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ASYMPTOTTC TRÅCTS OF FIARMONIC FUNCTIONS I

K. F. BARTH and D. A. BRAI§I§AI{ 1' 2

1. Introduction

This paper begins a study of the asymptotic tracts of functions that are either

harmonic or subharmonic in the plane. An asymptotic tract of such a function u(z) is

a component of the set {z: u(z)*cl for some c€rR; we will often, without loss of
generality, suppose that c:0 and u(z)>O in the tract. In this paper we deal with
the relationship between the size ("angular width") of asymptotic tracts and the
growth of the function itself; in a second paper we will emphasise the topological
properties of tracts. Our main tools here will be a modification of a theorem of
Tsuji [9; Theorem III.67, p. ll2], [0] to prove positive results and the Ahlfors-
Warschawski distortion theorem to show that these results are best possible.

In Section 2 we prove:

Theorem l, Let u(z) be subharntonic, non-negatiue and non-constant in the plane.

Suppose that euery sufficiently large circle centred at the origin meets the set

{z: u(z):gl. Let {Do} be an enumeration of the family, $,of components of
{z: u(z)>O}. Then:
(a) Each componenl, Do, is unbounded.

(b) u rs unbomded in each component Do.
(c) Let the order, q1,, of u(z) in each tract D I be defined by the formula :

a-:k13,,,1!*H#
Then )1,1f p052, where ll4 is taken as zero wheneuer er: * -.
Theorem 1(c) can be thought ofas an analogue ofthe Denjoy conjecture for

harmonicfunctions (see remarks at end of Section 2),and is closely related to theo-
rems of Kjellberg [5; Theorem lI,p.349land Heins'[3; Theorem 5.1, p. 74]. Sections

3 and 4 contain an array of examples showing that Theorem 1 is best possible; in
particular we will prove:
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Theorem 2. Let ybe defined as in Theorem l(iii). Conesponding to each of the

following situations there exists such afunctionharmonic in lhe entire plane:
(a) pr:2;
(b) Z[=, Upo:2 for any giuen n>2;
(c) Zå, llQ*=2, where infinitely many of the po arefmite;
(d) For any giuen o with 0<o<2 and any gio*en n>1, Zi=rllQr:r, where all
other p's are * *i
(e) For any giuen o with O<o<2, 27,llOo:o where the sumis taken ouer all
finite qy ( of which there is an infinite number ) and all other q's are * *.

Some of the above examples can be constructed by other methods, but we prefer
to use the Ahlfors-Warschawski approach since it provides a unified treatment of
them all.

Ihe next theorem is an extension of [1; Theorem t, p. 363]. We make an assump-
tion on the "angular width" of the tract, and thus obtain a more precise estimate of
the growth of u(z) on I'(see below). Note that (c) (below) is always satisfied if a=2,
so that our result includes [; Theorem 1].

Theorem 3. Let the function u(z) be subharmonic in an unbotmded domain D
whose complemmt meets et;ery suficiently large circle centred at the origin, and let
o0(o) denote the length of the set Dnlz: lzl:o|. Suppose, in addition, that:
(a) lim,-E, supz€p u(z)=O, where (isanyfiniteboundarypoint of D;
(b) u(z)>O for some zs€D; and
(c) Jbr soflt€ t1>01 some a>0 and all sufficiently large r

lrrdol
Trr.:.J,, od6=- -'

Let tp(r) be a positiueincreasing function of r such that l* E(t)1-Q+rl")dt<+*.
Then there exists a path f going to infinity in D such that

lim inf "!4.. = o.
"*''<r Ellzl)

Just as in [1; p. 368] we observe that we could choose l- in Theorem 3 such that

lim "{.4,:*e.

The theorem of Tsuji plays the same role in the proof of Theorem 3 that the Carle-
man-Milloux inequality played in the proof of [ ; Theorem l, p. 363]; it takes into
account "how big" (in the angular sense) C-D is.

Finally, in Section 6 we construct an example (Theorem 4)that shows that Theo-
rem 3 is essentially best possible.
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2. Proof of Theorem tr

(a) Let Dbe any member of g.Then the fu

»(z): {;r' ;:

nction

z€D

Z+D

is also subharmonic in the plane.

Assume, on the contrary, that D is bounded, and choose an R=0 such that D
lies in D^: {z:lzl<R}. Then u(z):O on åD^, and so u(z)=g in D^ by the har-

monic comparison principle. Hence D:0. this contradiction shows that D must

be unbounded.
(b) The Phragmdn-Lindelöf generalised maximum principle [6], [8; p. 176)

shows that since z is non-constant in each Do,then necessarily rz is unbounded above

in each D1,.

