small; notice that, by symmetry,
it is sufficient to consider only positive values of 5.

Now for the mapping between the points in (6) in D; and D, we have that

e*tiv—1 = 0+in,

so that e*cosv=1 and e"sinv=5. Hence on the pre-image in D; of
I'yn{¢: Re {=0} we have

@) cosv=e"* and sinv = (1—e" )2
Next, for the mapping between the points in (6) in D, and D, we have that
®) x = -;-logr and y= —;—[n—a(r)],

where we have used the fact that the upper half of I'y must correspond toa part of I'y
in the upper half-plane.
Finally we see from (4) that for the mapping between the points in (6) in D, and

D; we have that

u= i+o(1)+7rf: n-——(l/gew and
) ;
v= 0(1)+ﬂmm.

From (8) and (9) we see that

_ n wm e()—(1/2)0(®)
*Ory T S amer)

_n—e()

v=o()+3 2 s (l/Z)O(r)

so that

. n e(r—(1/2)0(r)
cosv=sm{0(1)+"' T— (1/2)0(r)}

n{o(1)+-;—a(r)} (for r large),
since @(r)~0 as r—o (by (i)). Since 0<(1/2)e(r)<(n/2) it follows that
(10) cosv =o0(1)+5 e(r) (r - ).

Next, we see from the first equations in each of (7) and (9) that

e =on oo |-} e

pa— i dg
= exp {—A+o()} exp {—f1 20[1 —(1/2n)@(g)]}’
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where we have used the substitution ¢=e*; consequently,

F (e
S mn=apn e dof

re_m =exp {-1+0(1)} exp{—

1
(1 - exp [—A—z; u] =L, say,

where O0<L<1. In other words,
(12) e “~Lr~12 (as r —><).
Substituting from (10) and (12) into (7) we get that
o(l)+—;—s(r) =cosv=e *~Lr 1 (r—>o),
and so in particular that
(13) e(r) >~ 0 (asr —oo).

Now let the composition function mapping D; onto D, be denoted by

[ = & @O +in (D).

Then by Arakelian’s theorem [2] there exists an entire function f(¢)=¢(1)+in(r)
with the property that

a4 If()—=f1(O] = e=*UD (1€ Dy

for any pre-assigned increasing function ¢ with [* ¢(x)x~%*dx<+ <. Without
loss of generality we may suppose that ¢(0)>log, 10, so that it follows from (14)
that

as) EO-&01 <5 (€D,

In particular we can deduce that &£(r)=—11/10 everywhere in D;.
3.2. The approximation (7). Let the set D; be defined to be
Dy = {t: teDy, &, (1) = 0}.

Then 9D, is the pre-image under a one-one map of the Jordan curve {{: Re{ =0},
which is a connected point set; hence @D is also a connected set and a single Jordan
curve from oo to . Hence D) is unbranched in the sense that given any point 7] in D;
all curves in D] from #; to e are homotopic in D]. [An equivalent definition of D}
being unbranched is that its complement is an unbounded continuum.]

Further, we know that £(¢) must be unbounded in D, since &, (¢) is unbounded in
D, . Thus there exist points in D; where & (#)>1/10 and so necessarily £(¢)=0; it
follows that D”={¢t: 1€ D,, £(¢)>0} is non-empty. We now check, in turn, the va-
lidity of the following three assertions:
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()" D"cDs;

(ii)” D” has only one component; and

(iii)” D” is unbranched.

To begin with we know from the definition of D” that D”cD’. If in
fact D”d D,, there would exist some point t"€dD”ndD,, and so &(t”)=0 and
£,(#")=—1; consequently |&(t")—&,(¢”)|=1, which is impossible in view of (15).
This completes the proof of (i)”.

Next, we can use an argument similar to that above in the case ¢=0 to show
that each of the sets

{t: €Dy, &(F) > ¢}, ¢ ==£1/10,

is an unbranched and unbounded Jordan domain. We now consider the open set
S = {t: t€Dy, & () > 1/10};

in view of (15), £(#)>0 in S; hence there exists a component of D”, call it Dy, say,
that contains S. Let D, be any other component of D”; since DuynDy=¢, we
must have

(16) D, C {t: t€D;, —1/10 < &,(1) < 1/10}.

On 9D, we must have {(t)=0 and inside D,y we have £(¢)>0. But since D,
is a component of D” and &(¢) is harmonic in the whole plane, it follows (as in Theo-
rem 1(a), (b)) that D, must be unbounded and that £(z) must be unbounded above
in D). Hence there must exist some point #y in Dy with £(#))>1, so that by (14)
we have that & (f))>9/10. This contradiction with (16) shows that no such compo-
nent D, can exist, and completes the proof of (ii)”.

