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ON PARAMETRICALLY QUASI.ELLIPTIC
BOUI\DARY PROBLEMS

VEIKKO T. PURMONEN

Introduction

Let A(z,D) be a partial differential operator with a complex parameter z
such that the corresponding polynomial A(z,r) is quasi-elliptic of type x, in
which case A(2, D) will be called parametrically quasi-elliptic of type x. Let
Br(2, D), ..., B*(2, D) be x partial differential operators and set B(2, D):
(Br1z, »1, ..., B,(2, D)). We consider the boundary value problem

(P) (A(z,D)u,yoB(z,D)u): U, g).

In the elliptic case this problem was investigated by M. S. Agranoviö and

M. I. Vi§ik in [2]. In this paper the problem (P) is studied in the above setting with
operators of more general types but, on the other hand, in the so-called canoni-
cal situation.

After the preliminary section we introduce in Section 2 the notion of a para-

metrically quasi-elliptic operator A(2, D) and consider the equation A(2, D)u:f.
Section 3 is devoted to the boundary problem (P) with quasi-homogeneous oper-

ators. We prove there an a priori estimate which satisfles certain uniformity require-
ments, and study the unique solvability of (P). The results are extended for the
nonhomogeneous case in Section 4. As we shall flnally (in a.5) note, one obtains
as a consequence a known result for boundary problems of the form

(,1. (o1 u + ;.u, y o B (D) u) : U, g)

under mildly reduced assumptions. A brief remark concerning generalizations is

also made.
In a forthcoming paper we shall study general initiai-boundary value problems

by making essential use of the results of this paper.
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L. Preliminaries

1.1. Let typical points in Rn and in its dual Rn:Rf, be denoted by

!:(!',!o):(hr,..tln-t;/,,) and 4:(!'r4n):(4r,...t4n-1> 4r), respectively, and
set

(y, rt) : (y', rt') + y,rl n : !r4t* ... * ! n- r4,- r * ! n4 n.

Tf a:(ar,...,an)eNo is a multi-index, an n-tluple of nonnegative integers ocr(N,
we write

Dn : Di: DT,... D?,",

where Do: -i\lDy* with the imaginary wit i€C. Likewise, we set

q" : rll' ...q?,".

In what follows we shall use also the often more appropriate notations y:(x, t):
(xr, ... txn-tt t) and tt:(€,r):(€t, ...,\n-r,x).

The inverse 9-r of the Fourier transformatiort fi:fin,
(gu)(r» - r, f e-i(t"r) u(y) dy,

is denoted by 1, and similarly 4:4-'. Let 9* and fi stand for the partial
Fourier transformations, too,

(9*u)(€, t) : n,-1f e-i(x'il 116, 71 4*,

where z*:( 2n)-t"lz. 
(%u)(x' t) : q f e-it"u(x' t) dt'

Note. It is convenient, sometimes, to let II(w) stand for a function H it
variable w.

1.2. Let mp,k:0, l, ...,fr, be positive integers, trt:max{m1,\, Q*:Flffi*,
and set 4:(q' , 4n):(qr, ... , Q, -r, 4,) -

Consider a (complex-valued, appropriately defined) function H:H(2, ry),

z€Z,q:((,0 with C(R"-', (€ft or ((C, where the parameter set z is the
sectot Z:Z(ar, ra,r)cC, (Dr3(,)2, defined by

Z(ar,cc,r): {z(Cl@r< arg, < ,az}.

We shall say that 11 is homogeneous with weight (qo, q) or (qo, q)-homogeneous

of degree s€R, and write (qo, q)-degä:s if

H()'ao z, lo4) : tr H(2,4)
for all ,1.>0, where

7eq : ()ter4r, ..., lq^qo);

the homogeneities with other weights are defined and indicated analogously.
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Next, we define

€€-R*L,

T€.R,

, 4-(€,r)€R",
z(.C,

and set furthermore,

h(2, w): (z)+(w),

K(2, w): 1t +(z)'zf (w)')'t',

K(w): K(0, w): (1+(w)z;vz.

Note that the (.)-functions and their possible sums are homogeneous of degree 1

with respect to the corresponding weights.

1.3. .F1"-spaces. Let Ro*:{y:(x, r)€R'l t=0} and, when convenient, Iet

O stand for .R', R! or R'-1. The norms of the Lebesgue space Z2(O) and the

(anisotropic) Sobolev space ff'(O) (see L. Hörmander [3], L. N. Slobodeckii [7],
L. R. Voleviö-8. P. Panejah [9]), here employed for s>0, are then denoted by

II . Jlo and ll . ll",o, respectively; O will be omitted in the case Q:N, and replaced

by the symbol + in the case O:Al and by y in the case O:R'-l. We recall

the definitions of the I/"(O)-spaces: Let 9'(R') be the space of tempered distribu-
tions in R'. Then fI'(.R') is defined by

ä" (R) : {u (,9' (R')l K(rD' gu € Lz (R\}

and the norm ll'll" bv 
,ur": ,K(vil'gur-

The definition of ä"(A'-1) is analogous, and

llall",r : llK(O' g.ullr.

The space H"(Ri) consists of restrictions Å* U of t/€,FI"(Ro), and Il.llo* is

given by
ll u ll", * : inf {ll ull" lu( H" (R'), R* u : u\;

here Ä* is the operator restricting functions (distributions) defined on Ro to R!.
clearly Ho(a1:721(2), so that ll. ]lo,o can be replaced by ll'llo.
It is well-known that Co-(R) is dense in ä'(.R') and Cfr(R!) in H'(Ri);

the symbol C*(ni), for k€N or k:-, is used to denote the space of restric-

tions to [!:{y:(x, rXR'lt>0} of Cå(R)-functions (Ck-functions in R' having
compact support).

We recall also that H'(Q)cH'(O) algebraically and topologically for s>r.

((): (:ävoY.) ,

(t) - lrlltu",

Qil - (((),, *(r)u1tru

(r) - lzlltuo,

if w-€ or 4,
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1.4, Let z€C. The definition

llulll, ",, 
: llull?, a * (z)'" llullk, ue H" (Q),

yields another norm on ä'(O), equivalent to ll.11",,2 for any fixed z(C. Let
H:(O):(H'(O), ll.ll",",o) be the space fI"(O) with norm ll.ll,,",o.