It follows from a result of Talpur [7] that each D* must contain a path going to
* on which u(z)-4*.

(c) Our main tool here is the following lemma, which is a straightforward
modification of a result of Tsuji [9; Theorem III. 68, p.1l7l:

Lemma l. Let D be a domain in the plane whose boundary meets eaery circle

{z: lzl=r} for each r>ro. Let u(z) be q, non-constant function subharmonic in D such

that limsup,6p,.*spu(z)<0, and let x be any constant with 0=x<1. Then i.f u(z) is

unbounded aboce in D,

togMp(r)=nl:"h-r@),

where Mo(r):sup lu(z): lzl:v,zCD\, t|(t) isthelengthof theset Dff{z: lzl:t},
and c(x) is some constant depending only on x.

First choose any positive integer n; then choose some ro:r'o(n)=O such that
the components Do(l<k=r) in fr all meel {z:lzl:vo}. Since z(z) is unbounded
in De, it follows from Lemma 1 (with x:112) that

where the constant
l=k=n\ - that is,

Take any t>0.

so that, for r>2rst

log M»x(r) = n.['r' #-cn,
cn depends on the choice of ro, and so on min {lrl: z<ADk,

ofi n.

It follows from the definition of qr that for all suffi.ciently large r

log Mou(r) = (eo*e) log r,

(e,,*e)log F > rE f't' Ll,o w-c,.



K. F. Banrn and D. A. BnaNuax218

Nowsince A<?oQ)=2n for t>ro,it follows that

"l:"'h=nl:"'#:+"r(+)-* as r +@.

Hence as r becomes large we have that

(s**e) log r >- 
" I:"' h[t*, ffi],

which we can rewrite as

(r) #r =ry[,.,(#J)8,'#
Nou, by the Cauchy-Schwarz inequality

(f", *)' =(l!", 
e*o,)(t!,, 

,^,-t-r1,
so that

tt f't' L= . .j 
- 

f't' oolt) 
at.tJ\ fioQ)-logz(rf2rlJ,, t ""

Substituting this upper bound into (l) and summing over l=k<n for arry n,

we deduce that

5,2 _l _ logr.[1+O(l/logr)] f,t, (>, 0,(t\, dt
z*:rTo* = fi4prr1 = J,o \zo:ru*lt))T

2logr. [ +O(Uloer)]:6'
Letting 7*- gives that )i=rllk**e)=2; and, since e>0 is arbitrary, that

/|=rllpr=2. Since r is arbitrary, the result follows.

Remark 1. The function u(z):l6g+ lzl shows that for the result of Theorem

1(c) to hold some hypothesis such as that about 'all suffi.ciently large circles'must be

necessary.

Remark 2. Since for any function U(z) harmonic in the whole plane the func-

tion u(z):lu(z)l is subharmonic, it follows that the result of Theorem t(c) can be

thought of as an analogue for harmonic functions of the Denjoy conjecture for entire

functions.

Remark 3. The function u (z): lRe (z"tz)1, nEN, is subharmonic in C; hete I
consists of z components in each of which the order of u is nl2.Ihis shows that
equality can occur in (c).
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3. Proof of Theorem 2(a)

Firstly we will construct a harmonic function in an unbounded domain in the
plane; then the function harmonic in the plane that is obtained by approximating the
earlier function via Arakelian's theorem has the desired property.

3.1. The auxiliary mappings. I.et CL be a curve in the t-plane whose polar equa-
tion (in terms of (r, ry')-polar coordinates) is given by t:rstiv(') (r>0) where

*(r):n-(Uz)@(r) for some function @(r) continuous on [0, -) with the following
properties:

(i) @(0) :2n, lim @(r) : 9;

(iD @(r)€cl([0, -));
(iiD @(r) is strictly decreasing on [0, -);
(w) r@'(r)*Q as r**i
(v) !* r@'(r1z 4r < * -i
(vi) t* r-tO1r\dr < a*.
[For example, @(r):)vf(l*r)" is quite satisfactory for any choice of e>0.]

For use in what follows we first examine one consequence of conditions (i),
(iii) and (vi) on the function @. Since from (i) and (iii),

o.- @k) @k)
'7ry4l;1o65=r[-114ffi

for 1< n< -, it follows from (vi) that

Now define

Sincetheaboveintegrandispositive, 1(r) is strictly increasing; and as it is bounded
above, there must exist some p=0 such that

(2) I(r)*p as r+@.

