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ON THE VARIATIONAL PRINCIPLE
OF GERSTENHABER AND RAUCH

EDGAR REICH

1. Introduction

Let w=f(z) be a sense preserving homeomorphism of a Riemann surface S,
onto a Riemann surface S,, z, w denoting local parameters, and let ¢ (w) be a weight
function, ¢(w)=0, [[s o(w) dudv=1 (w=u+iv). Let us assume that fc&,
and. ¢€%,, where the members of the classes # and £, are sufficiently nice so that
the Douglas-Dirichlet functional

2l11= [f, (Ll +ARe(f@) dxdy (z=x+1y),

makes sense. If & is a class of qc (quasiconformal) mappings the maximal dilatation
K[ f]is finite for each f€ 4. In the theory of extremal qc mappings one is concerned
with the infinum,

. _
(1.1) Kz = inf K[f],

typically when all f€% belong to a given homotopy class. Motivated by the fact that
the ess sup norm by which K[ f7] is defined has technical disadvantages one may ask
whether the number K* can be determined by extremal problems involving finite
order means; in particular, we may ask whether the functional 2, can be used to
determine K*. This idea is not new. In fact, partly on the basis of heuristic consider-
ations, Gerstenhaber and Rauch [4] were led to formulate the following principle:

. (. 1
o ot 2 = 3 (ki + )
In [4], Gerstenhaber and Rauch had mainly compact Riemann surfaces in mind for
the domain and range of the mappings. At approximately the same time the funda-
mental paper of Ahlfors [1] provided a rigorous foundation to the theory of qc map-
pings; including the extremal problem (1.1), from an approach quite different from
that of [4]. Some work in the directions suggested by [4] was however taken up by a
number of writers, e.g. [8, 12, 13]. The survey article [3] contains an extensive compila-
tion of relevant literature. See also the recent paper [6].

doi:10.5186/aasfm.1985.1052


Mika
Typewritten text
doi:10.5186/aasfm.1985.1052


470 EDGAR REICH

Our contributions shall be for the case when S; and S, are the unit disk U, and
when & is determined as follows. Let H denote a homeomorphism of dU onto 0U
that is realizable as the restriction f;|,; of some qc mapping, w=f,(z), of U onto U.
Then & shall be the family Q(H) of qc mappings of U onto U such that f|,,=H.
The following notation is standard:

_ /[ _ _1+kp(2) _ LLEI+IA
up(2) = T’ kf(z) = '#f(z)|> Dy(2) = 1—kf(z) = T2

z

k[f]= esssup kp(2), KLf]= esssup D;(2).

We shall denote Ké‘(m by K*, for short. As the class %,, we shall take the class &
of measurable functions ¢(w), ¢(W)=0, [ [y e(w)dudv=1.

Acknowledgement. This work was carried out during the period of a visit at the
ETH Ziirich. During its course the author benefitted from a number of discussions
with Dr. Richard Fehlmann. Specifically, the author owes the present version and a
corresponding part of the proof of Theorem 2.1 to Fehlmann, which made it possible
to formulate Theorems 2.1 and 2.2. with reference to the class Q(H), instead of a
previously weaker version in which the subclass Qy(H) of K-qc mappings (K>K¥)
had been used.

2. A class of variational problems

Since
KIf1=sup [[,Ds(2)e(2) dxdy,

it is clear that

. — K*
2.1 féléfmﬁ‘gg foDf(z)g(z) dxdy = K*.

We will see (Theorem 2.2) that the operations, inf, sup, in (2.1) can be reversed.
This fact is non-trivial, and, in a somewhat generalized form, is the import of the

following result.

Theorem 2.1. Let G(t), t=1, be an increasing convex function of t. Then
: _ *
(2.2) sup Jinf [f,6(Ds(2)e(2) dx dy =G(K™).

