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ON PARAMETRICALLY QUASI-ELLIPTIC
BOUNDARY PROBLEMS

VEIKKO T. PURMONEN

Introduction

Let A(z, D) be a partial differential operator with a complex parameter z
such that the corresponding polynomial A(z,#) is quasi-elliptic of type %, in
which case A(z, D) will be called parametrically quasi-elliptic of type 3. Let
Bi(z, D), ..., B,(z, D) be x partial differential operators and set B(z, D)=
(Bi(z, D), ..., B.(z, D)). We consider the boundary value problem

P) (A (z, D)u, yo B(z, D)U) =(f, g

In the elliptic case this problem was investigated by M. S. Agranovi¢ and
M. 1. ViSik in [2]. In this paper the problem (P) is studied in the above setting with
operators of more general types but, on the other hand, in the so-called canoni-
cal situation.

After the preliminary section we introduce in Section 2 the notion of a para-
metrically quasi-elliptic operator A(z, D) and consider the equation A(z, D)u=f.
Section 3 is devoted to the boundary problem (P) with quasi-homogeneous oper-
ators. We prove there an a priori estimate which satisfies certain uniformity require-
ments, and study the unique solvability of (P). The results are extended for the
nonhomogeneous case in Section 4. As we shall finally (in 4.5) note, one obtains
as a consequence a known result for boundary problems of the form

(A(D)u+iu, y,B(D)u) = (f, g)

under mildly reduced assumptions. A brief remark concerning generalizations is
also made.

In a forthcoming paper we shall study general initial-boundary value problems
by making essential use of the results of this paper.
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1. Preliminaries

1.1. Let typical points in R" and in its dual R"=R; be denoted by

Y= v)=1s ooy Va1, ¥w) and n=0", n)=01, ..., Na—1, N1s), respectively, and
set

ey =)+ Yally = Vit t oo A Vi My1F Yl

If a=(o, ..., %,)EN" is a multi-index, an n-tuple of nonnegative integers ox€N,
we write
Da = D; = D‘;‘...Dﬁ"a

where D,=—id/dy, with the imaginary unit i€C. Likewise, we set
0=t .

In what follows we shall use also the often more appropriate notations y=(x, t)=

(x19 LERE] xn—la t) and rl:(f’ T):(fla ey én—la T)‘
The inverse # ! of the Fourier transformation &% =%,

(Fu)m) =7, [ e u(y)dy,

is denoted by %, and similarly #=%,"". Let %, and % stand for the partial
Fourier transformations, too,

(Fw)(& 1) = Tf,.-lfe"i("’@u(x, t)dx,

(Zu)(x, 1) = nlfe"""u(x, t)dt,
where 7, =(2n) %2
Note. It is convenient, sometimes, to let H(w) stand for a function H in
variable w.

1.2. Let my, k=0,1,...,n, be positive integers, pu=max{m}, q.=p/m,
and set ¢=(q", g)=(q1> ---> Gu—1> Gn)-

Consider a (complex-valued, appropriately defined) function H=H(z, n),
z€Z,n=(,{) with E€R"', (€R or (€C, where the parameter set Z is the
sector Z=Z(wy, wy)CC, 0, =w,, defined by

Z(wy, w,) = {z€Clw, = arg z = w,)}.

We shall say that H is homogeneous with weight (g,, q¢) or (q,, ¢)-homogeneous
of degree s€R, and write (q,, q)-deg H=s if

H(\%z, A9n) = 2H(z,1)
for all A=0, where
Ap = (A1, ..., A9an,);

the homogeneities with other weights are defined and indicated analogously.
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Next, we define

=5 )" cr,

<T> = |T|1/q"7 ‘C€R,
(ny = (EFHDHYE, n=( DER,
(2) = |2["%, z€C,

and set furthermore, if w=¢& or 7,

h(z, w) = (2)+(W),
K(z, w) = (1+(2)*+ (W),
K(w) = K(0, w) = (1+(wy»*2.

Note that the (- )-functions and their possible sums are homogeneous of degree 1
with respect to the corresponding weights.

1.3. HS-spaces. Let R ={y=(x,?)€R"|t=0} and, when convenient, let
Q stand for R, R", or R"'. The norms of the Lebesgue space L2(Q) and the
(anisotropic) Sobolev space H*(Q) (see L. Hérmander [3], L. N. Slobodeckii [7],
L. R. Volevie—B. P. Panejah [9]), here employed for s=0, are then denoted by
I+llg and |+ [ ¢, respectively; @ will be omitted in the case Q=R", and replaced
by the symbol + in the case Q=R" and by y in the case Q=R""'. We recall
the definitions of the H*(Q)-spaces: Let &’(R") be the space of tempered distribu-
tions in R". Then H°(R") is defined by

H*(R") = {ue S’ (R")| K(ny Fue L*(R")}

and the norm |||y by
lulls = 1 K@) Ful.

The definition of H*(R"™?) is analogous, and
lulls,, = 1K) Full,.

The space H°(R",) consists of restrictions R, U of UecH*(R"), and |- is
given by
lulls,+ = inf {|U],|U€ H*(R"), R, U = u};

here R, is the operator restricting functions (distributions) defined on R" to R’ .

Clearly H°(Q)=L*(Q), so that | -], , can be replaced by |-],.

It is well-known that C;°(R") is dense in H*(R") and Cg°(R%) in H*(R%);
the symbol C¥(R"), for k€N or k=<, is used to denote the space of restric-
tions to R ={y=(x, t)ER"|1=0} of Cj(R")-functions (C*-functions in R" having
compact support).