Next, suppose that in fact D” were branched. Then, given any point d” in
D”(c D,) there must exist two disjoint (apart from the point d”) paths I'y, I', from
d” to <o both of which lie in D” and such that I'y, I', are not homotopic in D”. Let
D3, be that component of D,—(I';ul’;) such that dD;ndDg=0; since D” is as-
sumed branched, it follows that D3, ¢ D”.

Hence, using the local behaviour of harmonic functions we see that there must
exist some point #(3,in D3y with ¢(¢3))<0. Let D 4, be the component of {r: £(¢)<0}
that contains #;,; since Dy, is connected, it follows that D4, CDs,. Because &(1)=0
on 9D, and ¢(t)<O in Dy, we can deduce, using arguments similar to those in
Theorem 1(a), (b), that D,y must be unbounded and £(#) must be unbounded below
in Dy, ; in particular, there must exist some point #.4) in D 4, where &(#4,)<—2. But
since ¢4 lies in D; we must have & (¢4))=>—1, so that [£(74))— & (24))|=1 — which
is impossible in view of (15). This contradiction completes the proof of (iii)”.

Now we define the family of domains {D(c)} by the following:

D(c) = {t: €Dy, E(t) = ¢} (c =-9/10).

In the same way as done above for D(0)=D", we can show that each set D(c) is
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non-empty and unbounded, has its closure a cubset of D;, has only one component,
and that component is unbranched.
In view of (15) we have that
D, (c+1/10) € D(c) © Dy(c—1/10) (c =—9/10),
where
Di(c)={t: t=D, &, () =>c} (c=-1).
The domain D, (c) contains the segment [ f;(c+1/10), + ) of the real axis, and
hence o does D(c). For each r=>f,(c+1/10) (and we must have f(c+1/10)>0
since f;(c+1/10)€RND,), denote by r0,(c) the length of the arc of {¢: |t|=r}nD(c)
that meets [ f,(c+1/10), + ). Then the same argument that was used earlier for
points of D] to show that &(r)—~0 can be repeated for the points r exp ((1/2)0,(c))
on 0D(¢) to show that 6,(c)—~2rn as r—-<e. In particular, for the domain D”=.D(0)
we have that 0,(0)—27 as r—e.

3.3. The growth rate. We now examine the growth rate as »—~< of
M) = max {£(7): teD”, 1] = r}.
In view of (15) we have that
an M(r) = M,(n)+0(1),

where M, (r)=max {{,(¢): t€D”, |t|=r}.

To begin with, however, we look at the growth rate of M, (r)=max {&(¢):
t€D,, |t|=r}. Our aim is to show that M(r), M,(r) and M,(r) all ~(1/L)r'/?
(as r—oo), where L was given in (11).

Consider the point 7=re’® (where |p|<n—0O(r)) on {t: |t|=r}nD;. Asin
Section 3.1 this point corresponds to a point, x,+iy, say, in D, where

(18) x,=-§-logr and y,=—;-go.

This latter point corresponds to a point, u,+iv, say, in D; where (again using the
methods of Section 3.1) we have that

ds

w= it [ o

(19)
v,=o0(l)+=n rlﬂy)lm
where A is real and o(1) is a term tending to zero as x, (and so r) tends to + oo, uni-
formly in y, (and so in ¢). The corresponding point in D, is &,+in,, where
(20) ’ §, =e*cosv,—1 and 1, = e sinv,.
Then k'

@y - M) max{{: r fixed, |p| < n—0(r)).
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By exponentiating the first equation in (19) and following the same method as in
Section 3.1, we see that for 7€ {¢: |[t|=r}nD, we have

22) en = r'exp {2+0(1)} exp {f : 29[1( ]—/%T/)Z@n)( 2(9)1 dg}’

where the o(1) term in (22) is the same as that in (19), and so tends to zero as r->=,
uniformly in ¢@. Hence as r—e we have that e*~ (1/L)7'/%, uniformly in ¢.

Now ¢ can take all values between +[rz— @ (r)], and so y, can take all values
between +[n— O (r)]. Hence, as r— o, (19) shows that v, can take all values be-
tween 1 v,, say, where O<v,<n/2 and v,—7/2 as r—>oo.