Next, let D, be the component of C-C1 that contains the point 1. We can map
D, onto a 'strip-like' domain D, in the z-plane by means of the mapping

, : f,Losy : f ltog lrl+; Arg r),

where we take the principal values of Log and Arg. Hence if z: xl iy and lll :7, 1ve

{* dQ -f oo'

4i : {: ae.
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have that

(3) 26: f,logr, y: f;Argt.
Since D, is symmetric in the real axis, so is Dr; indeed:

Dz: {z: x+iyt 2lyl - n-(ll2)@(e'z\1.

Notice that 0, * as boundary points of D1 correspond to - @, @ asboundary points

of Dr.
Next, let w:w(z) map D, onto the domain

Ds : {w : u*io: lol < nl2}

with - o, f e corresponding in each case. Finally we map D, onto the domain

Da:{€:€+i4: E=-ll
with - -, * - as boundary points of D3 corresponding to - 1, - as boundary
points of Da by means of the mapping

(:e"-l'
First, we have to determine the pre-image, i-r, in D. of the line l-n: {( : Re (:g;

in Do. For the mapping Dz*Da, we see from the Ahlfors-Warschawski distortion
theorem [1U - assuming that certain conditions are satisfied - that

(4) w(x+iy): l*o(t)+" I:#* ",#
(as x*-, uniformly in y), where /, is some real constant and 0(x): n-(ll2)@(e2').

The two conditions that must be satisfied for (4) to hold are:
(i)' ?'(x)*Q as ,c+a-, and

QU I tUY' 
n*= * -.

In (i)'; 0'(x):-e2*@'7e'1; it follows from our hypothesis (iv) on the function @

that (i)'is indeed satisfied.
In (ii)', we have that

(s) 1- ffi a. : I- - 
^4, 

p;2" b a* : ! I- iffi a, ;

it follows from (5) and our hypothesis (v) on @ that requirement (ii)'is also satisfied.

Consequently the formula (4) is valid.
Under the mappings between the various domains, let us specify that the follow-

ing points correspond:

1O*i4 in Dn, u*io in Du,(6) tx+;y in Dz and rexp[*i(z-e(r))] in Dr.
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We take this last expression to be our definition of e(r)>0. Part of our work will
be to show that, for large values of lryl, e(r) is very small; notice that, by symmetry,
it is sufficient to consider only positive values of 4.

Now for the mapping between the points in (6) in D, and Du we have that

)

on the pre-image in Ds of

| - e-2u)r12.

;) in D, and Drwe have that

ln -e (r)I,

I'n must correspond to a part of fr

)etween the points in (6) in D, and

,'
I

@ and

so that eucos u:l and ,'rr:"::;';::'' o,

l-un{(: Re (=0} we have

(7) cos u - e-u and sin u - (1 -

Next, for the mapping between the points in (6) i

(8) x-|togr and y-*t"

where we have used the fact that the upper half of l-4
in the upper half-plane.

Finally we see from (4) that for the mapping bet

D, we have that

(e) [":^+o(t)*nl:#tN
[,:o(r)*nfi1 .

From (8) and (9) we see that

coSLl:,i,{o(r)++.#,*W}:,in{,(1)++'(,)}(forr

since @(r)-*Q as r.+@ (Uy (i)). Since 0=(ll2)e(r)= ("12) it follows that

(10) cos u - o(1) ++ e(r) (r * oo).

Next, we see from the first equations in each of (7) and (9) that

e-u - exp {- 
^ 

* o(r)} exp {-f ffil
= exp {- 

^+o(1)} 
exp I t: I,

Tc -(t 12) o (r)
^/r\ , fr TC

- u \r/Tz-7. e (r) - (1 l2) o (r)
TE -(t 12) @ (r) )

Tc -e (r)u - o(t)*+.
so that

large),
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where we have used the substitution q:s2"' consequently,

#: exp {-,1 +, t t» *n{- /, 7ffbru - rffigy nrl

(rr) *."p(-,t- + r): L, say,

where 0<I<1. In otherwords,

(12) e-u N Lr-rtz (as r * -).
Substituting from (10) and (12) into (7) we get that

o(l)+*e(r) : cosr, - e-uNLr-ttz (r *-),

and so in particular that

(13) e(r)*0 (asr**).
Now let the composition function mapping D1 onto D. be denoted by

fr(t): ErO)+iq,(t\.

Then by Arakelian's theorem [2] there exists an entire functiot f (t):€(t)+i4(t)
with the property that

(14) lf(t)-f,,(t)l < ,'o(ttD (te Dr)

for any pre-assigned increasing function 9 with l* E@)x-'tz dx= *-. Without

loss of generality we may suppose that 9(0)>log, 10, so that it follows from (14)

that

(r5) ll4)-€,(t)l= + (re D,).