We recall also that H*(Q)c H"(Q) algebraically and topologically for s=r.
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1.4. Let z€C. The definition
[ull7 5,0 = llull§, o +(2)*ulb, ucH*(Q),

yields another norm on H°(Q), equivalent to ||, o for any fixed z€C. Let
Hi(Q)=(H*(Q), || +|Il.,5,n) be the space H*(Q) with norm [llz5.0-
Note that

lulZs = 1l o rn ~ [ K(zn)*|Ful* dn, ue H' R,

“u”is,y = ”u”is,R""l ~ ‘[K(Zﬁ é)zslgz‘xulzd& uEHs(R"—1)>
and

lulz,s, + = l[ul s ~ inf{|U]..s| Uc H(R", R, U = u}, u€H(RY);
here, as well as below, the notation A4~B for two expressions 4 and B means

that
CiA=B=CA

with two suitable positive constants C, and C, (only with admissible dependences).
Note. The symbol C will be used, throughout this paper, to denote a generic
positive constant.

1.5. Lemma. If s=r=0, there is a constant C=0 such that, for all z€C,

”u”z,r,ﬂ = C“u”z,s,!)’ uEHS(Q)
Proof. Since

lullz,r,0 ~ [ully, o+{2)" lullg
and

”u”r,.Q = C”u”s,!)a
we obtain

lulz,r,0 = C(lulls, o+ +(2))lulg) = Cllul.,q, 0.

1.6. If X and Y are two (complex) normed spaces, #(X;Y) will denote
the normed space of all bounded (linear) operators of X into Y.

We recall that there exists an extension operator E from H ‘(R%) into H*(R"),
ie., an operator ECZ(H°(R");H*(R") satisfying

(N R, Eu=u, ucH(R").
In fact, let v be a positive integer and define for ucCy (R%)
u(x,t) if t=0

—{ v+1
(Eyu)(x, 1) > Aju(x, —jt) if t<0,
=1

where the coefficients 1,, ..., A,,; are determined by the system of linear equations

v+1

2 y=1 k=0,
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Then for any s=0 with s<v (note that then Cy(R")CH*(R") and vz=
max{k€N|k=s/q,}+1) the operator

E,: C5(RY) — C3 (R
extends to an operator
E = E,%(H*(R}); H*(RY)

having the property (1) (see [7]).
Moreover, if =0, ...,v and we set for ucCy (R%)

u(x,t) if t=0

1)) — { v+1
Jj=1

then the operator E®=E® mapping Cy°(R") into C;~#(R") satisfies
DSE = E® DP,

1.7. Lemma. Let s=0 and r=0 be given. Then there is a constant C=0
such that
(@ lul.,s,0= Clullzsiro, uEH " (Q),
for all zeC.

Proof. The statement follows from the inequality
@ uli o= Clluls sir,0, u€H(Q),

whose proof in the case Q=R" or R""! is straightforward, and which then in
the case Q=R is obtained by use of the extension operator E=E, with
V=>s+r.

1.8. The trace operator y,: Cg(R%.)—~Cg(R"™) is defined by (y,u)(x)=
u(x,0) for ueCy(R%) and, for s>g,/2, extends by continuity to a continuous

operator
Yo:ur>you: HS(RY) — H~4/(R*)
(see, e.g., [8]).

1.9. Lemma. If s=>gq,/2, there exists a constant C=0 such that

[P0tz s=gusz,5 = Cllullzs, 45 u€EH(RY),
for all zeC.

Proof. Let u€Cy(R") and put U=FEu, where E=E, with v>s. Then
we have
1p0ul2 s=gzy ~ [ K (2, O~ |(F,3,U) (£)[2dE,
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where
(20 D)@ = (FU)E 012 = 3 ([ |7U | de)f
= nif(K(Z, é)zqn‘[‘fz)lg"[]lzdff?(z——%;m-'
= %K(z, &)= 4n f (K(z, &P +12)|FU |2 dr.

Hence it follows that
1p0ul2,s—qey = C [ (K (2, OF+K(z, 20 (c)0) |FU *d¢ dr

= C [ K(z n)*|7U 2y

= C|U|Z s = Cllul?

z,8, +*

\

1.10. Lemma. Let s=0. There is a constant C=0 such that for any a€N"
with (o, q)=s we have

”Da””z,s—(a,q),+ = C”u”z,s, + lleHs(R’fl-)’
for all zeC.

Proof. Suppose u€¢ H°(R",) and set U=FEu€ H°(R"), where E=E, with v=s.
If r={(a, ¢), we have

ID*ul2 -y s ~ [ K(z, ))* =% |FD*U2dn = [ K(z, >~ y*=|F U2 dn.
Now

7% = C{n)y’,  neR",
so that

ID“u|2,s—r,+ = C [ K(z, )*|FURdn = C |ul?

z,8, +*

2. Parametrically quasi-elliptic operators

2.1. We shall consider partial differential operators of the form

A(z, D) = D 4, z*D* (k€ N, ac N™),

k‘Io"'(“s D=p

where the coefficients a,, are complex constants and the parameter z¢C. The
principal part A4°(z, D) of A(z, D) is given by
Q) Az, D)= 3 ayz*De,
kqo+(a,q)=ﬂ
so that the corresponding polynomial
A%z, n) = Z [ Zk’,’a,
kgo+(a, q)=n

the principal symbol of A(z, D), is (q,,q)-homogeneous of degree u.
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2.2. Lemma. If s=pu, there is a constant C=0 such that

[4°(z, D)ul,s-, = Cllull,,s, u€H*(R"),
for all zeC.

Proof. There exists a constant C,>0 such that
[4°(2% %) = Cy,  2°€C, n°€R", h(z%n°) = 1.
For arbitrary z€C and n€R* with h(z,7)=0 we find
A°(z,m) = h(z,n*A°(2% "),
where z°=h(z,n)" %z, 1°=h(z,n) % (see 1.2 and 2.1), and therefore

|A0(Z, 77)] = COh(Z) 71)”} ZEC, nERn-
Thus we have
[A°(z, D)ul? —, ~ fK(z, n)* 2| FA%(z, D)u|*dn

= C/K(z, M2 h(z, ) |Ful>dn
= ClulZ.

2.3. Definition. The operator A(z, D) is said to be parametrically quasi-
elliptic if it satisfies the condition

(QE) A%z, ) #0, z€Z=Z(w;,wy), nER", h(z,n) =0,
or, equivalently (cf. [3]), if

[4°(z,m)| = coh(z.m), 262, nERT,
with some constant c,=0.

