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CARATHEODORY BODIES

MAURICE HEINS

1. Introduction. This paper treats problems of Pick—Nevanlinna type
for positive harmonic functions via an extension of Carathéodory’s original
approach to the theory of coefficient bodies [3]. We consider a non-compact
Riemann surface F having finite topological characteristics none of whose
boundary components is pointlike. We fix a point @ € F' and denote by
P the family of positive harmonic functions on F which take the value
1 at a. We denote by A a continuous linear map of the space of real-
valued harmonic functions on F (endowed with the topology of uniform
convergence on compact subsets of F ) into a fixed Banach space over the
real field. By the Carathéodory body associated with P and A we understand
A(P), ie., the image of P with respect to A .In this paper, we shall be
concerned with the special map A given explicitly in § 2. Here the fixed
Banach space is a real finite dimensional number space. An important
feature of the so chosen A is the fact that the problem of characterizing
A(P) and determining the preimages of its points with respect to A | P
subsumes the Pick—Nevanlinna problem for F . The reason that A(P) is
accessible to study appears on introducing a Schottky double S of F .
For then A(P) may be shown to be representable as the convex hull of
the image of fr F with respect to a map defined in terms of meromorphic
functions on 8 about which functions a fair amount of information is
available. We are referring to the map @ of §3 which is the surrogate in
our study of Carathéodory’s spherical norm curve [3]. It is a very special
feature of @ that its components are given in terms of abelian differentials
on S which are specified by A . Thus the apparatus of the theory of
abelian differentials on compact Riemann surfaces is made available.
When F is the open unit disk, @ may be given explicitly in terms of
rational functions. Cf. (3.14), (3.15).

The map @ will permit us to obtain a quantitative treatment for the
Pick—Nevanlinna problem for F in terms of Minkowski support functions
(§ 6) and thereupon — as a byproduct — a solution of the Painlevé problem.
To be sure, the results have a theoretical character.
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A central property of A(P) for the A under consideration is the fact
(Theorem 4.1) that the determinacy subset of A(P), i.e., the set of points of
A(P) having exactly one preimage in P with respect to A, is exactly
fr A(P). The result is well-known in the classical situation of the
Carathéodory theory. Cf. [3], § 12. The proof of Theorem 4.1 will be based
on a “mixed method” allowing us to operate with analytic functions on
F which take values of modulus less than one and to which the lemma of
Julia—Carathéodory—Wolff may be conveniently applied.

Thanks to the information which is available concerning the number
of poles of the components of @& , the upper bound given by Carathéodory
for the number of points of a spherical norm curve lying on a given sup-
porting plane of its convex hull ([3], § 11) may be generalized for the case
of @ and a supporting plane of A(P). The extended bound, namely
(3.19), is given in terms of indices entering in the definition of A . It will
be seen that the preimage of a point of determinacy with respect to A | P
is the sum of a finite number of minimal positive harmonic functions on
F', the number not exceeding the bound given by (3.19). The bounds given
for the valence of extremals (in the sense of R. Nevanlinna [10]) for a finite
Pick—Nevanlinna interpolation problem on a plane multiply-connected
region of finite connectivity by Garabedian [5], for the Schwarz Lemma
situation on a surface F by Ahlfors [1], and for a finite Pick—Nevanlinna
interpolation problem on F by the author [6] are all consequences of this
result. We remark that the problem of determining the extremal functions
for the Schwarz Lemma situation studied by Ahlfors (loc.cit.) may be treated
in terms of the support function of A(P) which, in turn, is given in terms
of @.

2. The map A . We fix a Schottky double, S, of ¥ . The components
of I'=fr F are regular analytic closed Jordan curves. We let ¢ denote
their number. We let ¢ denote the genus of F. We let « denote the
anticonformal map of § onto itself keeping each point of I' fixed. It
maps I onto S—F .

