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DIFFEREI{TIABLE TCHEBYCHEFF SUBSPACES
AND HERMITE INTERPOLATION

WERNER HAUSSMANN

1. Introtluction

Let m,n(N,l<m3n, and let E,:(eyu)r=p=u,0=v=r-1 be an incidence matrix

(cf. Schoenberg ll2l, Mäkelä-Nevanlinna-Sipilä [8]), i'e. €r,:0 or 1, and

zo,n trn:n. suppose, for simplicity, that no row is composed only of zeros. Given

an interval lcR with nonvoid interior /, interpolation nodes tr<tz<...<t,, in

I, and an n-dimensional subspace (tcC'(I), r(No::Nu{0}, then the incidence

matrix E, gives rise to the following interpolation problem: Does there exisl a u(U
satisfying

(1) ufu) Q) : at'

for all (1r, v) such that tpy:l with arbitrarily given data aun(R'l The problem of
unique solvability of this Birkhoff type interpolation problem has been treated by

several authors for the case (J:II,-, (polynomials of degree not exceeding n-l),
see e.g. the surveys of Sharma [13] or LorentzlTl.

In a recent paper, Mäkelä-Nevanlinna-sipilä [8] put the following question:

Given a fixed type of incidence matrix En, what are the properties of UcC'Q)
necessary and sufficient that the interpolation problem (l) be uniquely solvable

(with respect to certain special or arbitrary nodes)? They considered various types

of spaces U generalizing results of Matthews [9], Ikebe [3] (the latter treated general

Birkhoff interpolation problems) as rvell as of []. In most of their results Mäkelä-
Nevanlinna-Sipilä [8] make use of "polynomial like" spaces U for which the dimen-

sion of [/ is reduced by differentiation.
It is the topic of the present paper to investigate those z-dimensional subspaces

UcC,(I), r(N, whose dimerusion is not necessarily teduced by dffirentiation in

order to get results for Hermite interpolation incidence matrices. In [1] we showed

that the osculatory Hermite interpolation problem is uniquely solvable with respect

to differentiable Tchebycheffsubspaces. When proving this, one of the main problems

was that - because of the lack of sufficient differentiability - the usual multiplicity

notion for zeros of a function does not work. Thus we have to use a certain multi-
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plicity notion for r-times dffirentiable functions in order to treat the general Hermite
interpolation in c'(I) here (cf. Mäkelä-Nevanlinna-sipilä [g]). Then we give a
characterization of Hermite subspaces which enables us to prove the main theorem
on Hermite interpolation in Section 3. Some of these results were announced in [2].
In addition we can characterize weakly differentiable Tchebycheff subspaces (Icc, e)
of dimension n by means of a certain class of incidence matrices.

other investigations on Hermite interpolation by nonpolynomials are due to
Polya [10] and Karlin-studden [6]. Some results on Birkhoff interpolation with
respect to nonpolynomials go back to Karlin-Karon [4, 5].

2. A characterization of Hermite subspaces

In order to prove the results in Section 3 we need the notion of a Hermite sub-
space as well as a characterization of Hermite spaces which is established in this
section.

Let n €N, r(No, and IcR an interval 1i*D. An n-dimensional subspace
Uc C'(I) is called a Hermite subspace of C, (D provided that for any m(N , m<n,
any (ar,..., a.)€Ni' satisfying max!=t=mdp<r and )r=r=*(au*l):n, and
arbitrary interpolation nodes tr=tz<...<t^ in lthe following Hermite interpola-
tion problem is uniquely solvable:

Given any au,€R (0=t=a, l<p=m), does there exist a z(U satisfying

,rG)Q) - apr (0 = r = cu, | = p = m)?(2)

The set of all n-dimensional Hermite subspaces of c'e) will be denoted bv tri (I).
In order to characterize Hermite subspaces we need the followin g notion of

multiplicily for zeros of functions in c'e) which will be defined inductively (see
Mäkelä-Nevanlinna-Sipilä [8] and [2]):

(i) Let x€C,Q), r€.I, then define

zo(x, t) t: {å
-0
#0

if
if

if
if

I 'n- 1(x'
lo

x(t)
x (t)

and, for 1=g=r:

za(x, /) :-

Then §,(x)i: Z,€r z,(x, t) is the number
zeros are counted according to this (weak)

,/)+l x(t) - 0

x(t) * 0.

of all zeros of x(C'U) where multiple
multiplicity notion.
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(ii) In
tel.Then

of zeros in a strict sense, let again x(C' (/),

and t is an isolated zero where x does

Zo(x, t) * 2
Zo(x, t)

and, for 1

Zn(*, t) :-

The number of all zeros counte
by g,(*)i: Zre , Z,(x, t).