Note that

llull|," : llrll2,",^ - [ *e, qf'lnulz dq, u6H" (R"),

. llull2,",, : llull|,",n- - I *e, C)2"|g*ulz dC, u(H"(R"-r),
and

llulll,",*: llzlll,",nl - inf {llull,," I u€FI"(A'), R*(J: u}, uqH"(R"*);

here, as well as below, the notation A-B for two expressions I and .B means
that

crA=B=CzA

with two suitable positive constants c, and C, (only with admissible dependences).
Note. The symbol c will be used, throughout this paper, to denote a generic

positive constant.

1.5. Lemma. If s>r>0, there is a constant C>0 such that, for all z(C,

llul,l,,,,a s Cllutl",",o, u€H"(A).
Proof. Since

and 
llull,,,,a - llull,.o+Q)'llull"

we obtain 
llull"a= cllull"'o'

llull,,,,, = c(ll a ll", o + (1 + (z)") ll ull 
") = c llull 

",,, 
n.

1.6. If X and Y arc two (complex) normed spaces, g(X;y) will denote
the normed space of all bounded (linear) operators of X into y.

we recall that there exists an extension operator .E from r/,(Ri) into ä"(R,),
i.e., an operator E<9(H'(R!);ä'(R')) satisfying

(l) R*Eu: u, ueH"(Ro+).

In fact, let v be a positive integer and defi.ne for u€Cf (ni)

(u(x,t) if r=0
(E"u)(x,', : 

f äi ).1u(x, -jt) ir t < o,

where the coeffcients 1r, ..., ).u*, are determined by the system of linear equations

v+1

Z ?DoÄ,: t, k:0, ..., v.
j:L
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Then for any s>0 with s<y (note that then Ci(,R')cf1"(,&') and y=
max{ke Nlk=slq*}+t) the operator

E,: Cr-(Ei) * Cd(R')
extends to an operator

E: En(g(H"(R+);ä"(R)

having the property (1) (see [7]).
Moreover, if B:9,..., v and we set fot u(C;"(Ri)

lu(x, t) if t > 0

(E..D u)(x,,, : 
lä (fip ).1u(x, _jt) ir t < o,

then the operator B(fr):B@) mapping C;(f,i) into Ci-r(R,) satisfies

DfE : E$) Df.

1.7. Lemma. Let s>0 and r>0 be giuen. Then there is a constant C>O
such that

(r)" llull,,",o = c llull,,"+,,a, u(H"+' (Q),

for all zQC.

Proof. The statement follows from the inequality

( r)u llullS,o = C llull|, "+,,a, u€ H"+" (e),

whose proof in the case d):R" or -R'-1 is straightforward, and which then in
the case Q:R\ is obtained by use of the extension operator E:En with
v>s*r.

1.8. The trace operator yo: Ci"(R|)*Cå(Å,-t) is defined by (you)(x):
u(x,O) for u€Cf,(P*) and, for s>q,f2, extends by continuity to a continuous
operator

ls i u + you : H" (R*) * Hs- s"lz (Rn-L)
(see, e.g., [8]).

1.9. Lemma. If s>q,12, there exists a constant C>O such that

lll oull,,,- q^t2,, = c llull 
",,, 

*, u( H" (R*),
for all z€C.

Proof. Let u€CtrCN+) and put (J:Eu, where ä:3:, with y>s. Then
we have

llyoull?,"-q^r2,, - [ K1z, t)2"-s"l(g"yoU)(Ol, d(,
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where

Now

so that

= 7T?{ (Xtr,()'r**r')lgul'dr { W
I: zK(r,11-u [ (X{r, ä)'q"*d)l7Ulz tu.

Hence it follows that

ll y oulll, 
" 
- q"r 2,, = c [ (x {2, O'" + K (2, 4)zs - 2 sn 

<r>zs^) I r u p a I ar

=cIrQ,4)z"lrUlzdq \

= C llull|," = C llull|,,, *.
1.10. Lemma. Let s>0. There is a constant C>0 such that for any aQN'

with (u, q)=s we haue

llDo ull,, 
"_ 

qo,n1, + S C llull,,,, +, u€ H' (R*),
for all z€C.

Proof.Suppose a(-FI"(Ai) and set U:Er(H'(R'), where E:8, with v=s.
If r:(.a,4), we have

llD, ull\, 
" -,, + - I * Q, tl)zs - 2" 

lgF Dq (J l, dn : I * k, q)'" - " rt'" lfr U l' cht.

l(s.To(D(Ol2 - l@.u)(€,O)l' = n?(f tsul dr)'

dr

llD'ull',,s-r,+ = C { K(r,vil"lquPdry= Cllttli',,s,*.

2. Parametrically quasi-elliptic operators

2.1. We shall consider partial differential operators of the form

A(2, D) : 
ooo*åo)=uakdzkDd 

(k€N, a(N"),

where the coefficients aka are complex constants and the parameter z€C. The
principal part Ao(2, D) of A(2, D) is given by

(l) ao(2, D) : 
ooo*årr:oqkdzkDd,

so that the corresponding polynomial

Ao(z' q) : 
ono*änr:oa"ozk4o'

the principal symbol of A(2, D), is (q0,4)-homogeneous of degree p.
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2.2. Lemma. If s=p, there is a constant C>0 such that

ll Ao (2, D)ull,,"-, 5 C llull,,,, u( H" (R),

for all zQC.

Proof. There exists a constant Co>O such that

lAo(zo,qo)l a Cr, zo(C, qo(N, h(zo,4o) : l.

For arbitrary z(C and 4€R' with h(2,rfi>O we find

Ao (2, tD : h (2, 4)r Ao (z', qo),

where zo:h(r,q)-'oz, qo:h(z,ri-qq (see 1.2 arrd 2.7), and therefore

lA'(z,til< Csh(z,q)P, z(C, qQR.

Thus we have

llAo(2, D)ull1,§-& - I *G, q)%-zplgAo(2, D)ulz d4

= c I xQ,q)z'-zuh(z,41zu19ul2dn

= Cllull\,".

2.3. Definition. The operator A(z,D) is said to be parametrically quasi-

elliptic if it satisfies the condition

(QE) Ao(2,4) * 0, z(Z : Z(ar,ruor), q(R, h(2,4) = 0,

or, equiualently (cf.l31), if

lAo(z,q)l > crh(2,4)u, z(2, r1(R,

with some constant co>O.