The period components of A . We fix 2g + (c—1) regular analytic
closed Jordan curves in F, say y;, ***, ¥, (1), Which have the property
that the homology classes of which they are members form a basis for the
1-dimensional homology group of F . We introduce

(2.1) o ;y,) = —1i /6u, k=1,,2g+ (c—1),
7k

where u is harmonic on # and du denotes the abelian differential given
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in terms of a local uniformizer 6 by 2 (u°0) dz. Of course w(u ;y,)
is simply the period of the conjugate of « along v, .

The interpolation functionals. Let B denote a finite set of points of ¥
including @ . For each b € B — {a} we fix a regular analytic Jordan arc
%, (CF) with initial point @ and terminal point b . With each b € B
we associate a uniformizer 6, satisfying 0,(0) = b and a nonnegative
integer n(b) . For b € B — {a} we define l(u;b,0) by

(2.2) l(w;b,0) = féu,
&)

and for arbitrary b € B we define (u;b,k), 1 <k <n(b), by
(2.3) u;b,k) = 2(@we0,),*D0) ]k,

that is, as the kth Taylor coefficient at 0 of a function analytic at 0
with real part given locally by w0, .
We now define /(u) in the following way. We introduce

(2.4) m = 2g 4+ (c—1) + 2n(a) + 2 z{}[n(b)—{— 1]
=z —-1+22 [nb) +1],

y being the Euler characteristic of F.We suppose that we are concerned
with the nontrivial situation where m > 0. We let ¢ denote a (1, 1)-map
of {1,:+,m} onto the set whose elements consist of: (I) the y,, (II)
the ordered triples (a,1,k), (@,2,k), k=1, ,n(a), (III) the
ordered triples (b,1,k), (b,2,k), k=0,-,n0b), beB — {a}.
For convenience we suppose that o maps {1,--,x+1} onto
{¥1s " V1) - We define A(u) as the element of R™ whose jth com-
ponent is w[w ; o(j)] when o(j) is one of the y,,is Rel(u;b, k) when
o(j) = (b,1,k) and is Iml(u;b, k) when o(j) = (b,2,k).

[It is to be remarked that other formulations could be made for a map
A . For example, one could consider / as a map whose image lies in the
set of real-valued functions with domain the set of elements specified by
(1), (IT), (ITI). For our purposes the question is not an important one.]

It is routine to verify that A is a continuous linear map of the space of
real harmonic functions on F into R” in the sense indicated in § 1.
Clearly A(P) is convex. That it is compact follows from the compactness
properties of P .

3. The map @ . Our aim is to exhibit a map & from S into C/]\"‘,
each component of which is meromorphic on S and takes finite real values

on I, such that A(P) is the convex hull of @(I"). Here C denotes the
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extended complex plane. To that end, we introduce for each ¢ €I the
minimal positive harmonic function on F vanishing continuously at
each point of I' save ¢ and normalized to take the value 1 at a. We
denote it by wu,. We shall show that there exists an admitted & having
the property that

(3.1) D(q) = A(w), gqel.

By the identity theorem there is at most one @ satisfying (3.1). Thanks
to the Riesz—Herglotz representation for positive harmonic functions on
F in terms of the w, (cf. [7], 93—101) we see that A(P) is the convex
hull of { A(w,): q € I'}, that is, A(P) is the convex hull of @(I"). We
continue describing the construction of @ and studying some of its
important properties.

As a first step we establish meromorphic prolongation to S of the
functions

(3.2) g = ol;y), J=1,", 2+

(3.3) q — Uu,56,0), beB —{a};

and

(3.4) q — lu,;6,k), beB, 1<k <nb).

Once we show that this is the case, we see that the same is true for the real
and imaginary components of the functions (3.3) and (3.4). Indeed, if f

is meromorphic on § and takes finite values on I', then (f + foa)/2
is meromorphic on S and is equal to Ref on I' and the corresponding
observation holds relative to (f — fea)/(27) and Imf. The existence
of @ with the stated properties is thereupon assured.