In particular we can deduce that ( (t ) > - lU 10 everywhere in Dr .

3.2. The approximation ((r). Let the set Di be defined to be

Di: lt: tCDr, (r(t) > 0|.

Then LDiis the pre-image under a one-one map of the Jordan curve {(: Re (:61,
which is a connected point set; hencn 0D| is also a connected set and a single Jordan

curve from - to -. Hence D'ris unbranched inthe sense that given any point t'rin D',

all curves in Di from t'rto * are homotopicin Di. [An equivalent definition of Di
beingunbranchedis that its complement is an unbounded continuum.l

Further, we know that ((r) must be unbounded in D, since (r(l) is unbounded in

Dr. Thus there exist points in Dl where tr?)=1/10 and so necessarily ((t)>0; it
follows that D":{t: t€Dr, ((r)=0} is non-empty. We now check, in turn, the va-

lidity of the following three assertions:
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(i)' fi"cDr;
(ii)" D" has only one component; and
(iii)" D" is unbranched.
To begin with we know from the definition of D" that D"cD'. If in

fact D"+.Dr, there would exist some point t"(|D"alDr, and so €(t\:0 and
(r(t"): -l; consequently l(Q1-h(t")l:1, which is impossible in view of (15).

This completes the proof of (i)".
Next, we can use an argument similar to that above in the case c=0 to show

that each ofthe sets

{t: t6Dr, trQ) = cl, c :tl/10,
is an unbranched and unbounded Jordan domain. We now consider the open set

5: {r: t€h, h(t) > t/10};

in view of (15), ((t)>0 in ,S; hence there exists a component of D', call it Q, say,

that contains ,S. Let Dp1 be any other component of D"; since D11ynDp,1:cp, wa
must have

(1 6) Dt>c{t: t€DL,-lllo< €r(t)= 1/lo}.

On åDlzy we must have ((t):Q and inside D12; we have ((t)>0. But since Dlay

is a component of D" and ((l) is harmonic in the whole plane, it follows (as in Theo-
rem I (a), (b) that Dlzy must be unbounded and that tG) must be unbounded above
in Dlzy.Hence there must exist some point tlzy in Dlzy with ((l rr)> 1, so that by (la)
we have that (r(rrzl)=9/10. This contradiction with (16) shows that no such compo-
nent Dlzy can exist, and completes the proof of (ii)".

Next, suppose that in fact D" wete branched. Then, given any point d" in
D"(cDr) there must exist two disjoint (apart from the point d") paths ,l-r, i-, from
d'to * both of which lie in D" and such that lt,lz are not homotopic in D". Let
Dlay be that component of Dr-(l-rul-r) such that 0Drn0D(g):0; since D" is as-
sumed branched, it follows that D$18D".

Hence, using the local behaviour of harmonic functions we see that there must
exist some point tlay in Dlay with ((r,r,)<0. Let Dslbe the component of {t: (0)=0}
that contains llsyi since Dlay is connected, it follows that Drn cDla;. Because ((t):O
on LDpl and f (t)=0 in Dp1, we can deduce, using arguments similar to those in
Theorem I (a), (b), that Ds must be unbounded and ((t) must be unbounded below
in D1r;; in particular, there must exist some point l1a; in D1e; where ((t1a;)< -2. But
sincetlaylies inDruemusthave (r(r«nl)=-1, sothat l((trn)-hfrer)l=l-which
is impossible in view of (15).Ihis contradiction completes the proof of (iii)".

Now we define the family of domains {p (c)} by the following :

D(c'1 : {t: tEDr, ((t\ > c} (c > 
-9110).

In the same way as done above for D(0):p", we can show that each set D(c) is
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non-empty and unbounded, has its closure a subset of Dr, has only one component,
and that component is unbranched.

In view of (15) we have that

D,(c* 1/10) c D(c) c Dr(c-tlt0\ (c > -9110),
where

D.(c) : {t: t - D1,$Q) > c\ (c =-l).
The domain Dr(c) contains the segment lf,.(r+1/10), +*) of the real axis, and
hence so does D(c). For each r>fr(c+l/10) (and we must have fr(c+Ul})>O
since [(c* 1/1O)€RnDr), denote by r?,(c) the length of the arc of {t: ll1:1}nD(c)
that meets lfr@+1/10), +-). Then the same argument that was used earlier for
points öf ADito show that e(r)*g can be repeated for the points r exp (1tp1e,g1)
on åD(«) to show that 0,(c)*2ft as r**. In particular, for the domain D":D(0)
we have that 4(0)*27c as r**.