Combining this observation with (20), (21) and (22) (with its uniformity in ¢),

we deduce that

Ml (r) ~ P2 gAtrl(Ar) — __117 plr2

~fi(r) = &i().
Since réD” and D”cD,, it follows that
29 ML(")"‘Ml(")"‘gl(");
and finally, since f;(r)—~< as r—<o, (17), (23) and (24) together give that

(23)

(29) M)~ &)~ P
This completes the proof of Theorem 2.
Remark. In fact (25) is more precise than the result
lim log M(r’log r = +
which we set out to prove.

4, Completion of the proof of Theorem 2

The details of the arguments in the construction of suitable functions in parts
(b)—(e) of Theorem 2 are broadly similar to those in part (a), except that there is
an additional mapping of the half-plane D, onto sectors of suitable angles.

Part (b). Choose an n=2 and any positive numbers g,, ..., 0, Wwith
-1 1/e,=2. Then using techniques similar to those in part (a) we can construct
an entire function f(t)=¢£(¢)+in(¢) with the following properties:

(i) £(t)=0 in unbounded unbranched regions

Dy, ...,D, and &(#) =0 on 0D,,...,0D,;

(ii) £(t)<0 in unbounded unbranched regions

D,i1s.-..D, and E() =0 on 9D,44,...,0D,;
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(iii) the order of &é(¢) in the tract D, is g,, 1=k=n; where category (i) or cate-
gory (ii) can be empty, as desired, and m can be arbitrarily chosen.

Firstly, we choose a sequence {6,};_, of real numbers and consider the closures
of the domains

S, = {t: larg (t—ei®%)| < n/20)} (1 =k = n).

Then for 1=k=m define the function f£;(¢) in S, to be any function mapping S,
one-one onto {¢:Re é=—1} with fi(e¥)=—1, and for m+1=k=ndefinef; in
S, to be any function mapping S, one-one onto {¢:Re¢=+1} with fi(e)=1.
Next we approximate, using Arakelian’s theorem, to £ in |J;_, S; by an entire
function f(t)=¢&(¢)+in(¢) in the same way as in part (a); and, as before, there exist
tracts in the plane in which &(¢) has the properties (i), (ii) and (iii).

Part (c). Choose any infinite sequence of positive numbers {g.}i_, with
-1 1/0=2. The construction is similar to that in part (b), except that we have to
ensure that no finite point has a neighbourhood that meets more than one S . There-
fore we choose sectors S, of opening 7/g, with radial midlines and with vertices at
the points r,e® where r,=1+k, 0;=0 and 0,,,=0,+7/(20)+7/(20,+1) (k=1).
The same mapping-and-approximation method then works successfully.

Part (d). Notice that the result of part (b) is that of part (d) when o=2. Inview
of Thsorem 1(c) we know that the order of the final harmonic function &£(¢) must be
infnite in all tracts except those associated with the sectors S, in our construction;
when <2 we have to be careful to ensure this is still so.

Firstly for given ¢, and o we define the sectors

S = {t: larg(t—e®9)| < n/2e)} (1 =k =n),

where 0,=n/(2¢,) and 0, ,,=0,+7/(20x+1) (1=k<n). All the sectors S, lie in the
sector
Sy = {t: 0 <argt < on},

and are disjoint ; in fact the set
(S(,) el U:=1 Sk) N {t: Ifl > 1}

consists of (n+ 1) half-strips whose sides are parallel and whose ‘ends’ are arcs of
{t: Jt]=1}.

Next we define the open sector
D () = C"?«);
this has axis of symmetry
A={t: argt =—(1—-0/2)7},

and is convex in the direction of 4. Now define point sets (‘chevrons’) {T,,}=_, and the
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set E as follows:
T, = 3D(a),

T, ={t: t+me=1=PmcT} (meN),
and

E= (Ui, S)v(Un_o Tw)s

E is closed in C, and its complement is connected and ‘connected at =’ (in the sense
of Arakelian).
Now we define the function &,(¢) on E as follows:

(- m+1 (teT,,, m=0)
=10 ={é,-(t) (t€5;, j=1),

where ¢;(¢) is the real part of any analytic function that maps S; one-one onto the
half-plane {¢: Re £=—1/2}. By Arakelian’s theorem there exists a function &(¢)
harmonic in the whole plane such that

O -8 <35 (€E).

Then the components of {¢: £(¢)0} are all of one of the following types:
(i) subsets of S, (1=k=n);

(ii) contain a T, but disjoint from T,,_; and T, (m=1);

(iii) lie between some T, and 7,413

(iv) lie in  Siy—(Us=1 Si)-

Arguments similar to those in Section 3 show that there are precisely » tracts
of type (i), and the order of £(¢) in these is ¢, ..., ¢,; and a straightforward appli-
cation of our Lemma ensures that £(¢) has infinite order in all the other tracts. This
completes part (d).