We start with the question of the meromorphic prolongation of the
functions (3.2). We introduce @, Green’s function for ¥ with pole s
and recall the classical result

(3.5) u, = lim G/G(a).
s—>q

Now (2.1) is defined for the functions G /G (a) with s¢y; and we have

(3.6) o(u,;y;) = —ilim [G(a)]? f e

s—>q

J

= —i lim [G,(s)]™ f oG, ,

§—>q

¥j

making use of the symmetry of Green’s function. The function
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(3.7 s — —iféGs
Yj

is harmonic on F—y; and vanishes continuously on I'. It admits a
harmonic prolongation H, to S — {y;,a(y;)} by means of Schwarzian
reflexion across I'. It is to be observed that H; admits harmonic pro-
longation across y; (resp. «(y;)) from each side and that the prolongations
in question differ from one another in some neighborhood of y; (resp.
a(y;)) by 2z . It follows from this observation that JH; is not the zero
differential and that 6H, admits prolongation to an abelian differential
of the first kind on S . We make the harmless convention of denoting the
prolongation of 6H; to S also by 6H; . Using (3.6) we conclude that (3.2)
is the restriction to I' of 0H[0G,, with G, construed as the differential
of the prolongation to S by Schwarzian reflexion of Green’s function for
F with pole a. This convention will prevail throughout. The divisor of
each OH;[6G, is at least as large as — s, . The notation 9, (resp. o)
is used to denote the divisor of an abelian differential w (resp.a mero-
morphic function f)on §.It is to be observed that the functions 6H /6G,
are determined by the homology classes of the p; (in the sense of F').

The remaining functions, (3.3) and (3.4), may be treated similarly.
They will be seen to be restrictions to I" of quotients of abelian differentials
on S, the denominator in every case being 0, . For the functions (3.3)
the numerator is an abelian differential of the third kind having poles at
a and b . For the functions (3.4) the numerator is an abelian differential
of the second kind having a pole of order k+1 at b.

The functions (3.3). We proceed taking into account the definition of
l(u,;b,0) and the representation (3.5) of wu,. We observe that the func-
tion defined on F —z, by

(3.8) s — féGs
*b

is harmonic and vanishes continuously on I', and consequently, admits
harmonic prolongation to S — { %, , a(»,) } by Schwarzian reflexion across
I'. The prolongation in question will be denoted by K, . On introducing
a local uniformizer 6, satisfying 0(0) = @, and using standard properties
of Green’s function and (3.8) we obtain the local relation

(3.9) Ki[0@)] = Az) + h(z),

where A is an analytic logarithm of the identity map on a neighborhood
of 0 from which a slit terminating at 0 has been removed and A is
harmonic on a neighborhood of 0. A corresponding remark holds con-
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cerning the local behavior of K, near b with A this time being the negative
of an analytic logarithm of the identity map on a slit neighborhood of 0 .
By Schwarzian reflexion one obtains similar results for the behavior of
K, near «(a) and «(b), save that the 1 term appears in the guise of the
conjugate of an analytic function.

We note further that K, admits harmonic prolongation across
x, — {a,b} from each side and that the prolongations in question differ
from one another by 2x¢ in some neighborhood of each point of
%, — {a,b} . Corresponding observations hold relative to the prolongation
of K, across o(x, — {a,b}).

It now follows that 6K, admits prolongation to an abelian differential
on S which will be denoted also by 0K, . The latter is an abelian differential
of the third kind with poles at @ and b, the residue of which is 2 at a
andis —2 at b.This observation is a consequence of the stated properties
of K, .Itis to be noted that the operator ¢ has the effect of annihilating
the conjugate analytic terms entering in the local representation of K,
near o(a), resp. o(b).

The remainder of the argument follows that given in the case of (3.2).
Indeed,

(3.10) Huy,56,0) = lim [G(s)] ! f o, sel.
S—>q
#p

It follows that (3.3) is the restriction to I" of 0K,/0G, .