3.3. The growth rate. We now examine the growth rate as /* - of

M(r): max{((t): t€D", ltl: r}.

In view of (15) we have that

(17) M(r): Iut'(r)+o(t),

where Mr(r):max {(r(r): t(D", ltl:71.
To begin with, houever, we look at the growth rate of frr1r1:1yru* {(r(r):

t(D1, ltl:r). Our aim is to show thal M(r), Mr(r) and frr(r) all -QlL)vuz
(as il*e.), where Zwas given in (ll).

Consider the point t:reiq (where lEl=n-@(r)) on {r: 1r;:71r"rDr. As in
Section 3.1 this point corresponds to a point, xr*iy, say, in D, where

(1 8)

(1 e)

xt-{tog, and lt:*E.

This latter point corresponds to a point, ur*iu, say, in D, where (again using the
methods of Section 3.1) we have that

ds

{: 
:

tr+o(l) *n I:' Tc -(l 12) O (e")

o(l)+n ., ,!' - . 
=\ / 

Tt - (l l2)@ (e'*,)

where .å is real and o(1) is a term tending to zero as x, (and so r) tends 16 f e, uni-
formly in y, (and so in E). the corresponding point in Dn is (r*i1r, where

(20)

Then

(2 1)

€, : €ut cos ur-l and 4t : eut sifi t)t.

frr(r) max {€r: r fixed, lEl < rl-@(r)}.
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By exponentiating the first equation in (19) and following the same method as in
Section 3.1, we see that for l( lt:1t1:7ynp1 we have

(22) eu'c : ruzexp {Å + o ( l)} exp {t: ffifu d rl,
where the o(l) term in (») is the same as that in (19), and so tends to zero as F+@,
uniformly in g. Hence as r+@ we have ,Oui. 

"",-(llL)r|tz, 
uniformly in g.

Now g can take all values between *ln- @ (r)), and so yt can take all values
between X[n-@(r\). Hence, BS r+@r (19) shows that u, can take all values be-

tween tu,say,where O=ur-nl2 and ar*nf) as r+@.
Combining this observation with (20), (21) and Q2) (with its uniformity in g),

we deduce that

(23)

Since r€ D" and

(24)

and finally, since fr(r) * "o as

(25)

This completes the proof of Theorem 2.

Remark. In fact (25) is more precise than the result

llg los M(r',llosr : +
which we set out to prove.

4. Completion of the proof of Theorem

The details of the arguments in the construction of suitable functions in parts
(b)-(e) of Theorem 2 are broadly similar to those in part (a), except that there is
an additional mapping of the half-plane Dn onto sectors of suitable angles.

Part (b). Choose an n>2 and any positive numbers Qr, ..., Qn with
Zi=rlloo:2. Then using techniques similar to those in part (a) we can construct
an entire function .f Q):e«)+i4(t) with the following properties:

(i) ((r)=0 in unbounded unbranched regions

Dr,...,D^ and €(t):0 on |Dr,...,01t^;
(ii) €(t)<0 in unbounded unbranched regions

M r(r) ^, Mr(r) ^, €r(r);

r+ a, (17), (23) and (24) together give that

M (r) - €t(r) ^, * ,'''.

I mr(r)^, rttze^+pl$n): ] rLP

l 
-.-r\'/ L

t -ft(r) _ €r(r).

D"cDr, it follows that

D*+1, .. ., D, and €(t) - 0 on 0D^*1: . .., \Dn)
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(iii) the order of ((r) in the tract Dois q1,, l<-k=-n; where category (i) or cate-

gory (ii) can be empty, as desired, andm can be arbitrarily chosen.

Firstly, we choose a sequence {eol1i=, of real numbers and consider the closures

of the domains

,So : {r: larg(t-eieu)l -. nlQqp)} (1 = k < n).

Then for l<-k=m define the function ,(r) in S* to be any function mapping So

one-one onto {(:Re(=-l} with f1(ei0u):-1, and for m*l=k=ndefinefr in
S* to be any function mapping So one-one onto {(: Re (= +U with f1(ei0n1:1.
Next we approximate, using Arakelian's theorem, to fr in U[=, So by an entire

function f (t):€(t)+iaQ) in the sameway as in part (a); and, as before, there exist

tracts in the plane in which €0) has the properties (i), (ii) and (iii).