Part (e). Here we are given 6€(0,2) and ¢,>0 with 37, 1/g,=0.
For each k=1 we construct a sector S; as follows:
S = {t: larg (t—re®)| < m/gi},

where r,=k, 0,=m/29, and

7r+ T
204

Ocsr = 0+ (k=1.

2041
All the S, lie in the sector
Sy ={t: 0 <argt <on},

and subtend at 0 an angle of {¢:|f|=r} which tends to 0 as r—e-. The S, are dis-
joint from each other and from the complement of S,,.

We can then “fill” the complement of S,, with ‘chevrons’ {T,}=_,, as described
in part (d), and the rest of the argument follows as above.
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Remark. In the case where =0 in Theorem 2, we note that the function
£(n) =Re(¢)
has infinite order in each tract {¢: £(¢)=0}.

5. Proof of Theorem 3

This follows exactly as in [1; pp. 366—367], once we have proved

Lemma 2. With the hypotheses on the domain D of Theorem 3, there exists a
Sfunction v(z) harmonic in D such that
v(2) = o(lz) (z€D).

Proof of Lemma 2. We use the notation and method of [1; Lemma 1, p. 364],
with F there replaced by dD. The argument starts out in the same way ; as before the
key step is to show that the »(z) in equation (2.3) of [1] is not identically + o, by
finding some upper bound on v(z,) at some point z, in D.

As in [1], we have that

(26) 0, (2) = 325 9 (R4 ) @,,n(D+0 (Re)
= 31k 0R+) 0, (D +0(Ry);
but now we estimate w, not by the Milloux—Schmidt inequality but by
Lemma 1. Thence, with »=1/2, we deduce that

d
@7) @y (z) = (1/2)1/2 P [ Tzollz 09?6)

so long as |zo|<R,[4; hence we choose K so that Rg=4|zo|+ry+2r,.
Using hypothesis (c) of Theorem 3, we can bound the right-hand-side of (27) to
obtain

(28) @,(20) = A (29, ) RT*
where, A(z, r,) is some constant independent of v; it follows from (26) and (28) that
(29 vr,(20) = A(20, 1) 2 @ (Ry51) RTV*+0(D).
Now,
Ry (P([) +2
(30) o = o@Rpr) f " tm,a

= (R4 ) AR — R}
= (p(Rv+1)AaRv l/a’

where A, is a constant depending on « (and not necessarily the same on each occur-
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rence), and where we have used the fact that R,=2". It follows from (29) and (30)

that
v+2 t
(31) UR (ZO) =4 A(Zoa 7'1) Zv—Kf ) t(lp-i-(l?az dt+0(1)

= 4,40, [ 153 dt+0(1);

as the upper bound in (31) is independent of n, the proof of Lemma 2 (and thus of
Theorem 3) is complete.

6. An example related to Theorem 3

In the opposite direction to Theorem 3 we now prove
Theorem4d. Let B€(0, 2), and let () be a positive increasing function on [0, o)
with

. _ RAGE
t_l’l_r*_nw!p(t)—"}-oo, f1 T dt =

Then there exists a function u(z) harmonic in C with the following properties:
(a) In every tract T in the family {z:u(z)#0}, we have

lim su L f r do_ 1
P logrYr, 60(0) pr
for some value of r,, where 60(a) denotes the length of the set Tn{z: |z|=0}.
(b) Onevery path I going to = on which |u(z)| -, we have

e
L)

Remark. Theorem 2 of [1] is essentially the case f=2 of this result.

v

<+ oo

Proof of Theorem 4. This follows the same pattern as the proof of Theorem 2 of
[1; see pp. 368—384]. We indicate here only the necessary changes in the argument,
and we use the same notation as in [1].

The general idea is that Theorem 4 on page 368 of [1] still holds for our function
Y/, but the extension domain D must be different so that conclusion (a) will hold.
Then in the proof of the Corollary on page 368 of [1] we do not use Mergelyan’s
theorem and arrange to have a harmonic polynomial that approximates only on the
extension domain; instead we approximate on the extension domain and to a con-
stant +1 at other specified parts of the plane, using Arakelian’s theorem. Later we
use Mergelyan’s theorem on a very much larger domain so that we can approximate
Arakelian’s entire function by a harmonic polynomial, ready for the iterative appli-
cation of Theorem 4 of [1].
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To begin with, we use the basic approximation results of Sections 3.1 and 3.2 of
[11, as well as the construction of a D, in Section 4 of [1].
In Section 4.1 of [1] we make the following different choices for Q’s:

an = R#e_mnﬂ, Q2y+1 = Rueiﬂn/4'

Then the choices of S’sand T’s is such that the sectorial region in (4.3) of [1] is re-
placed by

(32) Su = {Z: Ru < IZI = R:u Iarg Z' = ﬁn/z_”u+1};

otherwise the discussion of the extension domain and the harmonic functions on it is
much the same.