The functions (3.4). We recall that the functional (2.3) is specified in
terms of a local uniformizer 6,, 0,(0) = b,and anindex k, 1 <k < n(b).
We first consider the Taylor coefficients at 0 of twice the complex dif-
ferential coefficient A, where

hz) = G [0,()]
and their dependence on the parameter s. An examination of these coef-
ficients shows that
(3.11) Ly s = UG, ;0 ,k)
is a complex-valued harmonic function on F — {b} which vanishes con-
tinuously on 7" and is such that for z small we have
2k

(3.12) L, ,[0,(2)] = T T =

where the omitted term is harmonic at 0. The prolongation of L,, to
8 — {b,a)} by Schwarzian reflexion will be denoted also by L,, .
The operator ¢ induces from the latter function an abelian differential on



Carathéodory bodies 209

S of the second kind (denoted 0L,, ) having a pole of order k£ + 1 at
b. It is to be observed that, as above, the operator ¢ annihilates the
singularity of IL,, at a«(b) because of its conjugate analytic character.
From

(3.13) Hu,;b,k) = lim ==
S—>q
we conclude that (3.4) is the restriction to I' of 0L,,/0G, .

The case of the unit disk. Here it is a simple matter to determine
0K,/6G, and 0L,,/0G, with 0,(z) = z+b. Because of the simple con-
nectivity of the unit disk the 0H,;/0, do not come into consideration.
We have:

selk,

e L= e,
« T T za)(l—az) ©7
0K, = 2[(z—a)™ — (z=0)1] dz,
0Ly, = —2(z=b)"*Vdz,

and consequently we conclude

0K, 2(b—a)(l—az)

o 5G, = (z—b)(1—laf}
and
(3.15) 0Ly, 2 (z—a)(1-az)

06, ~ (z=bytl(1—laf?)’

a

With @ =b = 0, (3.15) yields essentially the factor occurring in
Carathéodory’s classical theory.

We continue our study of @ and seek an upper estimate for the number
of poles counted by multiplicity of a linear combination f with constant
coefficients of the component functions entering in the definition of @ .
The only points of S at which these functions may have poles are the
points of B U «(B) and the zeros of ¢¢/,. On examining the functions
0H,/6G, , OK,[6G,, OL,,/0G, and the functions obtained from the func-
tions ¢K,/6G, and 0L,,/0G, by composition with « and conjugation
we obtain the following lower estimate for o, :

8,(a), olafa)] = —mn(a);
(316) | o0), la®)] = —n) — 1 — 2, (), beB - {a};
0:(c) , ola(c)]

It follows from (3.16) that

(\%

— 86,(¢) ceF — B.
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(3.17) > min{g(p),0} = —2{(z+1) +n(@)+ > [n@d)+1]}.

pesS beB—{a}

Hence the number of poles of f counted by multiplicity does not exceed

(3.18) 2{x+ 2 [n0) + 11} = m + (x+1),

beB
where m , we recall, is given by (2.4). We note that the bound (3.18)
does not exceed 2m since m > y+1. It will be seen that the bound
(3.18) will play a role in the study of the members of P which are preimages
with respect to A of points of determinacy of A(F). In the classical case
of the unit disk y = —1 and the bound reduces to m .

We continue our study of @ and show

Theorem 3.1. @(I") does not lie in a (m— 1)-dimensional hyperplane
of R".

Before turning to the proof we make the following observations. The
theorem is equivalent to the assertion that the differentials of the functions
entering in the definition of @ are linearly independent over R . The
theorem taken in conjunction with the estimate (3.18) shows that a support-
ing hyperplane of @(/’) has at most

(3.19) g+ SIe®) + 11 (=m)

beB
distinct points in common with @(1”) . In the classical case of Carathéodory
where /' is the unit disk and B = {0}, we have m = 2n(0) and the
proof of Theorem 3.1 reduces to noting that a rational function, not
identically zero, the sum of the orders of the poles of which does not exceed
27(0) has at most 2 n(0) zeros.