Part (c). Choose any infinite sequence of positive numbers {q*X:. with

ä=rllOo:2. The construction is similar to that in part (b), except that we have to
ensure that no finite point has a neighbourhood that meets more than one §1 . There-

fore we choose sectors 5L of opening nlQ* with radial midlines and withverticesat
the points r*e'% where r*=l*k,0r:0 and 0o*r=00+nf(2d+nlQAo*J (k=1).
The same mapping-and-approximation method then works successfully.

Part (d). Noticethettheresult of part (b) is that of part (d) when o:2. In view
of Theorem 1(c) we know that the order of the final harmonic function ((t) must be

infnite in all tracts except those associated with the sectors §* in our construction;
when o<2 we have to be careful to ensure this is still so.

Firstly for given g1 and o we define the sectors

,So : {r: larg(t-ete)l <. nl(2s)l (l = k = n),

where 0r:7lQp) and 0o*r:0o+nf(2pr,*r) (l<k<n). AU the sectors ,So lie in the

soctor
St,):{t:0=argt<onl,

and are disjoint; in fact the set

(St"r-UX:,§o)n{t: l/l = l}

consists of (n * 1) half-strips whose sides are parallel and whose 'ends' are arcs of
{r: ;r1:1;.

Next we define the open sector

D(o): C-S«"1;

this has axis of symmetry

tr : {t: arg t : -(l -ol2)n},

and is convex in the direction of l. Now define point sets ('chevrons') {4,}I=o and the
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set .E as follows:
Ts: 0DG1,

and 
T*: {t: t+me-o-ot2)"€7l} (rn€N),

E : (Ui-,&)r(LJI=, r.);
,E'is closed in C, and its complement is connected and 'connected 41 -' (in the sense

of Arakelian).
Now we define the function (r(r) on .E as follows:

E tÅ _ IeD^+t (t€T^, m = o)
§t("-t(j(r) (r€sr, J = l),

where (r(l) is the real part of any analytic function that maps S, one-one onto the
half-plane {(:Re 1=-U2\. By Arakelian's theorem there exists a function ((t)
harmonic in the whole plane such that

I

teG)_(,(r)l =ä (,€E).

Then the components of {t: ((t)*0} are all of one of the following types:
(i) subsets of So (l=k<n);
(ii) contain a T*bat disjoint from 7.-, arrd T^*r(m>l);
(iii) lie between some 7. and T**r;
(iv) lie in S«"r-(UX=, So).

Arguments similar to those in Section 3 show that there are precisely n tracts
of type (i), and the order of ((t) in these ir qr, ... , q, ; and a straightforward appli-
cation of our Lemma ensures that t(t) has infinite order in all the other tracts. This
completes part (d).

Part (e). Herewearegiven o((0,2) and qo>0 with )[, llQr:r.
For each k> I we construct a sector §o as follows:

.S* : {l: larg(t -roeiox)l <. nlq1,},

where ro:P, 01:nl2p, and

o*+r: ur*ft*ffi (k = r).

All the ,Sp lie in the sector

S«"1:{f: g=argt<o7"},

and subtend at 0 an angle of {r: lll:7; which tends to 0 as r*-. The §1 are dis-
joint from each other and from the complement of S1,y.

We can then 'fill'the complement of S1"1 with 'chevrons' {T^}i=,, as described

in part (d), and the rest of the argument follows as above.

227
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Remark. In the case where o=0 in Theorem 2, we note that the function

€(t) : Re (d)

has infinite order in each tract {t: ((t)*01.

5. Proof of Theorem 3

This follows exactly as in [ ;pp. 366-367), once we have proved

Lemma 2. With the hypotheses on the domain D of Theorem 3, there exists a

function a(z) harmonic in D such that

o(z\ > E(lzl) (z€D).

Proof of Lemma 2. We use the notation and method of [; Lemma l, p. 3641,

with F there replacedby 0D. The argument starts out in the same way; as before the
key step is to show that the u(z) in equation (2.3) of [] is not identically + -, by
finding some upper bound on u(z) at some point zo in D.

As in [], we have that

(26) o*^(z) = Zil'*E(R"*r)a",,(z)-lcp(Rfl

= Z:::. E (R" * ) r», (z) * cp (Rå ;

but now we estimate @y not by the Milloux-Schmidt inequality but by

Lemma l. Thmce, with x:112, we deduce that

(27) a\(zo\=#"-nl-"tl;hl,
so long as lzol< Rnl4; hence we choose K so that Rr= lzol*ro*2rt.

