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A REMARK ON FINELY HARMONIC
MAPPINGS

ILPO LAINE

B. Fuglede developes in [4] the basic theory of finely harmonic mappings thus
generalizing into a finely open domain of definition the concept of a harmonic
mapping. This remark presents a small completion of [4]. More precisely, we shall
prove some results for covering properties of Bl-mappings (in the fine sense) cor-
responding to Theorem 3.1.5 and Theorem 3.1.6 in [6], where an attempt to con-
sider finely harmonic mappings was done. After having defined the notion of a
fine Bl-mapping (Definition 2) we bring some further details in order to prove the
existence of non-trivial fine Bl-mappings (Corollary 7). The results dealing with
covering properties begin at Theorem 8 below.

Let X and X’ be two harmonic spaces in the sense of Constantinescu and Cornea
([1], p. 30) with a countable base and satisfying the domination axiom D. We shall
apply here mainly the notations introduced in [1], [2], [5] and [6] the exceptions
being self-explanatory. Specially we shall denote by U (resp. U’) a finely open set
contained in X (resp. X”), unless otherwise explicitly stated.

We first record the following lemma (see for [3], p. 264), the original proof of
which carries over into the present axiomatic situation:

Lemma 1. Any two points x and y belonging to a fine domain USX can be
Jjoined by a (usual) continuum contained in U.

Definition 2. A finely harmonic mapping ¢: U—~X' (in the sense of [4],
Theorem 5) is called a fine Bl-mapping into a finely open set U'2¢(U) (and will
be called here a fine Bl-mapping @: U~U’), if p’ o is a fine potential on ¢~*(V")
for any fine domain V'CSU’ such that ¢~ *(V')#0 and any finite fine potential
p on V.

Lemma 3. Let V be a finely open set contained in U such that there is a finite
fine potential =0 on U. Then there is a finite fine potential =0 on V.

Proof. Let p=0 be a finite fine potential on U and suppose that g=0 is
the only finite fine potential on ¥. Hence by [2], Theorem 10.7, any finite fine poten-
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tial on U is finely harmonic on V. Let BSV be a non-empty base. Then (Rﬁ)u is
a finite fine potential on U and finely harmonic on U\B by [2], Corollary 11.13,
hence finely harmonic on the whole U by the sheaf property see above of finely
harmonic functions. Clearly (Rﬁ)U:O, a contradiction, since (Rff)U =p=0 on B by
[2], Lemma 11.10.

Lemma 4. Let u=0 be a finite finely hyperharmonic function on U contained
ina P-set YSX. Foreach xcU thereis a ( finely closed) fine neighbourhood W< U
of x and a finite fine potential q on U such that u=q on W.

Proof. Given x€U let, by Lemma 3, p be a finite fine potential on U such
that u(x)<p(x). Let W be a fine neighbourhood of x such that u=p on W. Then
clearly (R")y=p, hence (R¥)y is a finite fine potential on U.

Using the local extension property ([2], Theorem 9.9) we may assume that u
is majorized on W by a locally bounded (usual) potential on Y. Further, it is no
restriction to assume that ¥ is a base in Y, hence g=(RY),=(R"), by [2], Lemma
11.5. The lemma follows.

Lemma 5. Let u=0 be a finite finely hyperharmonic function on a finely
open set V. Let U2V be contained in a P-set YSX. For each point x€V there
is a fine neighbourhood WCV of x and two finite fine potentials p, g on U such that
q is finely harmonic on W and that u=p—q on W.

Proof. By [2], Theorem 9.9, we may take a fine neighbourhood W<V of x
and two locally bounded potentials p,, g, on Y such that g, is finely harmonic on
W and that u=p,—gq, on W. Let p,=p,+h, (resp. q,=p,+h,) be the decomposi-
tion of p, (resp. g,) into a finite fine potential and a finely harmonic function on U.
Hence the decomposition

u = py+h;—(ps+hy)

holds on W. By the preceding lemma we may assume the existence of two finite
fine potentials ¢;, ¢, on U such that /;=¢, and h,=g, on W. Hence

U= p1+4g:—(p2t¢2)
on W. Clearly p,+g¢, is finely harmonic on W. The assertion follows.

Theorem 6. Let ¢: U~X" be a finely harmonic mapping and assume that
U 2¢(U) is contained in a B-ser Y'SX'. If p’oe is a fine potential on U for all
finite fine potentials p’ on U’, then ¢ is a fine Bl-mapping into U’.