Proof of Theorem 3.1. Let O = (0, ---,0) e R”. We note that O is
the image of the constant 1 with respect to A . Suppose that @(I") is
contained in a (m—1)-dimensional hyperplane of R”. Then A(P), being
the convex hull of @(["), is contained in the same hyperplane and, con-
sequently, O is a point of the hyperplane. It follows that the component
functions of @ are linearly dependent over R .

Let ¢ denote a linear combination of the components of @ with real
coefficients which is identically zero. If not all the coefficients of the com-
ponents arising from the 01,,/0¢, (by the indicated process of forming
(f + fTa) /2 and (f — foa)/(27) from such a function f) were zero,
then ¢ would have a pole at some b . This is not possible. Thereupon we
consider the terms arising from the 0K,/0(/, and conclude that if not all
the coefficients of such terms were zero, ¢ would have a pole at some b .
Again, this is not possible. Thus ¢ reduces to a linear combination of the
0H,/0G, with real coefficients.
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If v is harmonic on a region of S containing F , then

7 i
(3.20) o ;y,) = 5;/ v oM, .
r

Turther, there exist y+1 such v, say v, -+, %,,;, such that

o ;7)) = O, jok = 1, y+1.
However, if
3.21 M
( N ) %ck (SGa - »
then ¢, being real, we have
(3.22) chw(vj;yk) =0, j=1,,x+1,

F
and hence ¢; = ++* =¢,,; = 0. We conclude that the components of @

are linearly independent over IR .

Theorem 3.1 now follows from the conclusions of the preceding two
paragraphs. The statement of Theorem 3.1 may be strengthened to the
assertion that for each component [, of I', @(I}) does not lie in a
(m — 1)-dimensional hyperplane of R” as we see by appeal to the Identity
Theorem.

It is now easy to conclude

Theorem 3.2. O eint A(P).

Proof. If O¢int A(P), then a supporting plane of A(F) would pass
through O . By Theorem 3.1 only a finite number of points of @(I") would
lie in the supporting plane. It then follows that a preimage of O with
respect to /A in P would be a finite sum of minimal positive harmonic
functions on F . To see this, let [ be a linear homogeneous function on
C” with real coefficients such that {x € R”: [(x) = 0} is the supporting
plane in question with max,, /= 0. With u denoting the generating
measure in the Riesz—Herglotz representation of a preimage v» of O in P
with respect to /1, we have

s oo - 1| [ ow dua) | = 1140 = o.

Consequently, u is comprised of a finite number of point masses, the
number being at most y + >,.p[n(b) + 1] by (3.18) since each ¢ for
which @(g) is in the supporting plane is a zero of even multiplicity of
lo® . Hence v is the sum of a positive number of minimal positive
harmonic functions on # and consequently is not bounded above. How-
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ever, the constant 1 is a preimage of O in P with respect to A . Con-
tradiction. Theorem 3.2 follows.

We remark that one may also proceed in the inverse direction. That is,
Theorem 3.2 may be proved, without appeal to Theorem 3.1, by exhibiting
a subfamily of P whose image with respect to / is a neighborhood of
O . Theorem 3.1 may then be concluded on the basis of the fact that A(P)
is the convex hull of @(/").

4. The determinacy subset of /(P). The notion of the determinacy
subset of A(P) has already been introduced in §1. We let D denote
this set. We show

Theorem 4.1. D = fr A(P).

Proof. We first show

(4.1) int A(P) ¢ AP) - D,
from which it follows that
(4.2) D c frAP).

Now O isin the convex hull of @(I") andso O admits a barycentric repre-
sentation of the form >71"'u, ®(g,), ¢ €l, w, 20, >p=1.
Hence O is the image with respect to A of both the constant 1, which
we shall denote by w,, and w, = > u, ug, . Since w, # w,, w, being not
bounded above, we conclude that O ¢ D .