Let us now assume that the condition (QE) is fulfilled. Consider Ao(2,(,r)
as polynomial in the complex variable z. Then there are functions ro:q(2, O,
k:1,...,mo, corrtituous in Z(R'-L, such that for each fixed (2,€)€ZxR"-t
they are the roots of the polynomial Ao(2,(,'e),

Ao(r, (,r1,(2, O) : 0, k : l, ..., mn.

2.4. Lemma. The roots rx(z,t), k:1,...,mn, are (qs,q')-homogeneous of
degree qn.

Indeed, we have
Ao(r, (, ),-'t"rn(Lqoz, Lc'E)):0

for every )">0, aod the function )v+)-c"xo17aoz,)dt) from R* into C is

continuous.

2.5. In what follows we shall mostly consider operators A(2, D) which satisfy

a somewhat stronger condition:
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condition (QED). The operator a(2, D) is parametrically quasi-eiliptic of
determined type 24, l=2't<mo, that is, it satisfies (QE) and, moreouer, the con-
dition (D):

(D) For euery z€Z and euery ((N-L with h(2, O>O the polynomial
A'(z,t,r) in the complex aariable r has exactly x, roots r!(z,t), j:1,...,x,
with positioe imaginary part, Imr!(2,€)=0.

Remark. When n>2, (QE) implies (D) and hence (eED).

2.6. Theorem. suppose that condition (eE) is satisfied, and ret s>trt. Gitsen

Q=0, there is a constant C>0 such that the a priori estimate

(1) llutl,,"= CllAo(z,D)ull,,"_r, ueH"(R),

is ualid for euery z€Z with (r)=5.
Furthermore,for eaery ze Z\{0}, the operator Ao(2, D)($(n:(n\; H:-t'(R"))

is an isomorphism (for the locally conaex structures).

Proof. To prove (1), pick u€H'(R\. By virtue of (eE) we then have, if
(z)=0,

Hence 
lFul = c;Lh(2,7)-ulgAo(2, D)ul.

llull?," = C I X(2, q)r"h(2, r1-zulFAo(2, D)ulz dr1.

Since here obviously
h(r,ri > CK(z,q)

with C:C(e), we obtain

llulll,"= C { XQ, ry)%-zrlgAo(2, D)ulz dq = CllAo(2, D)ulll,"_r.

It is clear that Ao(z,D) is now an isomorphism of H:(R") onto H'-p(R\
provided that it is surjective. This, however, is easy to see. Indeed, if fEnj-u1p"1,
then

and 
u. : FnAo(z,ri-rgf €H:(R)

Ao (2, D)u : 9, Ao(2, 4) 9u : f .

Boundary value problems

3. The case of principal parts

3.1. Let x be a positive integer, and let Bl(z,D),...,82(r,D) be x oper-
ators defined by

4G, D) : Z bil,ozkDo, j : 1, ..., %,
kqo+<q,q):il.

where the coefficients bi6 zracomplex constants,the parameter z€c, and pr>0.
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The corresponding polynomials

(1) fi(2, d : 
,,ro+qVn1:*rbi*ozk4', 

j : l, ..., x,

are then (qo, 4)-homogeneous, (qo, q)-deg B]:p,
Let Ao(z,D) be the operator given by (l) of 2.1 and Po(z,D) the operator

defined by
Po (2, D) : (Ao (2, D), yoBo (2, D))

with Bo(2, »):(B!(2, D), ..., Bl,(2, D)).
For ,r€,S,

,S: ^S(p,r.1 
: {senls = p, s > max {U;*q,12, j : l, ...,x\),

we set

Jfs(Rn-L): #,(N-L; Ui): i[ n"-pi-s.t2(Rt-t),
j:1

lf,"(R+,R',-1) - /f,"(R+,Rn-L; p, p): H"-u(tr1+)x//"(N-L),

and introduce similarly the spaces tr:(R'-') and /f,)(R"*,.R'-1); thus

3r: (R -,) :(/f," (R -L), 
I I I . I I 1,, 

", 
r)

and
lf,,(R"+, R'-t) : (#'(R"*, R'-t), lll.lll,,J

with

lllclll?,",, : 2llrll2,"-pt-qntz.y, G: (sr, ..., g)€*"(R-'),
j:1

and
I I lr I I l?," : llf 1..2,"- r,+ + I I I Gl I l?,",r,, F : (f , G)< år" (Ri, R',-1).

3,2. Lemma. If s(5, there is a constant C>0 such that

lllPo(2, D)ulll,," = Cllull,,", *, u<H" (R\),
for all zeC.

Proof. Consider the right side of the inequality

lll po (2, D) ulll,, 
" = c (l * G, D) ull,, 

" 
- o, . + 2 l^t o fi k, o) ull 

". " 
- r, - r^ 1 r, r) .

By Lemmas 1.7 and 1.10,

llA'(2, D)ull,,"-u,a I Z lal,,llzlkllD'ull,,"-p, +
kqo+<q,q):t

= Q Z (z)ktollull,,"-p+(a,q),+
kqn+«,q)=P

= cllull,,",*.

Making use of Lemma 1.9, we also obtain, as above,

lll o 4 Q, D) ull,, 
" 
- r, - qn t z, v 5 c ll 4 Q, D) ull,, 

" 
- pt, * = c llull,, 

", 
* .
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3.3. We now suppose that Ao (2, D) satisfies Condition (QED).

3.3.1. Let z€Z and €<Rn-' sush that h(r,O=0. We set

A+(2, (, r) : 
,UrQ -rtQ, 0) : Z,a{(2, O{-k,

where the coefficients ol (r,4) are (qo, q')-homogeneous of degree kqo,
k:0, ..., x. Consequently, A+ (2, 1, z) is (40, 4)-homogeneous,

(l) (qo,q)-degA+ - xQ,.

We shall also employ the polynomials (in r)

A{(r, (, i : ) afQ, Od-k, ! : 0, ..., x-t,
&:0

which are (qo, q)-homogeneous, too,

(2) (qo, q)-degAd : yqo.

The polynomials Af are charactenzed by the following result, proved by a simple
residue computation.

3.3.2. Lemma. If z(Z and ((Ro-L with h(z,O>o, then

I f Atr-"k' E, o(k-L ,,
2ni J ffid( : öuo' 1" k: l' "'' x'

I

(ö"r being the Kronecker symbol) for euery rectifiable lordan curue l:l(z,t)
which encircles the roots r!(2,(), j:1,...,%.