Note that we have 0<z,(x, t)=r+l, O=Z,(x, t)=r+2 for x(C' (I) and t€L
In addition, for Z,(x,t)=r* 1, we have Z,(x,t):2,(x,t).

With these preparations we are able to prove the following theorem without the
use of determinants by interpolation theoretical means only:

Theorem l. Let UcC'Q) be an n-dimensional subspace (r€No, n €N, 1cR
an interual with noruooid interior). Then these assertions are equiualent:

(i) U rr an n-dimensional Hermite subspace of C'(I),
(ii) For any uQU, u*0, we haue: 9,(u)<n-1,
(iii) For any u((J, u#0, we haue: d,1u1=n-t.

Proof. (i)+(ii): Let U be an z-dimensional subspace of C'(I), and suppose
there exists a us€U, arl0, such that 5,(ur)>n. We can assume that uo possesses

only a finite number of zeros t1, ... , t1,{ (k=n- 1); otherwise zo would be a non-
trivial solution of the Lagrange interpolation problem a(s,)-0 for rz or more

t t) - l. Then the

u@(to) : 0 (0 = r < a.r, I = pi m)

has the nontrivial solution ao which contradicts the fact that a Hermite subspace
yields a unique solution of any Hermite interpolation problem involving derivative
conditions up to order r.

(ii)+(i): Now suppose 9,(u)=n- I for any u€(J, u*0, and let an interpola-
tion problem of type (2) with nodes tr=/r=...<tm in 1be given. It suffices to show
that the homogeneous problem corresponding to (2) has the trivial solution only.

order to count multiplicities
define (cf. Rice tl1l)

[2 if x(t)-0, t(i,
._ J not change sign

'- I 1 if x(t) - 0, and

Io ir x(t) # o

<q=r:

I zn-t(x', t) +l if x(t) - 0

to if x(t)*o.

d with this strict multiplicity notion will be denoted

points s, € /"
Thus let z,(uo, t*)-P*+L (1 

= 
%=k), and define

m ::min {leru : z z,(uo, tt)= r}.
I r=).6t t

Now put dr: §r (1= trt=m-l), and d*:n- Zr=u=m_L zr(uo,
Hermite interpolation problem
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Any solution u(U of this problem possesses zeros of weak multiplicities --au*l
at /r, thus we have

Z ,,(u, t) = Z z,(u,
t€I L=1t=1

hence u-0 by (ii). This yields (i).

Since (iii)+(ii) is obvious, we only have to prove the converse direction. It
turns out to be convenient to show that the equivalent statements (i) and (ii) together

imply (iii).
(r)+(iD+Gii): Assume there is a usQ.(J, uo*O, such that $,(us)>n. Since

(ii) holds, zo has at most k=n-l zeros tr<tr<....-t* in L The assertion (ii)

implies, too, that there is at least one of the lr's, say tro, such that Z,(uo, tuo):r*2,
which means that

M'::
Define

where U(t,)::{tql:t*-e-l</,*e\{1,} with a sufficiently small e=0 so that
o, is well defined (i.e. ttre restriction of uf;) to U(t,) has constant sign). Let

M::{1,...,kNM', and define uo((J as the unique solution of the following
Hermite interpolation problem (according to (i)):

u$")(t) :g for x(M, o= q < z,(uo,t,)-1,

o$")(t):0 for x€M', 0=a<r-1,
u6n(t) - -ox for x€M',

and, since Q::Z*<az,(uo,t,)*),<a,?+l)<n, choose p::n-q points s, dif-

ferent from each other and from the /,'s, and complete the interpolation conditions

above by
uo(s.) :0 for | = 7T < P'

we have uo*O. Now we consider \rsi_ uo*r1uo with q=0 suffi-

thus wo*O. By constructiofl, we have

zr(wo, t*) z Zr(uo, tr) for %e. M

zr(wa, t*) > r for x€ M',

and with a sufficiently small 4=0 for any x€M' there are points ti and "; (sat-

isfying r * <t,<rj) in a neighbourhood of /, such that {t : r * < t <t[] § t, tf, tf, , so

fot l<p=k, F*%, and l=n=p, satisfYing

zr(wo,rI) = 1., zr(wo,ri) = 1.

ff,(w) = Z z,(wo, t*)* Z (r* 2) : d,@; > n
x€M x€.M'

t)= 2 (au*r)-n,
1*p<m

{*, 1 = y 5 k, Z,(uo, t*) - r +2) # g.

o* i: sign u['t!) for ]4(. M'
t e u{tx)

Since M'#9,
ciently small,

and

Hence we get
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while wol0. Since wr€U, this contradicts (ii). Thus $,(u)=n-l for all u(U,
u*0. n

We remark that Theorem 1 also can be obtained with the aid of results due to
Mäkelä-Nevanlinna-Sipilä [8] using a characterization of Hermite subspaces rn
terms of determinant conditions.