Proof. Let z,=e*™il" j=1,2,..,n, n=4,56,.., and let wj=Hoz,.
It is known [15] that there exists a qc mapping f,(z) of U onto U with the following

properties:

- NE)
.f;z(Zjn) - an’ Auf,.(z) - kn |§0n(2)| .
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Here k, is a non-negative constant, and ¢,(z) is holomorphic in U,

23) S/ lon@) dxdy = 1.
Moreover, [9, Section 3.3],
2.4) lim K, = K* (K,, _ ii’i)

Furthermore, according to [9, Theorem 7],

s (2) 9u(2) 1+I# (@ _
(2.5 foUR 1f—| ()Izd xd +ff f( T 0. (2)| dx du = K,

for every fEQ(H). From (2.5) we deduce that

S, pr@lon@l dxdy = [, B 0, @l dxdy = K,

In view of (2.3), Jensen’s inequality implies that
[/, 6@;@)leu@)|dxdy = G [[[ Ds(2)lgn(2)| dx dy] = G(K,),

for all f€Q(H), and n=1,2,3,.... Since |p,|€Z,

sup inf. [f,G(0;@)e(@)dxdy =G(K), n=12,.

Due to the continuity of G, and condition (2.4), it therefore follows that

(2.6) sup ,inf [[,6(Ds(@)e(2) dx dy = G(K™).

To obtain an inequality in the other direction, choose f=f*, so that K[f*]=K%*,
f*€Q(H). Since D*(z)=K* a.e., and since G is increasing,

[f,6Dp@e@ dxdy = [ GKMe(2) dxdy = G(K™).

Hence,

fEQ(H)ff G(Ds(2))e(z)dx dy = G(K*), for all €.

Theorem 2.2. Let 9,[ f] denote the Douglas-Dirichlet functional,
@.7) 2111 = [[ (LE+I1D e(f@)dxdy (feQH), e€2).

Then, the principle of Gerstenhaber—Rauch holds; that is,

3K 5)
2.8) f?ﬁfe‘%fm@ 1= K TxF
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Proof. Let z=g(w) be the mapping inverse to w=f(z). Let

G(@) = (1/2) (1+1/1),

so that
_ lau+lgsl® _ I +IAE
GPy0) = g T lgu? ~ TF=1/F"
and
f/v G(D,(W))e (W) du dv

= [ AL @)1 dxay = 21

We apply Theorem 2.1 to Q(H ~1). Since K* is the same for H ~! as for H, the result
follows.

3. Harmonic quasiconformal mappings

If I is the identity mapping with domain oU, and if FeQ(I), feQ(H), then
f=foF~'€¢Q(H). As a computation shows, the corresponding variation of 2] f]
is [4]

39,11 = 271~ 2411 = 2 [ 1L Eo(r@) dyay

—4Re [ Il{lJ:zFFlzg(f(z))dxdy

If
F(z) = z+eA(2)+0(e), A(2)lsv = O,

then, formally,
59,[f1=—4Re[s [[ f.fr0(f(@)Azdxdy]+0().

This leads to the expectation that if there are mappings f€Q(H) for which
inf ¢ oy D, [f] is attained, then such mappings') necessarily satisfy

(3.1) f.fi0(f(2) = ¢(z) foraa. zel,

where ¢(z) is holomorphic in U.
One refers to a homeomorphism f'satisfying (3.1) as a harmonic mapping relative
to the weight function ¢. We shall assume that ¢ is not identically 0.

1) In [11] the assertion is made that if K>K?*, then inf {Z,[f]: f€Q,(H)} is attained for a
mapping f satisfving (3.1). However, the reasoning involves the Hahn—-Banach theorem in a man-
ner for which justification is missing, thereby leaving [11, Theorem 6] open to doubt.
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Theorem 3.1. Suppose 9€2, and f(z), z€ U, is a gc mapping. If f is a harmonic
mapping relative to 9, and the holomorphic function ¢ is defined by (3.1), then

26]

3.2) Us(2) = kf(z)m, ki(z) =0 ae.,
and
(3.3) [/, l]ipf((zz))l dxdy < oo.

Conversely, if u,(z) has the form (3.2), where ¢(z) is holomorphic in U and satisfies
(3.3), then f is a harmonic mapping relative to a normalized weight function ¢ deter-
mined by (3.1).