3.3.3. If Bl(z,D:Bor(z,C,r), l=.i=x, is the polynomial given by (1) of
3.1, let B'r(2,(,r) denote the uniquely determined polynomial in r of degree
less than r such that

Then, since fiQ' e '') 
: 4Q' (' r) mod A+(z' ('. )'

fi(2, (, t) : )- ut 3i11qoz, 7q' €, )'q"t) mod A+(2, (, r)

for all )">0, B'ik, (, z) is also (qo, q)-homogeneous of degree pr. Therefore,
if we write

B'r(2, €, i : i siok, Ork-r, j : 1, ..., -,,-,

k=l

the coefficients Bro@, () are (qo,4)-homogeneous,

(3) (qo, q')-deg frio: p,-(k-l)q,;

notethat fri*:O when (k-l)qo=pi.
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3.3.4. The operators Ao(z,D) and Bl(z,D), j:1,...,%, are now connected

by the following complementing (covering, Lopatinskii-§apiro) condition :

Condition (CC). For euery z(Z and eaery (€Ro-' with h(2, O>0 the

polynomials nl@, 1,r) in r, i:1, ...,x, arelinearlyindependentmodulo A+(2, (,'c),
or, what is the same,

det0(2, t) / 0,

where 0(2, () denotes the matrix [fry(2, 01.

3.3.5. In order to employ Condition (CC) it is useful first to consider the

ordinary differential equation

(4)

with initial condition
(5)

Ao(r,(,D,)e:0

ToBo(r, C, Dr)E : c,

gn(z, C): 2 fr"o(r, E)co, y : l, ..., %,
k:L

the inverse matrix gA-Lk, O of fi(r, O.

'where c:(cr, ..., c,)(C*, and h(2, ()>0, of course. Let 9(R*) denote the

space of functions E€C*(R+) such that tf »7E1t1-O as l*- for all a, B(N.

3.3.6. Lemma. Assume Condition (QED) holds. Then Condition (CC) and

the following two conditions are mutually equiualent:
(ES) Problem (4)-(5) admits a solution q<g(R*) for all c(C*.
(US) Problem (4-$) with c:O admits only the triuial solution in 9(R*).

It is convenient to recall briefly the proof of this lemma (cf. the proof of Pro-
position 4.2 of Lions-Magenes [4], p. 129), specially adapted for our purposes.

3.3.1. Proof of Lemma 3.3.6. Since the 9(R*)-solutions of (4) form a z-
dimensional complex vector space fr(r, 1), the operator T:Jr(z,t)-C", de-

fined by

is surjective if and

Next we show
the equations

(6)

Tq : ToBo(r, C,D,)q, q€rf(2, O,

only if it is injective, so that (ES) and (US) are equivalent.

that (CC) implies (ES). Under Condition (CC), the system of

has a unique solution

åru,"k, 
()8, : ci, i -1, ..., %,

g(2, 1):(gr(r, O, ..., gx@,0) for every c:(cr, ..., c,)(C";
in fact

(7)

lp'o(z, c)1 being
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Let now .l- be a rectifiable Jordan curve which surrounds the roots r! (2, O,j:1,...,x. Fot any l>0, we define

(8) u(2,(,,):* 
! å,r"r,,Ofifffi,ncae.

By (7), this becomes

(9) u(2, (, t) : U coNo(2, (, t),
K:L

where we have set

(10) No(2,€,,):* lW#,*ot
with 

,'(11) Mo(r, C,0: 
,Z__r,fr'k(2, 

oAl-"G, €, o.
We have

No(2, E,') €9 (R*),

A+(2, (, D)N1"(2, (, t) : 0,

and furthermore, by Lemma 3.3.2,

(tz| hfi@, (,D,)N1,(2, €,t) : * I ffi# BjQ, (, Od(
r

: 
f_,fin{,,o 2 p"o(,,o(* !H*#r,d()
(,: y'_rf nG, t)frT (2, O: öiu.

Consequently, the function u(2, (,.) given by (9) is a solution of (a)-(5).
Finally, assume Condition (CC) does not hold. Then there are z€Z and

((R"-' with h(2, O>0 such that (6) with cr:O has a nontrivial solution g(2, O,
that is, g*(2, 1)*0 for some k,l<k<x. But then, for the function u(2, €,.)€9(R*)
given by (8) we obtain

yoD!-Lu(2, (, t) : 2 c,(,, o(+ t ffi* *-, d() : sk(,, e),

which contradicts (US), and the proof is complete.
In connection with the preceding proof we have, moreover, the following two

results required in the sequel.

3.3.8. Lemma. If Condition (CC) holds, then thefunctions y'fr,...,N,, giuen

by (10), form a basis of fr(r,4).
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Proof. In fact, the functions in question are linearly independent, for if

o-)--rc1,upQ, 
€, t) : o, t > o,

for some c,,...,c*€C, then it follows from (12) that

lx \
o : yo4(2, q, D)lr:z__rcyNp(2, E, t)) : "i, j : r, ..., x.

3.3.9. Lemma. If Condition (CC) holds, then the functions Me(2,(,O,
k:1,...,x, giuen by (11), are (qo,q)-homogeneous,

(qo, q)-deEMo: (x-l)qn- po.

Proof. For all l.>0 we have

9AQ, OIA-t(2, O : [ä;r,1 : 0(Taoz, ls'C)g-t( soz, )'n'O,

so that, fot j,k:1, ...,%,

xx
Z fri"@, O P"o(2, O : ö;o: ) Bt,(Xaoz, )"s' O P"k(Tqoz, )'q' O.
v:L v:L

If we use (3) and multiply the left equation by lur,-ui, we see that

xx
Z fri"Q, gP"k(2, €) : öio: Z Fin(2, Ola*-u-r)o"B"k(Teoz, )d O.

Since glr, tl is regular, it f.ll"*, ;;;
fr"o(r, () - /uy-0-t)e^frvk(),coz, )S' ()

for v, k:1,...,x; hence

(13) (qo, q')-deg §,r. : (V- l) q,- po.

From (2), (11) and (13) we now obtain, for all l">0,

Mp().ooz,ls €,1s^0: ) B"*110"2, Äd E)AX-"(Vsoz, ),s'C, ls,, -()y:1
x

) Å(v-t)e"-rtu§uk(2, C)l@-v)c"AX_,(r, (, -()

:" fr) - rr n ^-,n M *(2, €, g.