Proof. Let V' be a fine domain S U’ such that ¢~'(V")=0 and let p’ be
a finite fine potential on ¥”. Since p’o¢ is finite valued, it is finely superharmonic
on ¢~ (V’). Let h be a finely harmonic minorant of p’o¢ and denote

& = {s' = 0|s” a fine potential on V'; 5" = p’; s’op = h}.
It is sufficient to prove that inf &’ is finely harmonic on ¥, since then inf &’
vanishes being dominated by a finite fine potential p” ([2], p. 105).
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Let now X €V’ be arbitrary. By Lemma 5 there is a finely open fine neigh-
bourhood W’ of x” such that p” has a representation p’=p;—p, on cl, WSV,
where p; and p; are finite fine potentials on U’. Let then 77 be a (fixed) regular
finely open set such that x"€T"Scl, 7S W’. Let s’€&” be arbitrary. By [2], Theo-
rem 10.2, (s")"' N7’ (defined on V") is finely harmonic on 7", =s’ on ¥V’ and =s’
on V\T’. Therefore (s')"'=s" holds on 9,T’, hence (s')" N op=h on
@ Y0, T")20; ¢ Y(T’). In addition, we have

()" op—h=—h=—pop=—piop+p;00 =—pio@

on ¢~1(T”). Since ¢ is a fine Bl-mapping into U’, pjo¢ is a finite fine potential
on U. By the fine boundary minimum principle ([2], Theorem 10.8) we get
(s \Topzzh in @~Y(T’), hence in ¢~(V’). Therefore (s)"'\'¢&". Since
s’€&’ was taken arbitrarily, this implies that inf & is finely harmonic on 7”. By
the sheaf property of finely harmonic functions, inf &’ is finely harmonic on the
whole V. The theorem follows.

Corollary 7. A Bl-mapping ¢: U~U’ (for the definition, see [5], Defini-
tion 2.1.2) defined on an open set U into an open W-set U’ is a fine Bl-mapping into U’.

Proof. By [4], p. 116, ¢ is a finely harmonic mapping. Let now p’ be a finite
fine potential on U’. By [2], Theorem 10.12, p’ is a semibounded potential on U’,
hence p’o¢ is a semibounded potential on U ([6], Theorem 2.2.1), hence a fine
potential on U. The assertion follows by the preceding theorem.

Remark. The above corollary could have been proved directly exactly like
Theorem 6 by using the local extension property ([2], Theorem 9.9) instead of
Lemma 5. Based on a discussion with B. Fuglede we have preferred the above more
general approach which proves for fine Bl-mappings an analogon to the (well-known)
fact, that a harmonic mapping ¢: U—U" defined on an open set U into an open
P-set U’ is a Bl-mapping, if p’o¢ isa potential on U for all locally bounded poten-
tials p” on U’.

The following theorem is a slight reformulation of a result due to Fuglede
([4], Theorem 9). The proof given by Fuglede carries over, when we only note, that
@: V-V’ is a finely open fine Bl-mapping.

Theorem 9. Let ¢: U—~U’ be a finely open fine Bl-mapping. If there is a
finite fine potential =0 on a fine domain V'S U’ and if V is the union of a non-
empty subfamily of the fine components of ¢~ Y(V')#0, then V"™\ @ (V) is a polar set.

Let G,(x) denote the family of finely open finely connected relatively compact
fine neighbourhoods of x€ U (resp. x€X”). For a finely harmonic mapping ¢: U—~X’
we denote ‘

(¢, x’, A) = min (8, card (4 N ¢ ~1(x")))
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for all A4S U and define the local and total multiplicities of ¢ in the fine sense as
follows: '

ny(¢,x) = inf [sup (g, X', G)],xev,
GeB,(x) \wex

n(p, X', A) = min [xo, ns (e, x)), ACU

2
x€dNe~1x)
(see [6], Section 2.3). The usual local and total multiplicities of ¢ will be defined
similarly with respect to the usual neighbourhoods (see [5], Section 1.3).

Lemma 9. Let ¢: U~U’ be a finely continuous mapping between two finely
open sets. If ¢ 71 (x") = {zy, ..., z,} is a finite set, then for each k=p there is G’ € ®(x")
such that some disjoint fine components Vi, ..., V; of ¢~(G’) satisfy z,€V, for
i=1,.., k.