Let us now assume that the condition (QE) is fulfilled. Consider A°(z, &, 1)
as polynomial in the complex variable 7. Then there are functions 1, =17,(2, &),
k=1, ..., m,, continuous in ZXR"1, such that for each fixed (z,)€ZXR"!
they are the roots of the polynomial A°(z, ¢, 1),

A%z, & 1(2,8)) =0, k=1,...,m,.

2.4. Lemma. The roots 7,(z, &), k=1, ...,m,, are (qo,q’)-homogeneous of
degree q,.

Indeed, we have
A%(z, & ATy (A0z, 29E)) =0

for every A=0, and the function Aw—A7%7 (4%z, g from R, into C is
continuous.

2.5. In what follows we shall mostly consider operators A(z, D) which satisfy
a somewhat stronger condition:
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Condition (QED). The operator A(z, D) is parametrically quasi-elliptic of
determined type x, 1=x=m,, that is, it satisfies (QF) and, moreover, the con-
dition (D):

(D) For every z€Z and every EER™' with h(z,&)=0 the polynomial
A%z, ¢, 7) in the complex variable © has exactly x roots 7z, 8), j=1,..,%,
with positive imaginary part, Im r}L (z, ©=0.

Remark. When n=2, (QE) implies (D) and hence (QED).

2.6. Theorem. Suppose that Condition (QE) is satisfied, and let s=p. Given
0=>0, there is a constant C=0 such that the a priori estimate

M lulz,s = Cl4°(z, D)ul..,s—, u€H* (R,

is valid for every z€Z with {(z)=p.
Furthermore, for every z€ Z\{0}, the operator A"(z, D)e % (H:(R"); H™(R")
is an isomorphism (for the locally convex structures).

Proof. To prove (1), pick u€ H*(R"). By virtue of (QE) we then have, if
(&)=0,
|[Ful = cgth(z,n)~*|FA°(z, D)ul.
Hence
lull2,s = C [ K(z, n)*h(z, n)~*| FA(z, D)ul*dy.

Since here obviously

h(z,n) = CK(z, 1)
with C=C(g), we obtain

lull%,s = C [ K(z, ny*~2|F 4°(z, Dyul2dn = C | 4%(z, D)ul2,_,.

It is clear that A°(z, D) is now an isomorphism of H. S(R") onto H; *(R"
provided that it is surjective. This, however, is easy to see. Indeed, if fe H;7*(R"),
then

u=%,A%2z,n) " FfcH:(R")
and
Az, D)u = F, A%(z,n) Fu = .

Boundary value problems
3. The case of principal parts

3.1. Let x be a positive integer, and let Bj(z, D), ..., B%(z, D) be » oper-
ators defined by
BY(z, D) = > bp,ZDr j=1, ..,

kqy+{a, a)=u;

where the coefficients b, arecomplex constants, the parameter z€C, and u;=0.
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The corresponding polynomials

(1) B(J)'(Z’ 17) = Z bjkazknas ]= 1’ cees Xy

kgo+<{a, q)=un;

are then (q,, g)-homogeneous, (g,, q)-deg B?:yj.
Let A%z, D) be the operator given by (1) of 2.1 and P°(z, D) the operator
defined by
P°(z, D) = (A4°(z, D), yyB°(z, D))

with B°(z, D)=(B{(z, D), ..., Bj(z, D)).
For s¢ S,

S= S(l“luu_)) = {SERIS = U, § = max {”J+qn/2> .] = 1: [ERE) %}},
we set

HRY) = AR ) =[] HO 4R,
j=1
AR, R = A (R, R g 1) = HPH(RY) XA (R,
and introduce similarly the spaces #(R"™") and #(R",R""); thus
AR =(# R, 1] - ll..s,)

and
#, (R, R = (#°(R", R, [l -11l,.,)
with
®
NGHE oy = S &2y -z G = (815 oo £IEH R,
j=
and

WENZ s = 113 5mn, + TG 5. F=(f, Q)EA*(R, R"™Y).
3.2. Lemma. If s€S, there is a constant C=0 such that

1P°(z, D)ulll;,s = Cllul.,s,+,  u€H(RY),
for all zeC.

Proof. Consider the right side of the inequality

”|P0(29 D)””lz,s = C [”AO(Z’ D)u”z,s-u, + + 2; I|voBg(Z: D)u“z,s—uj—q,,ﬂ,y] .
ji=
By Lemmas 1.7 and 1.10,
"AO(Z’ D)u“z,s—u,+ = Z |akaHZ|k”Dau”z,s—-u,+

kgo+{a, @y=n

=C 2 <Z>kq°“““z,s—u+(a,q), +

kgg+{a,a)=n
= C"u”z,s, +

Making use of Lemma 1.9, we also obtain, as above,

||'))0B(}(Z, —D)u”z,s—uj—q,,/z,y = C”B(J)(Za D)u”z,s—uj,+ = C”u”z,s, + -
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3.3. We now suppose that A4°(z, D) satisfies Condition (QED).
3.3.1. Let z€Z and E€R™' such that A(z, £)=0. We set

ﬁ@aﬂaéﬁﬂﬂ@m=§wuaw%

where the coefficients o (z,£) are (qo,¢’)-homogeneous of degree kgq,,
k=0, ...,%. Consequently, A*(z, & 1) is (q,,q)-homogeneous,

(1) (qo’ q)'degA+ = %q,.
We shall also employ the polynomials (in 1)

AF(z, E0)= D oif(z, )%, v=0,...,%—1,
k=0
which are (g,, g)-homogeneous, too,

®) (90> @)-deg A} = vq,.

The polynomials A are characterized by the following result, proved by a simple
residue computation.

332. Lemma. If z€Z and E€R"™' with h(z, £)=0, then

I (A, ED0 B
2—7”1:/ A+(Z,f,(:) d(_,-(svk, V,k—l,...,%,

(S, being the Kronecker symbol) for every rectifiable Jordan curve TI'=I(z, &)
which encircles the roots 1j (z,&), j=1,...,%.