3.4. Theorem. Suppose that Conditions (QED) and (CC) are satisfied, and
that s(5. Then, giuen any e>0, there is q constant C>0 such that the a priori
estimate

(A) llull,,",* = ClllP0(z,D)ulll,,", u(H"(R'+),

holds for all z€Z with (z)>q.
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Furthermore, the operator Po(z,D)<9(H:(R"+); tr)(R"*,r'-t)) is an iso-

morphism for euery z€Z\{0}.

The proof of Theorem 3.4 will be given in Sections 3.5 and 3.6.

3.5. Proof of the estimate (A).

3.5.1. We begin by showing that the estimate (A) is valid if and only if the

estimate

(B) llull,,",* = ClllyoBo(z,D)u11,,,",,

holds for every u(H'(Ri) with Av(z,D)u:O.
That (A) implies (B) is obvious. To prove that (B) implies (A), let u€H'(R'+).

Then
f : Ao(z,D)uQH"-P(R\),

and there exists nr€ä"(ft!) such that

(l) Ao(z,D)ur:f
and

(2) Ilu,ll,,", * = Cllf 11,,"-u.*,

where the constant C>0 does not depend on /. Indeed, if ,E denotes the ex-

tension operator Er,v>s-trl, we set

Ur : 9n Ao (2, ?»-' g EI.

Then U$H'(R"), and hence, by virtue of Theorem 2.6,

ll Urll"," < Cll Ao (2, D)Urll,. 
"- u

for all z(2, (r)=5. Thus we have

ur: R+Ua€H"(R+)
and

llurll,,",+ = CllEf 1.,,"-" 3 Cllf 1i,,"-u,*.

Next, set uo:Lt-ttt. Then elo(II"(Åi) and, by (1), A0(2, D)uo:Q. Consequently,
(B) gives

(3) lluoll,,",* 5 CllyoBo(r,D)uoll,,",y.

In view of (2), (3), and Lemma 3.2, we thus obtain

llull,,", * = lluoll,,", * *llu.ll,,,, *

= C( I I I 
yo Bo ( z, D) ulll,, 

",, 
* llly o Bo (2, D) u, | | 1,, 

", 
r) * ll arll,, 

", 
*

= C(l I lyo,Bo( z, D)ulll,.,.r*ll urll,,., *)

= c (ll Ao (2, D) ull,, 
" 
- r,* * I I lro Bo (a D) ulll,, 

", 
r)

= ClllPo(z,D)ulll,,".
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what we now have to prove is therefore the estimate (B); this will be done in

the rest of this section.

3.5.2. lf u(H'(R"a) arrd Ao(2, D)u:O, then

g : 4Ao(2, D)u : Ao(2, (, D)$*u.

Hence, for (almost) all <€R"-1, (4dG,) is an exponential solution of the

equation (4) in 3.3, so that it belongs to 9(R*) (cf. [1]) and, furthermore, to

fr(z,E). Accordingly, Lemma 3.3.8 implies that

(g,u)((, D : 2 co(2, O No(2, (, t),
k:t

where now (see the proof of Lemma 3.3.6)

co(2, O : yoBfl(2, t, D)(\u)((, t) : yofi"Bfl(2, D)u'

3.5.3. Choose an integer v such that y>§ and t>slq,*112, and write

again E:En.
We have

(4) llall?,",+ =llEulll,"- [ *@,4)2"l9Eul2d4.

}Jere FEu:4E4u, so that

(5) fiEu: 2 ,oe, C)(glENk)(2, (, t))(r).
k:1

Therefore it suffces to consider the integral

(6) I *@, r)ulc,,(2, O(gt(EN)(2, (, t))(r)12 dn

- [ uk, .t)2'1c1,(2, O'P(l l(r,1nNo11z, C, t))(x)|'z d4dC

+ [ lcr,Q, or([ $)*l(q,1zwo11z, 1, t))('»|'z dr)dc

: It*Iz.
3.5.4. Consider next the function

(7) No(,,€,o:* [ffirtfi,*re,
f<

where .l-, is a rectifiable Jordan curve encircling the roots zrt(z,E), .i:1, "',x'
There are R>0 and ä>0 such that, for i:1,...,x,

lrf(zo, (o)l = A
and

llmrt Qo, (o)l = ä

for all zo<Z and all (0(R'-1 with h(zo, (0):1' Hence, with these z0 and to'
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the curve r, in (7) can always be deformed into the same Jordan curve, say, into
.l-*,0 consisting of the paths l(l:lR,Im(>ä and Im C:ö, l[=n From Lemma
2.4 it follows that for arbitrary z(Z and (<R"-, with h(2,()>0 we can take
fs:h(2, t)o"l^,0.

The function Lo,

(8) Lo(r, 1, O: y+t': cn'() , h(2, o = o, (€c,
A \t;9t l)

is (q0,4)-homogeneous of degree -ilr,-7, (see (l) of 3.3 and Lemma 3.3.9), so
that, in particular,

Lo(r, t, C): h(2, t)-Po-c"L*(zo, (o, (o)

when (2, t,():h(z,11teud(zo,(o,(\. From this and the factthat, for a suitable
constant C>0,

lLo(r', (o, (o)l = C
for all zo,(o with h(zo,1o1:1 and all (06.1-*,u, we see that

(9) lLok, 4 gl 
= Ch(2, t)-r"-r"

for all z, ( with h(2, O>0 and all (qf r:1(2,1)o"f 
^.u.By virtue of (7), (8) and (9) we thus obtain

lNo(r, 1, t)l = Ch(z, O-Pu-q"l(f )maxleit(1,
where /(l-,) is the length of i-6. Since

and 
l(r e) =. (2+n) Ah1z, 17e"

le"(l = exp (- h (2, 11e" öt),
we finally have

(10) lnf- (r, €, t)l = Ch(2, O-pr eXp (-h(2, gr" öt)

for all z, ( with h(r, O=0, and for all t>0.

3.5.5. We return now to (6).First, in the integral Ir, we have

I Wa(EN)(r, (, r))(r)1, a' : f l(Er,{o)(r, (, t)lz dt

= [r*(v* ,;ä:]w,'ri rrr- (,, €,t)tzdt

(see 1.6), where, bV (10),

i tlr{o(r, (. t)1, dt = eh(r, 1-Ztt*-en.