The argument in Section 5 of [1] is unaltered, down to (5.3). On this occasion
(5.3) is still valid, where this time we apply Harnack’s inequality [4; p. 31] to the
function ¥, the compact set {0, 9R, }, and the domain R=(D,—4,)ud,, where

4, = (DD —DWy A {z: |z| = R,}
and
4, ={z: R, <|z| <100 R,, |arg z| < Br/4}.

Then in an argument analogous to that on page 384 of [1], we choose an R >

100R, such that

(9 R,,)ll(zﬂ) R’ e |/,(;-)
260 f pEST) dr = M,C,.

Now we choose a f§; with 38/4< ﬁ1< f such that

© Ru)l/(z”‘) Ry Y(r)
2([317:)— 9R,, TR

and define 7, , by the formula

dr > Mzcu,

B = Pr—2n,41.
Applying Lemma 6 of [1] to (5.3) then shows that

9R )/(281) R’ /9 r
V;t(9‘Rn) = ( 2(”;17.[) f It r1+(1/33
so that again o,<l.

The important points to note in the above argument are that our sectorial region
replacing that in (4.3) of [1] has an angular opening fn—2#,,,<pn, and that the
argument only requires that R, be larger than some minimum size — for any addi-
tional condition that we wish to put on the minimum size of R all the above

argument will still apply. We also need to arrange that

dr >a,M,C,;

(33) log R, < (log R))Y2.
With S, defined by (32) and T, defined to be
(34) T,={z: R, <|z| <R, larg(—z)| < (1-p/2)7},

both S, and T, lie in the annulus {z: R,<|z|<R;}, and they have disjoint closures.
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Now we have to prove the analogue of the Corollary on page 368 of [1], with the
additional requirement (a) of our Theorem 4 on the components of {z: v(z)=0}; for
then the proof of the present Theorem 4 follows immediately.

Suppose that at some stage of the construction we have a harmonic polynomial
v,(2), and that we choose some suitably large R so that after applying Theorem 4 of
[1] all our extensions lie in {z: |z|<R/2}.

We then construct an extension domain D associated with the disc {z: |z|<R},
as described at the beginning of this proof. For 1=u=N, let 7, denote T, together
with a Jordan curve J, joining — R, to < chosen in such a way that all the J, are
disjoint and meet no other T,(vsu) or D. Then we define ¥V, as follows:

v,(2) (z€D)
V”(Z)={ —1 (T’ =U"_, T)).

p=1

We can now apply Arakelian’s approximation theorem to the function ¥, defined on
the set DuUT’. V, is harmonic on the interior of this set and is continuous on its
closure; the curves J, may be chosen such that C—(DuUT”) is connected at <, and
from our construction C—(DuT’) is connected.

Hence by Arakelian’s theorem there exists a function W,(z) harmonic in C such
that

W@ Vi)l < e (2€DOT).

Next, by Mergelyan’s theorem there exists a harmonic polynomial, v,,,(z) say, such
that
1
(D)= 0,41 < e (I2] = M),
where M=2sup {|z|: z€ D}.
It follows that for z¢€D,

Ivn-(-l(z)_vn(z)l = II/n(Z)_vn+1(Z)I
= V(2 W@+ IW(2) = vp41(2)|

1
< —2-8,,.

Then, as on page 369 of [1] it follows that a sequence {v,(z)} defined in this way,
where we apply Theorem 4 of [1] successively to (—1)"v,(z), converges to a function
u(z) harmonic in C that satisfies conclusion (b).

Now let 7 be any component of the set {z:u(z)0}. Then if we take e<1 on
page 369 of [1], it follows from our construction that there exist sequences {R,};” and
{R,}7" going to o= such that T does not meet any of the sets T, defined by (34).

From our construction we have that 0(¢)=pr for R,<os<R, so that

R, do 1 , .
fR“ 0'9_@ = ﬁ—n(log R,,—-log Rp),
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consequently we may use our hypothesis (33) to deduce that

1 fRL do 1 1 logR,
logR, YR, a0(c) — prn  prn log R,
1 1 1

~ Bz wp (ogR)™

1
- — (as ﬂ —>oo),

pr

Hence conclusion (a) of our Theorem is satisfied, and our proof is complete.
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