Using hypothesis (c) of Theorem 3, we can bound the right-hand-side of (27) to
obtain
(28) o"(zo) a A(zs, rr)R,-rln

where, A(2, 11) is some constant independent of v; it follows from (26) and (28) that

(29) on^(zr) € A(zo,d Z::ip(4,*r)Å,-rr"+O(l).
Now,

(30) I::::#&dt=E(R"*r)Ä., #
= E (R" * r) A,{n; } f - n;} tfl

=- E(Rn*)AoR;'t",

where ln is a constant depending on a (and not necessarily the same on each occur-
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rence), and where we have used the fact that R,=2n. It follows from (29) and (30)

that

(31) rsa^(2,) = A,a(zo,r,l Z:-ifiJi$*il+o(t)

= AoA(zo,rJ J 
""*., 

fg dt + o (l);

as the upper bound in (31) is independent of n, the proof of Lemma 2 (and thus of
Theorem 3) is complete.

6. An example related to Theorem 3

In the opposite direction to Theorem 3 we nowprove

T he o re m 4 . Let fr ((0, 2), and let rlt (t) be a positiue inueasing function on f0, *)
with

,fig f(r) : *-, I: ffi dt : * *.
Then there exists afunction u(z) harmonic in C with the following properties:
(a) In euery tract T in the family {z: u(z)*O}, we haue

limsuoLf'!!. =a"';|:' logr J ,, o0(o) - pn

for some ualue of rl,where o0(o) denotes the length of the set Tn{z:lzl:o\.
(b) On euery path f going to * on which lu(z)l* @, we haue

riminf W<{e.
"-_,,<r r! |zD

Remark. Theorem 2 of Ul is essentially the case 0:2 of this result.

Proof of Theorem 4. This follows the same pattern as the proof of Theorem 2 of
[; see pp. 368-384]. We indicate here only the necessary changes in the argument,
and we use the same notation as in [].

The general idea is that Theorem 4 on page 368 of[1] still holdsforourfunction
ry', but the extension domain D must be different so that conclusion (a) will hold.
Then in the proof of the Corollary on page 368 of [] we do not use Mergelyan's
theorem and arrange to have a harmonic polynomial that approximates only on the
extension domain; instead we approximate on the extension domain and to a con-
stant t I at other specified parts of the plane, using Arakelian's theorem. Later we

use Mergelyan's theorem on a very much larger domain so that we can approximate
Arakelian's entire function by a harmonic polynomial, ready for the iterative appli-
cation of theorem 4 of [1].



230 K. F. Banrn and D. A. BnaNNaN

To begin with, we use the basic approximation results of Sections 3.1 and 3.2 of
[], as well as the construction of a D, in Section a of [].

In Section 4.1 of [] we make the following different choices for Q's:

Q,zr: Rrg-i4*la' Qzp+r: Rrei|olt.

Then the choices of §'s and 7's is such that the sectorial region in (a3) of [] is re-
placed by
(32) S*: {z: Rr< lzl = RL, larg zl < fnl2-ytr*}i
otherwise the discussion of the extension domain and the harmonic functions on it is
much the same.

The argument in Section 5 of [] is unaltered, down to (5.3). On this occasion
(5.3) is still valid, where this time we apply Harnack's inequality [4; p. 31] to the
function Vt,,the compact set {0, 9Rr}, and the domain R:(Dz- /)u^/r, where

and 
/1: (D@+r)-D@)n {z: lzl = Rr}

lr: {z; Rr < lzl < 100lRr, larg zl <. pnl{}.

Then in an argument analogous to that on page 384 of [], we choose an Nr>
100R, such that

(9Ru)uePt tn'.rs rlr (r\
2ifid- J n^* -r*iTd7' = M2cp'

Now we choose a B, with 3Bl4< Br<. fl such that

(rfl "t?"' r^:"tn J+dr = Mzcp,2(frfi) ,l s1r ,r+rl0r 
w' - t"zvv'

and define 1p+r by the formula
F{E: Bn_24o+r.

Applying Lemma 6 of [] to (5.3) then shows that

%(sR,) = g$*) lol.n ,o,-!& dr > u*t17,g,.

so that again uu<|.
The important points to note in the above argument arethat our sectorial region

replacing that in (a.3) of [1] has an angular opening frn-24r*r=Bn, and that the
argument only requires that R; be larger than some minimum size - for any addi-
tional condition that we wish to put on the minimum size of Rlu all the above
argument will still apply. We also need to arrange that

(33) log,R, < (logR!)rtz.

With ,S,, defined by (32) and Trdefined to be

(34) Tr:{z: Rr<lzl= RL,larg(-z)l-.(l-Bl2)nl,

both §, and Trlie in the annulus {z: Ru=1zl=Npl, and they have disjoint closures.
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Now we have to prove the analogue of the Corollary on page 368 of [1], with the
additional requirement (a) of our Theorem 4 on the components of {z: a(z)*O}; for
then the proof of the present Theorem 4 follows immediately.