Noting that h(r, () - K(2, () when (r)=- g, we therefore obtain

(11) hs C I K(r, C)r'lyrg.$k, D)ulrK (2, O-zt k-q^ d(

= C llyoBf,(r, D)ull\,s_ t x_ ,ntz,T .
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3.5.6. To treat the integral 1, let us rewrite it in the form

Ir: I lc1,Q, Ol2 Ho!2, t) d(,
where

HoQ, E) : I (r) l(s,(EN)(2, (, t))(r)1'zdr.

3.5.7. First of all, we shall verify the continuity of He(2, O when h(z,O>0.
To do this, let e>0 be given, and let zo€Z and (o€R'-' such that

h(zo, $)>0. Restrict the consideration to a neighbourhood of (zo, (o), and notice
that for all (2, () in this neighbourhood the curve .l-g in (7) can be deformed into
the same rectifiable Jordan curve, say, into I with the property

r : min {Im (l(e f} = O

(cf. 3.5.a). If Zo denotes again the function given by (8), then there is ä">0 such

that, for afl (€f ,

lLo(2, t, O - Loko, h, 0l = e

whenever lz-zol*l(-(ol=ä". fn view of 1.6, if O=fi=v, we thus have for ,>0
(cf. 3.5.4)

l(Df No)Q, €, t)-(Dl N)(ro, €o, t)l

= * { lLo(2, €, O-L*(zo, €o, OllUllettelfi(l

= C(f,t)ee-'t

and then for / <0

l(Df EN)(2,4, t)-(Df ENk)@o, h, t)l
: l(E@) Dl N)(2, (, t)-(E@ Df No)Qo, g, t)l

y*1

= z le j)pl lljl l(Df N)(2, €, - jt) - (Df N)(zo, h, - jt)li:1

= C(f,v)es-'ltl'

hence, for all r€R,

l(Df EN)(2, C, t)-(Df ENk)(ro, 4r, t)l < Ct,e-'ttt

if lz-zol*l(-€ol=ö". This yields

(12) lra((fi,(ENp)(2, €, t))k)-(F,(EN*)(zo, (0, r)(")l

= n, I le 
- t" ((Df E Nk) Q, t, t) - (Dl E Np) (z o, $, t))l d t

= Ce,

provided that lz - zrl*l( - (ol =ä,.



Next, a small computation shows that

(13) lHoQ, O-HoQo, *)l
: l/{rX"{tt F,(ENo)e, (, t))(r)|,-l(e,(ENy)(zo, g, t))(r)l)dtl

= 2ab+b2,
where

o : ([ k)"1(r,1ntto11zo, i,o, t))(r)12 dx)rtz,

t : ([ (")*l(q,1rNo11z, (, t))(i-(4(EN)(zo, 1o, t1)141', a)'t'.

With O=B<y we have (see 1.6)

Fu (s,(z x ) (Z o, Eo, r) (d I : l(qt@@, D f Nk) e o, ( o, t)) (r)l

if v+l o 
I: 

"rl{ e-tt"(Df N)(zo,to,t)dt+ Z?ilPli _fe-t'"(Df 
Np)ko.h,-iDdtl,

and since it follows from (9) that

l(Df N)(zo, h, t)l = Ch(zo, (o)- Pu- qne-",
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we obtain (cf. 3.5.4)

lro (,q,(E lrt) (ro, (0, t)) (r) I = C h (ro, h)- Fu- Qn .

Hence we get

az= c {# [tr+lrl,) (,E@r,{o)(ro, h,t))(r)lzdr

=C(zr,Cr)1ffiu,

= C(zr, €o),

since v>sf qn+112. From (12) we derive in the same way that

bz = Ce.

Therefore, it flnally follows from (13) that

whenever lz - zol *lC - (ol = ä, .

3.5.8. There exists a constant C>0 such that

(14) Ho(zo, C\ = C, z0€2, (o€.R"-r, h(ro, (o) : 1.

Let then ze Z and €<R"-' with h(r, €)=0, let 1>0, and consider

Ho(Aooz, )a' () : [ (r)r'l@r(EN)(Äuoz, ),q' (, r))(r)1, dr.



On parametrically quasi-elliptic boundary problems 255

In the case ,>0 we obtain (see 3.5.4)

No(),aoz, )ts' t, t) : ),- PuNt (2, (, [e"t),
so that, for all r€X,

(EN1)(Lqoz, ).s' (, t): l-pu(ENr)(2, (, )'q"t).
Consequently,

(qt@N)Q,soz, ),q't, r))1r; : 1-a-e"(fi(EN)(2, E, t))(1,-e"r}.

Hence we see that

Ho(),aoz,Ls',O: A-zpu-zq" r (r),'l(41nNo)Q, { t))().-s"x)12 dr: )2s-z1ru-rnHo(2, €),

from which it follows, by (14), that

Ho@, €) = Ch(2, ()2s-2tlk-s^, z€2, €€R-t, h(2, O > 0.

Now we return to the integral I, and reach the conclusion that

Ir: I lc1,Q, Ol2 Ho(z, C) dC = C I h(2, 02"-zuu-a"lg*(2, Ol2 d(

= c I xQ, Ozs-z,k-s^lyo7,$Q, D)ulz d(,
whence

(15) Iz= Cllyofl,Q, D)ullf;,"-ru-qsz,y.

3.5.9. By combining (4), (5), (6), (ll), and (15) we flnally obtain

llull|,",* = C i I K(2, O2"lc1,(2, ()(g,(ENu)(2, (, t))(,4lz d4

= C 2 fiy, B?,(2, D) ullf, 
, 
" 
- uu-q^12.y.

&:1

This completes the proof of the estimate (B).

3.6. Proof of the latter part of Theorem 3.4. To show that Po(2, D) is an iso-

morphism of H)(R'*) onto /{)(Ri*R"-'), for every z(Z\{0}, we shall, in fact,

construct its inverse operator. In what follows, let E:En,v>s.

3.6.1. Fix z(Z\{0} and define

Krf : R* firAo(2, ni-'gEf, I< H;- P (R+)'

Then Ko is an operator mapping H:-t'(R"+) into II,"(R!). Indeed, Ef€H:-t"(R')
and

llfinAo(z,rD-'gEfll\,"= C I K(z,q)'"lAo(z,q)-r9Ef l2 d4

= C I Xe, r1r" h(2, t»-zp lg Ef lz d4

= cllEfllT,"_p,
so that

llKo fll\. 
". 