3.33. If B)(z,m)=B%z ¢, 1), 1=j=x, is the polynomial given by (1) of
3.1, let B;.(z, ¢, 1) denote the uniquely determined polynomial in t of degree
less than 3 such that

B}(z,&, 1) = Bj(z,&,7) mod A%(z, &, 7).
Then, since
B}(z, &, 1) = A7 B (Az, ATE, Mnt) mod A*(z, &, 1)

for all 2=0, Bj(z, ¢, 1) is also (g, g)-homogeneous of degree ;. Therefore,
if we write

B}(Z’ é’ T) =k§.ﬁjk(z, é)Tk_l, ]: 1, veey A,

the coefficients f,(z, &) are (gy, ¢")-homogeneous,
3 (90> g')-deg By = p;—(k—1)gy;

note that B, =0 when (k—1)g,>u;.
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3.3.4. The operators A%(z, D) and B;?(z, D), j=1,...,%, are now connected
by the following complementing (covering, Lopatinskii—Sapiro) condition:

Condition (CC). For every z€Z and every EER"™' with h(z, &)=0 the
polynomials B;?(z, &, 1) in 1, j=1, ..., %, arelinearly independent modulo A™*(z, &, 1),
or, what is the same,

det#(z, &) # 0,

where %(z, £) denotes the matrix [B; (2, &)].

3.3.5. In order to employ Condition (CC) it is useful first to consider the
ordinary differential equation

) - Az, E,D)p =0
with initial condition
(5) VOBO(Zr 55 Dt)q) = C,

where c¢=(cy, ..., c,)EC*, and h(z, &)=0, of course. Let F(R,) denote the
space of functions @€C=(R,) such that t*D*¢(1)~0 as t—o for all a, BEN.

3.3.6. Lemma. Assume Condition (QED) holds. Then Condition (CC) and
the following two conditions are mutually equivalent:

(ES) Problem (4)—(5) admits a solution @cF(R,) for all ceC*.

(US) Problem (4)—(5) with ¢=0 admits only the trivial solution in F(R.).

It is convenient to recall briefly the proof of this lemma (cf. the proof of Pro-
position 4.2 of Lions—Magenes [4], p. 129), specially adapted for our purposes.

3.3.7. Proof of Lemma 3.3.6. Since the &(R,)-solutions of (4) form a x-
dimensional complex vector space A(z, &), the operator T: A (z, £)—~C%, de-
fined by

To =1,B°(z, &, D), 9€N(2,0),

is surjective if and only if it is injective, so that (ES) and (US) are equivalent.
Next we show that (CC) implies (ES). Under Condition (CC), the system of
the equations

©6) éﬁjv(z, Hg=c; j=1, ..

has a unique solution g(z, §)=(g1(z, &), ..., 8,0, é)) for every c¢=(cy, ..., c,)€C*;
in fact

x

(7) gv(za i): Z;I’))Vk(za é)cka V=1, s K,

k=

[B*(z, £)] being the inverse matrix B~ 1(z, &) of AB(z, &).
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Let now I' be a rectifiable Jordan curve which surrounds the roots 15 (z, ),
Jj=1,...,%. For any t=0, we define

N PN M C R
®) u(z, ¢, t)—ﬁ}/“’glgvc, 5)me cdg.
By (7), this becomes
©) uz 6= SeNé 0,
where we have set

L[ee0

(10) Nl &, 1) = = ~—5§Z—é% cat
with
(11) Mz &0 = 5P O AL (2 .
We have

Ni(z,&,-) €L (R),
A+(Za 69 Dt)Nk(Z5 ‘:9 t) = 05

and furthermore, by Lemma 3.3.2,

1 M, (z, ¢ 0)

(12) )’oBg(Z, éa t)Nk(Za 63 t) 27Tl m

Bj(z,¢,0dC

3520 354G, 6)[2m Lt d g

= 2Bz OB 0 = 5y

Consequently, the function u(z, &,-) given by (9) is a solution of (4)—(5).

Finally, assume Condition (CC) does not hold. Then there are z€Z and
EER™ with h(z, £)=0 such that (6) with ¢;=0 has a nontrivial solution g(z, &).
thatis, g,(z, {)#0 forsome k, 1=k =2x. But then, for the function u(z, ¢, -)¢L(R.,)
given by (8) we obtain

Dtz &) = 3020 (57 f Lol ) - (a0,

which contradicts (US), and the proof is complete.
In connection with the preceding proof we have, moreover, the following two
results required in the sequel.

3.3.8. Lemma. If Condition (CC) holds, then the functions Ny, ..., N,, given
by (10), form a basis of N(z, E).
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Proof. In fact, the functions in question are linearly independent, for if

chNk(Z’ éa t):o, t%o,
k=1

for some ¢y, ...,c, €C, then it follows from (12) that

*
0= VoBg(Z, és Dt) [kgl Cka(Z, éa t)) = cj’ ] = 1; ey Mo

3.39. Lemma. If Condition (CC) holds, then the functions My(z,¢&,(),
k=1, ...,%, given by (11), are (q,,q)-homogeneous,

(90> 9)-deg My, = (x—1) g, — pty.-
Proof. For all A=0 we have
B(z, Bz, §) = [0p] = B(A0z, I E) B~ (A0z, A7),
so that, for j, k=1,...,%,

;é; ij(z, P (z, 8 = 5jk = vé; ﬁjv(ﬂ.‘loz, 24 E) B (Adoz, 29 E).

If we use (3) and multiply the left equation by A**~*i, we see that

S DB O = 6= 3 Bples AP0 pr iz, 108,
Since 2 (z, &) is regular, it follows that
B(z, &) = Ji=C=Dan fok oz, 1)
for v, k=1, ..., %; hence
(13) (90> ¢")-deg p* = (v—1) ¢, — pis.
From (2), (11) and (13) we now obtain, for all /=0,

M G0z, J9E, Janl) = D B*(A90z, AL E) A, (Moz, )9 E, 19n0)
y=1
= 3D B (2, &) e AE (2, £, )
v=1

= A=Dan—mc M, (2, &, O).