Proof. To deduce necessity let ¢ (z) be defined by (3.1). Then,

0@ =o(f@)ffe» and |o@)| = o(f@)IL 1.
Therefore, (3.2) holds, and k;(z)>0 a.e. Also,

_ lo| 2_|£2 :l_kf@
e(f(2)I(f(2) = 7./ (£ =1£P e o (2)].
Hence,
34 1= ( ddu—ffﬂ(z—)zl (2)|dx d
(34) = [[,emdudv = [ ) |e@ldxdy,

so that (3.3) follows. Conversely, if (3.2) and (3.3) hold, one defines ¢ by

(z
() =22
o(f(2)) I3

Since (3.3) holds, and 0<k,(z)=k[f]<1, we can normalize ¢(z) so that (3.4) is
satisfied. [0

For a harmonic qc mapping f belonging to Q(H), with k,(z) constant, it is
easily verified that Z,[f]=(1/2)(K*+1/K*)) for all ¢€2. Such a mapping is of
course just a Teichmiiller map corresponding to a quadratic differential with finite
norm, so that [14] K[ f]=K™* in this case. It is natural to ask what the most general
harmonic qc f, with K[ ff]=K* can be. The next theorem implies that, under a
uniqueness hypothesis, there are in fact no possibilities other than the classical
Teichmiiller case.

Theorem 3.2. Suppose f is a gc mapping of U with complex dilatation of the
Sform (3.2), where ¢(z) is holomorphic®) in U. If f is the unique mapping in Q(H) such
that K[f]=K*, then

K*—1

— f* —
ke(z) = k* = i

a.e.

2) Note that the assumption f f o 19(@)] dx dy<ee is not required.
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Before proceeding with the proof we require a preliminary fact:
Lemma?®). Suppose feQ(H), where H=fl,,, and
us(2) = ks(z), zeU.
If K[f1=K* then k (z)=k*=(K*—D/(K*+1).

Proof. Assume that k (z)<k* on a set of positive measure. Since K[f]=K",
there exists [5,9] a sequence {¢,(z)} of functions holomorphic in U, with
[[vle.(2)|dx dy=1, such that

(3.5) limfo 1y (2) 9u(2) dx dy = k*.
Since |u,(z)|=k*, this is possible (cf. e.g. [10], Corollary of Lemma 0.3) only if

(3.6) lim ¢,(z) =0 locally uniformly in U.

Now,

I/, uftpndxdy—ff( ]<p.,dxdy+—ff @, dxdy

*

[k @-E 0u@ dxdy+ - 0,000
2
But,

fo kf(z)_'kz_* I(Pn(z)l dx dy = kT*fo I(Pn(Z)l dx dy = %t,

and, by (3.6), lim ¢,(0)=0. This produces a contradiction with (3.5).
Proof of Theorem 3.2. We have

ess sup k;(z) = k* for every disk D,D c U;

otherwise, the uniqueness of f could be contradicted by constructing a variation of f
within D. Let Z={z€U: ¢(z)=0}. Suppose z,¢Z. Let us consider a neighbour-
hood ¥ of zyin which {=®(z)= [ Vo (2) dz is schlicht, and such that &(¥) is a disk
V. In V, fo®d~! has complex dilatation

#(0) =k (271(D):

According to the Lemma, then, unless k (z)=k* in V, there exists a K-qc mapping
g of ¥, with the boundary values of fo®~%, and K<K*. This would imply that
go® isa K-qc mapping of V with the boundary values of f, and hence the unique-
ness hypothesis for f would again be contradicted. We conclude that every point
2,6 UNZ possesses a neighbourhood in which k (z)=k* a.e. Since Z has measure
zero, this is readily seen to imply that k,(z2)=k* ae.in U. O

3) This is a special case of [2, Theorem 2]. For convenience of the reader we have included a
proof here.
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We note that there do exist examples of harmonic qc mappings f of U for which
K[f]1=K*, but where k (z)<k* on a set of positive measure. Such examples can be
constructed with e.g. the help of the known example of [14] of a case where Q(H)
contains distinct mappings f for which K[f]=K*.
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