+ = c ll Ef ll2, "-, 5 c ll f ll2, 
" 
-,, * ;
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this implies, furthermore, that

Ko € s (H :- t (n!) ; rri(n!)).
3.6.2. For i:1,..., ?4 we set

Ki g : %a(Nifr*g), g(Hi-u1-t"t2(r?4-1).

First, one easily checks (see 3.5.5) that Krg(Lr(ni), at least. Since now

and so 
EKig - 4(@U)g,s)

we obtain 
fiEKig: (%EN)fi*s'

(1) I *Q, r)2"l3EKislL d4

- I *@, 0^ ([ lF,ENip dr)ls"sl, d(+ [ ([ k)" l.fi,EN1l, dr)ls.sl, d€

: It*Iz.
Here we have (see 3.5.5)

tr= c I xQ, c)'"h(r, €)-2pt-q"l4sl, it( = cllSll?,"-p:-q^iz,t

and (see 3.5.8)

Ir: t H,k, Olg-sl'dE = c I lr@, ozs-zt'i-snlgF sl'd€ = cllsll1,,-pt-q^rz,t.

It therefore follows from (1) that

and hence 
EKlg€H)(R)'

Ki8: R+EKjg(H:(R"+);
moreover,

11 
xt sll,, 

", 
* = C ll slll, 

" - u - ent 2, y.
Consequently,

K i e e (n ;- u r - c"tz (Rn - L)' H : (R^*)).

3.6.3. Let us now set

KoF : K"f + ; Ki(s,-yo4Q, D)Kof), F : (f , gt, ..., g,)(tr:(R+, Ro-r).
j:1

Then K0 is an operator on af,)(Rl,R'-t), valued in Hi(R"), byvirtue of 3.6.1
and 3.6.2, and furthermore

llKoFll,,", * = cllfll","-p,+*c å-(lr,ll",,-ri-q,rz,y*llTo4k, D)Ksfll.,s-p1-q^12,y),j:r
where (see Lemmas 1.9 and 3.2)

llt o fi @, D) Ko f ll,, 
" 
- u: - hntz, y = c ll I ll,, 

" 
- u. * .

Thus we have
Ko < g (/f : (R\, R - L) 

; H ) (R"*)).
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3.6.4. The operator K0 has the property

Po(2, D)KoF : F, F : (f, Sr, ..., g*)€.#)(Ro*,.R'-1).

To see this, let F:(f,gr, ...,g)Caf;gf*,R'-') and set u:KoF(Hi(Ri). Then
we have

Ao(2, D)u: Ao(2, D)Kof + 2 Oo@, D)K1(si-tofiQ, D)Kof),
t:t

where (note that Ao(z,D) and R* commute)

Ao (2, D) Knf : Ao (2, D) R+ g4Ao (2, q)-L I Ef

: R + fr,rAo Q, q) Ao (2, rD-' g Ef
:f

and (see 3.3.7)

Ao(2, D)K/Ei-To4Q, D)Kof): Ao(2, D)g<(N jg,(s1-loB](2, o)Kofl)
: ge((Ao(2, 4, D)N)g"(ci-To4Q, D)Krfi)

-0,
so that

Ao(z,D)u:f.

By (12) of 3.3, we obtain further

I o 8fl.(2, O) K lg 1 - t o Bl (2, D) K o f)
: 9e(0 o 4(2, (, D) N ) 3,(g i - y o4Q, D) Kofi)

: ö ;r,(g i - T o B] (2, D) Ko f),
whence

yr*t Q, D)u: yoBlk, D)Krf + 
åa,o(s1-to4Q, 

D)Kof)
: 8k,

as required.
If thus follows that the operator P0(2, D) is a continuous bijective linear

map and therefore an isomorphism from H;(R"+) onto af,)(R"*, R'-t), with in-
verse K0. The continuity of Ko was, in fact, found also directly in 3.6.3.

4. The general case

In this section we shall gereralize the results of Theorem 3.4 to cover the case

of nonhomogeneous operators.

4.1. We shall need the following two lemmas.
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4.1.1. Lemma. Suppose s1>5r>5rr3Q. Giuen any e>O there is a constant

C(e)>0 such that

llull",*,* = e llall,,",, a * C(e) llrll,,*, *, u€H\(R\),
rttr all z(C.

Proof. From the well-known inequality (equal to the above with z:0)

llall*,* = ellall",,*+C(e)llull",,+, u(H\(R\),
we obtain

llull",,,,*-llull*,++(z)"llzll*=ellull,,,a*c(e)llall",,**(z)"llull*.
The assertion follows therefore from the inequality

(r)", = e (z)t + c1e; (z;t,

which in turn is a consequence of the elementary inequality

oA=!orrr!60', a,b>0, p=1, p,: pl@-l);pp
as a matter of fact, choose

p : +, a : (pe)rto(z)"t\, b : (pe)-tto (z)ssro"' sr-sa

4.1.2. Lemma. Let s>O and r>0. To euery e>O there is C(t)>O such

that

Z llDull",",* = e llull,,"*,, a *C(e)llull*, u(H"-"(R'+),
(a,q)=r

for all z€C.

Proof. By Lemma l.l0 we have

llD" ull 
". ", 

* = C llull,, 
" 
* (n, q), + .

If we now put
k: max(a, a)la(N", (a, q) - r\ = r.

it follows from Lemma 1.5 that

,,,?, =,llull " " 
* (n' q)' + 1 c llull 

" " 
* o' *'

where, by virtue of Lemma 4.1.1,

llull,,"*0, * = ellall,,"*,, + * C(e)llzll * .

4.2. ln the general case we have to consider operators of the form

P (2, D) : Po (2, D) + Poo (2, D),

where P0(2, D), the principal part of P(2, D), is defined as in 3.1, and Poo(2, D)
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is given by

P oo (2, D) : (Aoo (2, D), y o Boo (2, D)) : (Aoo (2, D), y o Bl0 (2, D), .. ., y o 4 @, D))

with
troo(z,D)- Z akdzkDa,

kqo*(a'q)=P

4o (', D) : 
oro*l*-o,b ivozk D;

here the coefficients a1,n and bi*a arc complex constants, of course.

4.3. Theorem. Suppose that Po(z,D) satisfies Conditions (/ED) and (CC),
and let s€5. Then there is Q-0 such that, for some constant C>0,

llull,, 
", 

+ = C lllP (2, D)ulll,, ", u ( H" (R*),

for all zQZ,(z)>-7.