Suppose that at some stage of the construction we have a harmonic polynomial
u,(z), ar,d that we choose some suitably large R so that after applying Theorem 4 of
[1] all our extensions lie in {z: lzl<Rl2}.

We then construct an extension domain D associated with the disc {z: lzl<R},
as described at the beginning of this proof. For 1 = p= N, let T'u denote 7, together
with a Jordan curve,I, joining -R, to - chosen in such away that allthe Juare
disjoint and meet no other T,(v#p) or D. Then we define I! as follows:

1o,(z) (z€D)
Y,(z) : | _t k€T, :Ui,:rri).

We can now apply Arakelian's approximation theorem to the function Zn defined on
the set DvT'. Z, is harmonic on the interior of this set and is continuous on its
closure; the curves Jumay be chosen such that C-(DvT') is connected 4[ o, ord
from our construction C-(DvT') is connected.

Hence by Arakelian's theorem there exists a function W"(z)harmonic in C such

that

llV"(r) -V"(r)l =

Next, by Mergelyan's theorem there exists

that

(z(D u T').

a harmonic polynomial, un+Jz) säy, such

lw"(r) -un+Lk)l <

where tuf -2 sup {lrl: z(D).
It follows that for ze D,

(lzl = M),

lun * Jz) - un(r)l - lv"(r) - t)n + Lk)l

Then, as on page 369 of [1] it follows that a sequence {r"(r)) defined in this way,

where we apply Theorem 4 of [] successively to (- l)'u,(z), converges to a function
u (z) harmonic in Cthat satisfies conclusion (b).

Now let T be any component of the set {z: u(z)*O). Then if we take a< I on
page 369 of[], it follows from our construction that there exist sequences {Ru}i and

{Ri}i going to * such that Tdoes not meet any of the sets 7, defined by (3a).

From our construction we have that 0 (o)< Bn for Rr= o= Ri , so that

I
4"n

1

4vn

1

= Ttn'

th=#(,oe R;-IosÅu);
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consequently we may use our hypothesis (33) to deduce that

1 rRL do 1 1 logÄ,
josÄtJ**@= p"-W'GB

11i
= pn-;F'@gA;p,

I*W (as P+oo)'

Hence conclusion (a) of our Thecrem is satisfied, and our proof is complete.

References

[1] Bmnr, K. F., D, A. BnnNNaN, and W. K. HavlrlN: The growth of plane harmonic functions
along an asymptotic path. - Proc. London Malh. Soc. (3) 37, 1978,363-384.

[2] Fucgs, W. H, J.: Th6orie de I'approximation des fonctions d'une variable complexe. - Sdminaire

de Mathdmaliques Supdrieures, No. ZA, (Etö, 1967). Les Presses de I'Universitö de

Montr€al, Montrdal, Canada, 1968.

[3] HrrNs, M. H.: On a notion of convexity connected with a method of Carleman. - J. Analyse
Math. 7, 1959,53-:77.

[4] Ilu.us, L. L.: Introduction to potential theory. - Wiley-Interscience, New York-London-
Sydney, 1969.

[5] Kgusrnc, B.: On the growth of minimal positive harmonic functions in a plane region' - Ark.
Mat. 1, 1950, 347-351.

[6] Lryosrör, E., and E. PnnncuEN: Sur une extension d'un principe classique de l'analyse et sur
quelques propri6t€s des fonclions monogönes dans Ie voisinage d'une point singulier. -
Acta Math. 31, 1908, 381-406.

F] Tar,pun, M. N. M.: A subharmcnic analogue of Iversen's theorem. - Proc. London Math. Soc.

(3) 31,1975,129-148.
[8] Trrcnrrlansn, E. C.: The theory of functions, second edition. - Oxford University Press, Oxford,

1939.

[9] Tsurr, M.: Potential theory in modern function theory. - Maruzen, Co., Ltd., Tokyo, 1959.

[10] Tsuru, M.: A theorem on the majoration of harmonic measure and its applications. - Töhoku
Math. J. 3, 1951, 13-23.

llll Wmscsawsrl, S. E.: On conformal mapping of infinite strips. - Trans. Amer. Math. Soc. 51,

1942,280-335.

Syracuse University The Open University
Department of Mathematics Faculty of Mathematics
Syracuse, New York 13210 Walton Hall
USA Milton Keynes MK7 6AA

England

Received 28 February 1985