3.4. Theorem. Suppose that Conditions (QED) and (CC) are satisfied, and
that s€S. Then, given any =0, there is a constant C=0 such that the a priori
estimate

(A) lul.,s+ = ClIP(z, Dyulll.,s,  u€H*(RY),
holds for all zeZ with (z)y=o.
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Furthermore, the operator P°(z, D)% (H:(R"); #;(R".,R"™") is an iso-
morphism for every z€Z\{0}.

The proof of Theorem 3.4 will be given in Sections 3.5 and 3.6.
3.5. Proof of the estimate (A).

3.5.1. We begin by showing that the estimate (A) is valid if and only if the
estimate
(B) ”u”z,s,+ = Cl”?OBO(Z’D)u”Iz,s,}'
holds for every u€ HS(R".) with A°(z, D)u=0.
That (A) implies (B) is obvious. To prove that (B) implies (A), let u€ H°(R").
Then
f = A%z, D)uc H*~*(R%),

and there exists u,€ H°(R".) such that

(D A%z, Dyuy =f
and
(2) luillz,s, + = Clfllz s p, +

where the constant C=0 does not depend on f. Indeed, if E denotes the ex-
tension operator E,, v=s—pu, we set

U, =F,4%(z,n) ' FEf.
Then U,€ H°(R"), and hence, by virtue of Theorem 2.6,

”Ulllz,s = C”AO(Za D)Uluz.s—u

for all z€Z, (z)=¢. Thus we have

u, = R, U €H*(R")
and
”uluz,s,+ = CHEsz,s—u = C”f”z,s—u,+ .

Next, set uy=u—u,. Then uy¢ H*(R",) and, by (1), 4%z, D)u,=0. Consequently,
(B) gives
3 luollz,s, + = CllvoB°(2, D) thgl., 5, -

In view of (2), (3), and Lemma 3.2, we thus obtain

lullz,s, + = lluallz,s, + +lull,s, +
= C(lllyoB°(z, DYulllz, s,y + 1vo B°(z, DYuslll:, s, )+ sz, s, +
= C(lllpeB°(z, D)ulll;, s, +luallz,s, +)
= C(| 4°(z, D)ul;,s—u, + +11I70 B°(z, D)l 5,5)
= Cll|P°(z, D)ulll., s
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What we now have to prove is therefore the estimate (B); this will be done in
the rest of this section.

3.52. If ucH*(R%) and A°(z, D)u=0, then
0 =F A%z, D)u = A°(z, ¢, D) Fu.

Hence, for (almost) all &€R", (Zw)(é,+) is an exponential solution of the
equation (4) in 3.3, so that it belongs to P(R,) (cf. [1]) and, furthermore, to
N(z, &). Accordingly, Lemma 3.3.8 implies that

(Fu)(E 1) = g (@ ONu(z & 1),

where now (see the proof of Lemma 3.3.6)
Ck(Z, é) = ’V()BI?(Z’ ¢, Dt)('g":cu)(£9 t) = '}’0.9-’;.82(2, D)u

3.5.3. Choose an integer v such that v=>s and v=>s/q,+1/2, and write
again E=F,.
We have

4) Il = | Bul® s~ [ K(z m*| FEul*dn.

Here &#FEu=%,EZ u, so that

) FEu= k=2"1 ez O(FAENY (2 & ) ().
Therefore it suffices to consider the integral
(6) [ Kz 0¥ le(z, O(F(EN(z, & D) (@) dn
~ [ K OPlez OF (f [(ZAEND = & 0) @) de) 2
+ [ ez OF ([ O [(FEN) @ & D) @] de) dE
=IL+1.
3.5.4. Consider next the function

_ 1 M (z, ¢, 0) itg

? MEen=37 | Teen C ®
4

where I, is a rectifiable Jordan curve encircling the roots ’C;_ (z, 8, j=1,...,%.
There are R=0 and =0 such that, for j=1, ..., %,

77 (2% &9 < R
and
[Im 77 (2%, &%) =6

for all z°%¢Z and all &PcR"™! with h(z’, &=1. Hence, with these z° and ¢&°,
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the curve I', in (7) can always be deformed into the same Jordan curve, say, into
I'g s consisting of the paths |{|=R,Im{=6 and Im{=4, |{|=R. From Lemma
2.4 it follows that for arbitrary z€Z and E€R"! with h(z, £)=0 we can take
Ie=h(z, &)inlg 5.

The function L,
®) Lo & 0 = e,

is (g9, 9)-homogeneous of degree —p,—gq, (see (1) of 3.3 and Lemma 3.3.9), so
that, in particular,

h(z, &) =0, L€C,

Li(2, &, 0 = h(z, O~ Ly (2°, &, {°)

when (z, &, )=h(z, )9 D(2° ¢° ¢%). From this and the fact that, for a suitable
constant C=0,
ILk(ZO’ 60’ Z,TO)I = C

for all 2% &% with A(2% &% =1 and all (% s, we see that
©) (2, & O = Ch(z, &)

for all z ¢ with h(z,&)=0 and all (€@, =h(z, &)™ Ik ;.
By virtue of (7), (8) and (9) we thus obtain

[Ni(z, & )] = Ch(z, &)~ M@I(I'y) max leitd],
where [(I';) is the length of I',. Since

I(I') = 2+n)Rh(z, &)
and
€] = exp (= h(z, &)™ 1),
we finally have

(10) INu(z, & )] = Ch(z, &= exp (— h(z, &) 51)
for all z, & with h(z, &)=0, and for all ¢=0.

3.5.5. We return now to (6). First, in the integral I; we have

S(ZENY G & )@ de = [IENI, & pidr
= (1+(v+1)jv§11—]1,- Mjlz) f | N (z, &, t)|2dt
(see 1.6), where, by (10),
jo |Ne (2, & 1)|2dt = Ch(z, &)~ 2%c—an,
Noting that A(z, &)~K(z, &) when (z)=g, we therefore obtain

(11) 1= C [ K(z &3 F, Bz, D)uP K (z, =2 dE
= C|lyoB(z, D)ul|?