Proof.In what follows let u be any function in ä"(R|) and let z€Z\{0}.

4.3.1. According to Theorem 3.4 we first have

llull,.".+ = 
ClllPo(2, D)ulll,,",

which yields

(1) llull,,,, + = C r(lllP (2, D) ulll,, 
" 
* llAoo (2, D)ull 

", "- 
p, +

+ 2 Wrry'(2, D)ull,,"-u,-q.tz,y).
j=L

4.3.2. Given any e>0 we obtain, by virtue of Lemma 4.1.2,

ll Aoo (2, D) ull,, 
" 

_ r, * = c, 
o?^l 

rlo 
r,, r, i _ r, oll 

D u 11,,, _,,, +

= crt 
oZo(z)keollull,,"-rqo, 

* *G(e) 
o?^"(r)o,,llul*.

Since

) (z)k e" llull * = c (l + (zlu - ao) (z) -" ll u 11,,,, *,
k<mn

we have, by Lemma 1.7,

(2) llAoo(2, D)ull","-r,* =(coe+cu(e)(1+(z;"-n)(z)-)llull,,",*.
Fix now e>0 satisfying

Crr={,

and choose go>0 such that

c,c)t#_ = ä.
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Then it follows from (2) that

(3) llAoo(z,D)ull,,"-r,. =)rlull",",*
for all z€2, (z)=po.

4.3.3. Next, in view of Lemma 1.9, we find that

lly o 4o (r, D) ull,,, - u, - on t z, t 1 
" 

u 
oF- o,l 

rlo 
r,, o, f, _ oo oll 

D' ull,, 
" 
- u,, * .

Hence, given any e>0, we obtain again from Lemma 4.1.2

lll o S @, D) ull,, 
" 
- u - q,rz, t

= Cee ) (z)kullull,,"-r,qo,a-fC7@) ) (z)ka,l1u11*.
kqo=pl kqo-pJ

Since

Z <z>ks,llull+ = c(l *(z)ut11r7-"llull,,",*
kqo<ili

(obviously, this inequation could be strengthened), we have, as above,

(4) lltrfio (r, D)ull,,"_ u,_ n^tz,t s (C, e + Cs (e) (t + (zyu1qr1-") llull,,,, * .

If we now take e>0 so small that

Crr= rfi;
and choose Q;>0 such that

c^G\ t+atjt 
= 

I
_u \_/ Ai _ gxCr,

then it follows from (4) that

(5) llyoBlo(2, D)ull,,"-r,-r^,r,, 
= irrLlull,,", *

for all z(2, (r)=pi.

4.3.4. To completetheproof,itisnow enoughtodefine q:max{q,, Qr, ..., Q,}.
Indeed, combining (1), (3), and (5), we have

Ilull,,", * = CllllP(2, D)ulll,,"++llull,,", * * 
,JrLO)lull,,", 

*
and thus

llull,,".* = ClllP(2, D)ulll,,"
for all z(2, (z)> p.

4.4. Theorem. If Po(z,D) satisfies Conditions (QED) and (CC), and if
s(,S, then there is p>0 such that, for euery z€Z with (r)=_0, the operator
P(2, D) is an isomorphism of H;(R"+) onto Jf,i(R"*, R,-1).

Proof. We shall show that P(2, D) can be represented as the product of po(2, D)
and a tri(R"+,,R'-1)-automorphism.
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4.4.1. Let z€Z\{0}. According to Theorem 3'4 the operator Po(z,D) is
an isomorptrism of H:(R"+) onto tr)(R"*,R'-1). As in 3.6, let K0 denote its

inverse. Then we can write

P(2, D) : Po (2, D)* Poo(2, D) : (1"+ Poo(2, D)Ko) Po(2, D),

where d is the identity mapping on /f,)(Ro*,R'-t).

4.4.2. Let u(H)(R"*). Given any e>0 we have, by (2) of 4'3,

llAo'(2, D)ull".,-u,* = (Cre* CrGXI +<z>p-s»<z>-) llrll,,", *

and, by (4) of 4.3,

ll't o fio (r, D) ull,, 
" 
- u, - n^ t z, t 4 (c, e + c. (eX I + (z\u 4 1r7-) Il u Il,, 

", 
*'

Fix o, 0<o=1. Next, choose e=0 satisfying

c."=--J-. Ge =--J-- 21/2llK1l' - zVzxllKoll

(ll,(tll is of course the norm of Koeg(/f:(R"+,R"-L);H:(ni»), and then Qo

such that

c"(s)1+aö-4' = --J---z\"' sö - z/rllKyl
and q; such that

c,(r\ l*=ajt 
= --J-.-4\-'' ai - zlult«yl'

Setting Q:max {80, q., ..., Q*}, we thus obtain

(1) lll p oo (r, D) ulll 
". " 

: (l.too {r, D) ulll, 
" 
- u, * + å 

rily 
o 40 (2, D) ulll, 

" 
- r, - r,, r, r) 

t

= #llrll,,",*
whenever zeZ with (r)=-0.

4.4.3. lt now follows from (1) that

lllPoo(2, D)KoFlll","= olll.F,lll,,", F<//:(R+, R'-1).

This implies that the inverse (1"+Poo1z,D)r()-t exists and is continuous, and

so is the operator
f< : Ko(/" * Poo(2, D)Ko)-l.

Hence we reach the conclusion that, for every z(Z with (r)=-q, the operator

P (2, D) : (I 
"+ 

Poo (2, D) K\ Po (2, D)

is an isomorphism of H)(R") onto /f)(R"*,Ro-'), with inverse K.
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4.5. Two remarks

4.5.1. As one can easily verify, Theorem 4.4 implies a known result (see Teorema
6.3 of V. del Prete-D. Fortunato [6]; cf. also Teorema 9.2 of S. Matarasso [5])
for the unique solvability in 11'(Ri) of the problem

(,t 1O1u+ l,u, yrB(D)u) : (f , g)

with any (f,d(tr"@i,R'-1) for every ).(C with arg1:constant, provided
that l,1l is sufficiently large. This shows that the assumptions usually made (see [6])
can mildly be reduced.

4.5.2. We conclude by mentioning one direction of generalizations: It is poss-
ible to consider also boundary problems for operators with symbols from more
general classes of "parametrically" hypoelliptic polynomials, and for spaces with
more general weight functions. In this connection note, for example, the problems
considered by S. Matarasso [5] in the nonparametric case.
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