Proof. The case k=1 being trivial, let us consider the case k=2. Let (U;);cy

be a sequence of relatively compact (usual) neighbourhoods of x’ such that
=1 U/ ={x"}. We may take a decreasing sequence (G;),cy of fine neighbourhoods
in G,(x") such that G;SU/nU’ for each i€N. Clearly (2, G;={x"}. Let
now, for each i€N, V; be the fine component of ¢~1(G;) containing z;. If the
assertion fails for k=2, then certainly z,€¥, for all /€N. We first note that

oo

A om@) = ([ 6) =07 0) = 21, 2)

hence
cl(ﬁ V,) S {z1, .05 2o
i=1

By Lemma I there is a (usual) continuum C; such that {z;, z,} S C,S V; for each
i€N. Let now Wy, ..., W,_, be relatively compact (usual) neighbourhoods of z,
such that z,¢(cl Wy)u...u(cl W,_;) and that the relative boundaries Wy, ...
..., O0W,_; are pairwise disjoint. Consider an arbitrary j€{l,...,p—1}. Obviously
we may take x;€C;n0W; for each i¢N. Let y,€0W; be a (usual) cluster point
of the sequence (x;);cy and let T be any (usual) neighbourhood of y;. Clearly T
contains an infinite number of points of the sequence (x,);cy, hence ¥V; nT2 {x,}0
for infinitely many i€N. Since (V;);cy is a decreasing sequence, Tn{ 2, V;#0,
hence we get

ij cl (01 V;) - {Zl, . Zp}.

Since j was arbitrary, we have {z;,z,, »;, ..., ¥,-1}S@"1(x"), a contradiction.
The final inductive step of the proof is obvious, see e.g. the proof of Lemma 1.3.4
in [5]. The lemma follows.
We are now ready to state our main results (Theorem 10 and Theorem 11).
Their proofs can be omitted, because they are completely similar to the proofs
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of Theorem 3.1.5 and Theorem 3.1.6 in [6]. We must only make some preliminary
remarks. Firstly, parallel results to [6], Lemma 3.1.3 and Corollary 3.1.4 hold also
in the present situation. Secondly, we observe that for each finely closed non-polar
set E'SU’ thereisa point x"€E’ such that E”nG’ is non-polar for all G'€6,(x")
by the quasi Lindelsf principle ([6], Lemma 2.1.9). Thirdly, the complement U™\ A’
of a polar set A’C U’ relative to a fine domain U’ is finely connected. Finally,
in the proofs we may use Theorem 8, Lemma 3 and Lemma 9 instead of [6], Theo-
rem 3.1.2, and [5], Lemma 1.3.4, which were used in [6]. One should also note that
the proof of [6], Theorem 3.1.6 (applied for Theorem 11 below) actually carries
over without making use of minimal neighbourhoods (in the fine sense).

Theorem 10. Let ¢: U—-U’ be a finely open fine Bl-mapping such that
(D), = {x'€U’|Ix€ @~ (x) with ny(p, x) =1}

is a polar set. If V'S U’ is a fine domain such that there is a finite fine potential
=0 on V' and if V is the union of a non-empty subfamily of the fine components of
Qo Y (V")£0, then

X eV’ii(p, x", V) = p}

is a polar set for each p<k=sup, ., (o, x’, V).

Theorem 11. Let ¢: U-~U’ be a finely open fine Bl-mapping such that
(D,)y is a polar set. If V'S U’ is a fine domain such that there is a finite fine potential
=0 on V' and if V is the union of a non-empty subfamily of fine components of
@Y (V')£0, then
k =sup (e, x", V) = sup ny(p,x", V) =k,

x'ev’ X' €V’
and

eV ng (o, ¥, V) = p)
is a polar set for each p<kKk.

The above reasoning can be now applied to get an improvement (under some
restrictions to the harmonic spaces) to our earlier results ([5], Theorem 2.2.9, [6],
Theorem 3.2.3, [7], Theorem 4.4 and Theorem 5.6) concerning with the covering
properties of usual Bl-mappings.

Theorem 12. Let U and U’ be open sets such that all points of U’ are polar.
If o: U~U’ is a Bl-mapping such that

D, = {x'eU’'|3xc @~ (x") with n(p, x)>1}

is a polar set, if V'SU’ is a P-domain and if V is the union of a non-empty sub-
Sfamily of the components of @ *(V')#0, then

eVIn(e, x', V) = p}

is a polar set for each p<k=sup, .y n(p, x’, V)=k,=k.
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Proof. We must only note that ¢ is a finely open finely harmonic mapping,
hence the proofs of Theorem 3.1.5 and Theorem 3.1.6 in [6] are again applicable.

Remark. In conclusion we mention that in the situation of Theorem 12
(D},); is a polar set if and only if D, is polar. The inclusion (D;,),SD,, is trivial.
If, oni the other hand, (D), is a polar set while D;, is non-polar, then we may take
a P-domain V'SU’ such that V' n D, is a non-polar set. The assumptions of
Theorem 10 above are now satisfied for the restricted mapping ¢: @~ 1(V')-V",
hence the conclusion of Theorem 10 holds. The method of the proof of Theorem 3.1.6
in [6] can be once more applied, hence k=k =k, therefore we get immediately a
contradiction to Theorem 10.
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