Z,8= = qn/2,7 "
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3.5.6. To treat the integral I, let us rewrite it in the form
L= [le(z P H(z, &) de,

Hy(z, &) = [(@*|(ZEN)( & 1))@ de.

3.5.7. First of all, we shall verify the continuity of H,(z, £) when h(z, £)=0.
To do this, let >0 be given, and let z,6Z and &,€R"™! such that
h(z,y, £,)=0. Restrict the consideration to a neighbourhood of (z,, &), and notice
that for all (z, &) in this neighbourhood the curve I', in (7) can be deformed into

S

the same rectifiable Jordan curve, say, into I' with the property

where

r =min {Im{[{eT} >0

(cf. 3.5.4). If L, denotes again the function given by (8), then there is §,=0 such
that, for all (€T,
]Lk(zs é; C)_Lk(ZO, 60’ O| =&

whenever |[z—zy|+|E—&y|<J,. In view of 1.6, if 0=f=v, we thus have for =0
(cf. 3.5.4)
|(DEN(z, &, 1) —(DEN (29, o5 1)

= %JIL"(Z’ & O —Li(z0, &0, OI1CPI e |dC]
= C(I, v)ge ™™
and then for ¢ <0
I((DFEN(z, &, t)—(DIEN)(zo, &o, 1)
= [(E® DN (z, &, 1) —(EP DN, (zo, &, 1)

= S U IAIOIN G & =)= DEN) o Eou =)
= C(I, v)se"lt;
hence, for all ?€R,
(DEEN) (2, & 1)~ (DEEN 2o, &, 1] = Cae~rl
if |z—zo|+|E— &l <6,. This yields
(12 [ (FEN G & )@~ (FEN o 0> )
=, [|e"*((DEENY (2, & ) —(DFEN,) (0, &, 1)| dt
= Ceg,

provided that |z—zy|+|&— &) <4,.
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Next, a small computation shows that

(13)  |H(z 9= Hi(a, &)
= | [@*((FENI, & D) @F = [(FAEN) (20, &, 1) @) d]
= 2ab+b?,

where

a= (f<1>28 l(g’rt(ENk)(Zo, o> t))(T)Iz dt)llz,
b= ([ @*(ZEN)( & D)@ —(F(EN) (2, &, 1)) @) dr)™.
With 0=p=v we have (see 1.6)

Ifﬁ(g'.t(ENk)(Zo, Sos t))('”)' = l('%(E(thBNk)(Zo, Sos t))(f)]

:7'[1

| = . v+1 o
[ e DEND o, &0 D dt+ 3T (=25 [ e (DEND . o i,
0 J= —oo

and since it follows from (9) that
(DN (20, &o, 1) = Ch(zy, &) ™He™ e,
we obtain (cf. 3.5.4)

[P (F(END (20, &» 1)) (D)] = Chi(zy, Eo) .
Hence we get

w=cf AL q + 2)v 5 () (FEN o, Gor D) (0] de

o
= Clzo, 50)/ o
= C(20, $o)s
since v=>s/q,+1/2. From (12) we derive in the same way that
b? = Ce.
Therefore, it finally follows from (13) that
|H, (2, &) — Hy (20, &) = Ce

whenever |z—z,| 4| —&,| <6, .
3.5.8. There exists a constant C=0 such that

(14) H(2%,¢)=C, z2%€Z, %R h(2%¢%) = 1.
Let then z€Z and E€R™™! with h(z, £)=0, let A=0, and consider
H,(Aoz, J7E) = [(0)*|(F(EN,) 3oz, 29 E, 1) (1) d.
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In the case t=0 we obtain (see 3.5.4)

N Aoz, JTE, 1) = A7 "Ny (2, &, Ant),
so that, for all ¢€R,

(EN)(Aoz, 27 &, 1) = A7H(EN,) (2, §, A%1).
Consequently,

(FAEN) Moz, 29E, 1)) (1) = A~ Wn(F(EN) (2, &, 1)) (A~ %),
Hence we see that
Hy(M0z, 24 &) = 42020 [(1)% (Z(EN) (2, & 1)) (A9 dv = 22 7*M 9 Hi(z, ),
from which it follows, by (14), that

H,(z, &) = Ch(z, £)* 2 4n, z€Z, EER™Y, h(z, &) =0.

Now we return to the integral 7, and reach the conclusion that
L= [la(z QP Hi(z, O de = C [ h(z, Ol (z, O de
= C [K(z, &2 0|y F, BY(z, D)ul*dg,

whence
(15) Izé C”VOBQ(L D)u”g,s—uk—qn/&y'

3.5.9. By combining (4), (5), (6), (11), and (15) we finally obtain

ul2s, . =€ 3 [ Kz 9%z O(FEN G & 0)@Pdn

%
= CkZ’ IlVOBI(z(Zs D)””z,s-—uk—qn/z,y'
=1

This completes the proof of the estimate (B).

3.6. Proof of the latter part of Theorem 3.4. To show that P°(z, D) is an iso-
morphism of HI(R") onto #(R" ,R""), for every z€Z\{0}, we shall, in fact,
construct its inverse operator. In what follows, let E=E,, v=s.