If we assume U being an z-dimensional space of sufficiently differentiable func-
tions (and not only ucc'Q)) then Theorem 1 reduces to a result of Karlin-
Studden [6].

3. Differentiable Tchebycheff subspaces

We are going to prove suffi.cient criteria to guarantee unique Hermite interpola-
tion within the framework of dffirentiable Tchebycheff subspaces. The latter ones
will be defined by properties of the number of zeros of a function without using
multiplicities of zeros. But when proving the existence and uniqueness Theorem 3
the multiplicities introduced in Section 2 will play an important role.

Given a subspace (IcC'(I), IcR an interval satisfying .f+0, we define
g@)'- {w:w is derivative of order g of some u(U\ for l=q=r€N. [n the case

Q:0 we have U(o):-U. Finally, let zr::dimy(o) go. l=Q=r, and lst:n:
dimU.

Definition 2. Let n,r€N, IcR an interval with nonvoid interior, and
UcC' (I) an n-dimensional subspace.

(i) u is called an r-times dffirentiable Tchebycheff subspace of dimension n
if for 0<g5r the following condition holds: Äny u((J@), ulo, possesses at most
nn-l zeros in 1 (without counting multiplicities).

(ii) An r-times differentiable Tchebycheff subspace U of dimension n is called
a) an r-times strictly dffirentiable Tchebycheff subspace if

r=n and dimryk)-n-Q (0= Q=_r),

§) an r-times weakly dffirentiable Tchebycheff subspace if

6i^gk) : n (0 = q 
= r).

In order to describe certain interpolation problems we are going to introduce
incidence matrices of type {"(s, r). Given an incidence matrix En:(eun)r=r=., o=,=n_.
(see Section 1), and s(No, r(N such that O<s<r<fr-|, then we put

mo :- {p: tun

An incidence matrix En (ot
to some interpolation nodes

-l(1 =p=m)) for Q=y<n-1.

the corresponding interpolation problem with respect
ttt (1 

= 
p=m)) will be called of type ,f"(s, r) if the fol-
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lowing conditions hold:
mO : /ll1 :,,. : ffi"-t: 0,

fns ) ffis+t) ,..) mf , m" * 0,

Wr+L: Wr+2: "' : ffir-t:0'

For s:0 we have a Hermite interpolation incidence matrix, whereas s=0 yields

the incidence matrix of a "shifted" Hermite problem.

We are now coming to state the main result of this paper, where we shall use the
following notation. Let E, be an incidence matrix, and tr=tr<....=tm interpola-
tion nodes in the interval IcR. Then we define

Mni: {tu: euu: I (1 = p<-m)) for 0= v= n-1.
Thus in the case of an incidence matrix of type {,(0,r), O=r=n-I, we have

g * Mo= Mrs ...) M, Mr',1 :...: Mr-r:0.
Theorem 3. Let n (N, r(Ns, and UcC'(I) be an n-dimensional subspace

(IcR an interual satisfying i*0). Suppose one of the following conditions holds:
(D U rs an r-times strictly dffirentiable Tchebycheff subspace of C'(I).
(ii) t/ is an r-times dffirentiable Tchebycheff subspace, and we haae M,ci.
(iii) U is obtained as the restriction to I of an r-times differentiable Tchebycheff

subspace AcC"(J) of dimension n where lci.
Then in either case U is an n-dimensional Hermite subspace of C'(I).

Proof. (i) According to Theorem 1 we have to show (by induction) that if U
is an r-times strictly differentiable Tchebycheff subspace of dimension n then for any
u€.U, u*0, we have 9,(u)=n-1.

The case r:0 is obvious. Thus let r=0, and suppose that the foregoing
implication holds true for any g-times strictly differentiable Tchebycheff subspace
(0=q=r-l) of any fixed dimension d(N satisfying q=d.

Let U be an r-times strictly differentiable Tchebycheff subspace of dimension n,

and suppose there exists a u€U, u*0, satisfying $,(u):p>n. Then z possesses

only a finite number of zeros, say t.,...,t1, iL L Introducing B^::2,(u,t^) for
1=1=1, we have p:Zr=t=t§^. By definition of the weak multiplicity of zeros,

the derivative z' satisfies

Z,-t(u', tt) : fit- 1 (1 = ). = l).

In addition, Rolle's theorem yields the existence of /- 1 further zeros in the open
intervals lt^,t^*rl for L=).=l-l. Thus

9,-t(u') =- ,J=r(§t-l)+l-l 
: p-l > n-1.