3.6.1. Fix ze€Z\ {0} and define
Kof = Ry 7, A%(z, )\ FEf, feH;7"(R%).

Then K, is an operator mapping H; *(R") into HJ(R"). Indeed, EfcH; "(R")
and
|Fy A2z, ) P FES |2, = C [ K(z, )* |4°(z, n) * FEf |2 dn
= C [K(z, n)*h(z, n)~*|FEf|Pdn

§ C”Ef”?'.,s—u’
so that
1Ko S35+ = CIEfIZ s—p = CUSIZ s-p, 4
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this implies, furthermore, that
Ko€ £ (Hz~*(R%); Hi (RY,)).
3.6.2. For j=1, ..., % we set
K;g=F(N;Z.8), gEH Hi~ %2R
First, one easily checks (see 3.5.5) that K;g€ L*(R",), at least. Since now
EK;g = ‘Z((ENJ)%g)
and so
FEK;g = (FEN)F,g,
we obtain
(1) [ K(z ™| FEK,gl*dn
~ [KG & ([ IZEN 2 dx) | F gl de + [ ([ (3 | FEN,[2d1)| gl dé
= Il'l"Ig.
Here we have (see 3.5.5)
L= CfK(Z, OFh(z, )~ | F gl?dC = Cllgl? s uy—gn
and (see 3.5.8)
L= [H(z 8)|Fgldé = C [ h(z, %% %| F,gPdE = Cllgl2 sy, —grey-

It therefore follows from (1) that

EK;gc H3(R"),
and hence
K;g = R, EK;gc H;(R",);
moreover,
”Kjg”z,s, + = C“g”,g.,s—-uj—qn/&y .
Consequently,

K;€ Z(Hs = %W/%(R"=Y); HS(RY)).
3.6.3. Let us now set
KOF: K0f+ .Zin(gj—VoB?(Za D)KOf)> F: (fs gl’ LR gk)e‘%zs(R'-lf’ Rn—l)'
Jj=

Then K° is an operator on #:(R% ,R"™"), valued in H} (R"), by virtue of 3.6.1
and 3.6.2, and furthermore

”KOF”z,s, + = C”f”z,s—u,++c Z; (”gj”z,s—uj—qn/Z,y_l_“’})OBS)'(ZS D)K()f”z,s—uj—q"/2,y)5
j=
where (see Lemmas 1.9 and 3.2)

I|VOB2(Z9 D)Kof”z,s—pj—q,,/Z,y = C“f”z,s—u, + ¢

K€ L(H#; (R, R"™Y); HE (RY)).

Thus we have
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3.6.4. The operator K° has the property
P(z, D)K°F=F, F=(f, g1, s S)EH(R", R"1).

To see this, let F=(f, g1, ..., g)EHS(R" , R"™) and set u=K°F¢H;(R",). Then
we have

A(z, Dyu = 4°(z, D)Ko f+ 3 4°(z, DK (85~10B(2 D) Ku )
Jj=

where (note that A4°(z, D) and R, commute)
AO(Z5 D)K0f= AO(Za D)R+ gnAO(L ﬂ)-lg’-Ef
= R+‘g7nAo(Za rl)Ao(Z’ ﬂ)_lg"Ef

=f
and (see 3.3.7)

A°(z, D)Kj(gj”“yoB(}(Za D)Kof) = A%(z, D)gé(Nj'o/':c(gj_yOB?(Z» D)Kof))
= ,97{((140(2, éa Dt)Nj)'g':c(gj_yOB_?(Zs D)Kof))

=0,
so that
A%z, D)u =f.

By (12) of 3.3, we obtain further
70Bi(z, D)K;(g; =70 B} (z, D) K, f)
= (1B (z, & DYN) F.(8;— 10 B}(z, D) K, f))
=0 (g;—70BY(z, D)Ko f),

whence
Yo Bh(z, D)u = y,BR(z, D)K, f+ 2; 5jk (gj'“')’oB?(Z, D)Kof)
j=

= 8k
as required.
It thus follows that the operator P°(z, D) is a continuous bijective lincar
map and therefore an isomorphism from HZ(R%) onto #:(R’.,R""), with in-
verse K°. The continuity of K° was, in fact, found also directly in 3.6.3.

4. The general case

In this section we shall generalize the results of Theorem 3.4 to cover the case
of nonhomogeneous operators.

4.1. We shall need the following two lemmas.
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4.1.1. Lemma. Suppose s§,=>s,=>5;=0. Given any ¢=0 there is a constant
C(e)=0 such that

” ”u”z,s2,+ = 8]|u”z’sl,++C(8) ”u"z,ss,+a uEHSI(R,-l(-)’
for all zeC.

Proof. From the well-known inequality (equal to the above with z=0)

lulls, + = ellulls, + +C@lull, +, u€H(RY),
we obtain

lullz, s, + ~ Nttllsy, + <2 lull+ = ellulls,, + + C@lulls, + +<{z)%ull 4.

The assertion follows therefore from the inequality
(z)% = e{z)"1+ C(e)(2)"%,

which in turn is a consequence of the elementary inequality
1 | R ,
abé;a"-l-?b", a5b>0’ p>17 p ZP/(P_U,

as a matter of fact, choose

=S, = oy, b= (o) Gy,

4.1.2. Lemma. Let s=0 and r=0. To every &¢=0 there is C(g)=0 such
that
2 ”D“u”z,s,+ = 8”u“z,s+r,+ +C(8)”u”+s uEHs+r(R'-l+)a

{a,q)<r

for all zeC.
Proof. By Lemma 1.10 we have

”Dau”z,s, + = C”u”z,s+(a,q), +
If we now put
k = max {{a, g)|a€ N", (o, q) <1} <.
it follows from Lemma 1.5 that

2 ”u”z,s+(a,q},+ = C”u”z,s+k,+9

(v, @)<r

where, by virtue of Lemma 4.1.1,
Ntllgt,+ = eltllgrr, 4+ C@ul s
4.2. In the general case we have to consider operators of the form
P(z,D) = P°(z, D)+ P%(z, D),
where P°(z, D), the principal part of P(z, D), is defined as in 3.1, and P%(z, D)
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is given by
P%(z,D) = (4°(z, D), y,B%(z, D)) = (4°(z, D), 7o BY"(2, D), ... , 7, BY (z, D))
with

A%(z, D) = > aZ*De,
kgo+ (2, q)<u
Bgo(za D) = Z bjkaZkDa;

kgo+{(a,a)<u;

here the coefficients @, and by, are complex constants, of course.