Now U(1) is an (r-l)-times strictly differentiable Tchebycheffsubspace of dimen-
sion n-l which yields d:0, hence u:0, which is a contradiction. Thus
u€/f:@.
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The result that condition (i) implies U being an n-dimensional Hermite subspace
of C'Q) is covered by a theorem of Ikebe [3].

(ii) Again, we prove the assertion by induction with respect to r. The case r:0
is immediate. Thus assume r=0, and suppose the statement holds true for
0=g<r-1 and arbitrary dimension of U.

Now suppose U is an r-times differentiable Tchebycheff subspace of dimension
n. Let m interpolation nodes tt<tz<...atru in 1be given as well as nonnegative
integers a, (l-p€m) satisfying maxr=p=*ar=r and Zr=u=_(ar*1):4. 1g it
sufficient to show that the homogeneous interpolation problem

u{') (t) - 0 (0 = r = du, 1 = pr = m)

has the trivial solution uo:0 only.
For any solution a of (3) we have z,(u, tu)>-uu*l. Since z vanishes at tr, ..., t^

in d by Rolle's theorem, a'possesses m-l furlher zeros ruCftu, tu+i(l=p=m*l).
Thus we have

g,-Jt/) = du*(m-l): n*1.

Now we have to consider two cases:
(a) If dim (I(D:n-|, then as in the proof of (i) we have a:0.
(f) Thus suppose dimU1):n. If there is a tro€M,(cf ty hypothesis) such

that Z,-r(u',tro):r* 1, then we have

i,-L(u') = Z ar*Qn-1) +(r* t) = n
ll:l

It* lto

81

(3)

z
l= p€m

since ouo:r. By Theorem
Therefore we can assume

Hence

1 and the induction hypothesis we have u':C, hence u-0.
that for any tt,QM, we have

Zr_t(u',tu) - r.

Z,(u, tu) - r+ 1,

which (since ttt,cil implies that

Z,_t(u, t) - r +l (tu( M,).

In addition, for all l=p=yn 
A

holds true. From this we get 
z'-r(u' t") > a,+l

l=p=m tLLqMr tp(Mr
(au* l) : n.

Hence u:0 by induction hypothesis and Theorem 1.

(iii) In this case it follows that M"clci. thrs (ii) is applicable for & instead
of [/. Hence there exists a unique fi€O which solves the given interpolation problem

z
L= p=m
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of type 7"(0, r). Its restrictiorto f, u:: AlI, is the unique solution of (3) with respect
toU. tr

Theorem 3 yields the following generalization of a theorem of Mäkelä-Nevan-
linna-Sipilä [8]:

corollary. Let u be an n-dimensional subspace of c'(I), I an open real interual.
Suppose (J, CIlr), ..., (JQ) prouide a unique solution for any interpolution problem of
type {,(O,O). Then any interpolation problem qf type {,(0,r) possesses a unique
solution with respect to U.

4. A characterization of r-times weakly differentiable Tchebycheff subspaces

The following interpolation theoretical characterization of Tchebycheff subspaces
of C(1) is well known (it is an immediate consequence of Theorem I for r:0):

An n'dimensional subspace ucc(I), I a nontriuial interual, is a Tchebycheff
subspace if and only if any interpolation problent of type f"Q,O) (i.e. Lagrange
interpolation problem) with nodes in I possesses a unique solution.

Now we are going to consider a corresponding characterization of r-times weakly
dffirentiable Tchebycheff subspaces defined on an open interval. The interpolation
problems which are needed for this characterization turn out to be of Birkhoff type
(see e.g. Schoenberg [12]).

Theorem 4. Let UcC'Q) be an n-dimensional subspace, lcR an open
interual. u is an r-times weakly dffirentiable Tchebycheff subspace if and only if
any interpolation problem of type {,(s, r) possesses a unique solution with respect to
U for any 0<s<r.

Proof. Let U be an r-times weakly differentiable Tchebycheff subspace of
dimension n. Then for 0<s=r the spaces U(") are (r-s)-times weakly differentiable
Tchebycheff subspaces of dimension n. By Theorem 3, any interpolation problem
of type {"(0, r- s) possesses a unique solution with respect to U(") given any nodes
tt<t't<...=tu in land arbitrary interpolation data. This means that any interpola-
tion problem of type {,(s,r) has a unique solution with respect to Ufor 0<s=r.

Conversely, let any interpolation problem of type f,(s, r) be uniquely solvable
with respect to u (0ss=r). Then, in particular, any shifted Lagrange interpola-
tion problem

u{")(tn)-qn (l<v=n)

possesses a unique solution with respect to u, hence u(') is an z-dimensional Tche-
bycheffsubspace for 0<s=r which follows from Theorem 1 and Definition2. n

Examples of r-times weakly differentiable Tchebycheff subspaces are given by
certain families of exponential functions (see [2]).
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