4.3. Theorem. Suppose that P°(z, D) satisfies Conditions (QED) and (CC),
and let s€S. Then there is ¢=>0 such that, for some constant C=0,

uls,s,+ = ClIP(z, DYull,ys u€H(RY),
for all z€Z, (z)=o.
Proof. In what follows let u be any function in H*(R",) and let z€Z\{0}.
4.3.1. According to Theorem 3.4 we first have

lell,s, + = CIlIP°(z, D)ulllz, s,
which yields

M lul.,s,+ = C1 (1P (z, D)ui]||;, s+ [ A% (2, D)uill, 5, +
+1§ ”70300(29 D)u”z S= 15— dn/2, 7)

4.3.2. Given any &>0 we obtain, by virtue of Lemma 4.1.2,

“AOO(Z’ D)u”z,s—u,+ = C2 2 Izlk 2 “Dau”z,s—u,+

k<my {a,q)<un—kqy

= Goe 3 (z)%ul,,,- kqo,++C3(8) 2 () olul,.

<”‘0 <m0

2 (ollull+ = CA+(~0){z)~* [ul,,s, +,

<m°

Since

we have, by Lemma 1.7,

@) 1A% (2, DY ull;, 5, + = (Cag+Cs(e) (1 +{2)* ) (2) %) ull,5, + -
Fix now &=>0 satisfying
1
C48 = -gc—j;
and choose @,=>0 such that
140t~ % 1
Cl)— 2~ = .

% 38C;
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Then it follows from (2) that

1
(3) ”AOO(Z, D)u”z,s-u,+ = 4_C11”u”z,s,+
for all z€Z, (z)=g,.
4.3.3. Next, in view of Lemma 1.9, we find that
IWOBQO(Z D)u”zs nj— q,‘/2,7—CG 2 Izlk 2 ”D“M“Z’s_”j,_,.

kao<u; e, @y<p;—kqq
Hence, given any &=0, we obtain again from Lemma 4.1.2
”yOBQO(Z D)u”z,s Bi=dqn/2,7
=Coe 3 () Dlul oopgp + +Cale) 5 (2Y]ul ..

kqo<ny kqo<p;
Since
3 (@ lluly = CAHEND e, 4
Jo<Hj

(obviously, this inequation could be strengthened), we have, as above,

) 70 BY (z, D)“”Z,S“[lj—qn/z,y = (C38+C9 (e +<Z>u1)<Z>_5) full,,s, +
If we now take =0 so small that

1
8xC,

Cee =

and choose ;>0 such that

1+ 0} - 1

C9() Qj = 8%C1’

then it follows from (4) that

1
(5) ”'VOB;!O(Z’ D)u”z,s—uj—qn/2,y = m ”u”z,s, +
for all z€Z, (z)=y;.

4.3.4. To complete the proof, it is now enough to define g=max{g,, 01, ..., 0,}-
Indeed, combining (1), (3), and (5), we have

lullz,s, + = ClIP(z, D)ulll,,s+— Ilully s+t Z Ilullz 5+
and thus
lulz,s, + = CllIP(z, D)ulll,,,
for all z€Z, (z)=p.

4.4. Theorem. If P°(z, D) satisfies Conditions (QED) and (CC), and if
SES, then there is ¢>0 such that, for every z€Z with (z)=g, the operator
P(z, D) is an isomorphism of HJ(R) onto (R’ ,R"7).

Proof. We shall show that P(z, D) can be represented as the product of P°(z, D)
and a J(R"., R"")-automorphism.



On parametrically quasi-elliptic boundary problems 261

4.4.1. Let zeZ \{0}. According to Theorem 3.4 the operator P°(z, D) is
an isomorphism of H(R") onto #:(R" ,R"™). As in 3.6, let K° denote its
inverse. Then we can write

P(z,D) = P%(z, D)+ P%(z,D) = (IS+P°°(Z, D)K°) P°(z, D),
where I, is the identity mapping on #; (R’ ,R"™%).
4.4.2. Let ucHS(R%). Given any &=>0 we have, by (2) of 4.3,
14°(z, DYul, -4, + = (Cre+ Ca() (1 +{2)*~0)(2) %) ull., s, +
and, by (4) of 4.3,
170 BY (2, DYt 5=y gureny = (Cse+ Ca() U +(2)#)(2) ) lull 5, + -

Fix ¢, 0<o<1. Next, choose &¢=0 satisfying

Cos——m—, GeS e
Tkl T 2y K

(IK°|| is of course the norm of K°c L(#5(RY, , R ); Hi(RY))), and then g,
such that

H—qo
C,(6) 1+ Q(; - o
% 2V2| K|
and g; such that
Hi
o P/ R —
Qj 2¥2% | K|

Setting ¢=max {0, 01, ---» 0x}» We thus obtain

. 1/2
W) 179G Dyullls = (149 Dl e+ 3 170BP G DlEssya 2)
J=

2 ul
ey s

=

whenever z€Z with (z)=g.
4.4.3. It now follows from (1) that
IlP®(z, D)KF||l.,s = ol Flll.,s, ~ FEAIRL, R™™).

This implies that the inverse (I,+P%(z, D)K°)™" exists and is continuous, and
so is the operator
K = K(I,+ P®(z, D)K°)".

Hence we reach the conclusion that, for every z€Z with (z)=g, the operator
P(z,D) = (I,+P*(z, D)K°) P°(z, D)

is an isomorphism of HJ(R?) onto HE(R", R, with inverse K.
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4.5. Two remarks

4.5.1. As one can easjly verify, Theorem 4.4 implies a known result (see Teorema
6.3 of V. del Prete—D. Fortunato [6]; cf. also Teorema 9.2 of S. Matarasso [5])
for the unique solvability in H*(R%) of the problem

(A(Dyu+2u, 3o B(D)u) = (f, g)

with any (f, )€#°(R.,R"™") for every AcC with arg i=constant, provided
that [4| is sufficiently large. This shows that the assumptions usually made (see [6])
can mildly be reduced.

4.5.2. We conclude by mentioning one direction of generalizations: It is poss-
ible to consider also boundary problems for operators with symbols from more
general classes of “parametrically”” hypoelliptic polynomials, and for spaces with
more general weight functions. In this connection note, for example, the problems
considered by S. Matarasso [5] in the nonparametric case.
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