Given z eint A(P), x # O, we let y denote the point of fr A(P)
lying on the ray with initial point O which passes through «x, and let ¢
denote the positive number less than one such that z =ty . Let v e P
be a preimage of y with respect to A . Then

(4.3) (I-Hw, +tv, k=12,

are distinct preimages of x with respect to A which are in P . Hence
x¢ D . The inclusion (4.1) is thereby established and hence (4.2).
It remains to show

(4.4) fr AP) © D.

Tor this part of the proof we shall make essential use of the barycentric
representation method of the preceding paragraph as well as of the Lemma
of Julia—Carathéodory—Wolff. Our procedure will depend upon a translation
of the situation we are studying into one pertaining to analytic functions
on I taking values of modulus less than one.

Let @« efr A(P). Then a preimage of x with respect to A lying in
P is the sum of a finite number of minimal positive harmonic functions on
F . Cf. the proof of Theorem 3.2. Suppose that U,,U, € P satisfy
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AU, = A(U,) = . We shall show that U; = U, . The inclusion (4.4)
follows and consequently Theorem 4.1 is seen to hold.

We proceed to replace the U, by the real parts of analytic functions
on F.

Case 1. y = 0. Here we introduce a function A harmonic on a region

of S containing F such that

(4.5) oh;y) = —o(Uy;y), k=1, x+1,
namely,
(4.6) h = A — Z Uiy v

where the v, are the functions introduced in § 3 and A4 is a large positive
constant so chosen that A |/ > 0. Now the point

(4.7) <w<k(7;); y1>, ,w<};(%;n+1>>

is in the convex hull of the image of I" with respect to

(g, s )
(4.8) . (55-;«1), 2t

We conclude that there exists a positive harmonic function H , the sum
of a finite number of minimal positive harmonic functions on F satisfying

(4.9) ol y,) = ob;y), k=1, ,7+1.

It follows from (4.5) that U,+H , j = 1,2, is the real part of an analytic
function on F .

Case 2. y = —1. Here U,, j = 1,2, is the real part of an analytic
function on F which is simply-connected in this case. We understand
H to be the constant zero.

We introduce f; analytic on F satisfying: Ref, = U,+H,
Im fi(a) =0, j=1,2. We let M denote the M&bius transformation

(4.10) 2 — (2—1) ] (z+1),

and recall that M maps {Rez> 0} onto {|z|] <1}. The ancillary
function v is defined by

(4.11) v = Re[invMo<M fL._;’_M fz)] ~H.

It is by studying » that we shall see that U, = U, . It is clear that
v(@) = 1. We shall show in the following paragraphs that » e P and
A(v) = 2. Once these facts are established, using (4.11) and the fact that
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v is the sum of a finite number of minimal positive harmonic functions on
F, we are in a position to conclude that U, = U, and thereupon that
Theorem 4.2 holds. Indeed, on considering an open subarc y of
I' on which w»+H vanishes continuously, we see from (4.11) that
(Mof, + Mof,) /2 takes boundary values of modulus one on y.
Hence Mof, = Mof, and so U, = U, as we wished to show.

v € P . The case where y = —1 is trivial and will be put aside. We
note that in the remaining case
(4.12) H = > oq)u,,
qeE

where [ is a finite nonempty subset of I' and each o(g) is positive.
The notation wu, of §3 is to be recalled. Given ¢ € £, we introduce a
univalent conformal map 6 of { Rez > 0} onto a small simply-connected
Jordan region © in F bounded by an open subarc of /' which contains
¢ and an arc lying in I" save for its endpoints which are to be the same
as those of the subarc of I'. We suppose that 0 is normalized by the
condition 0(c0) = ¢, 0 being construed as continuously extended to the

closure of { Rez >> 0} in the sense of C. Suppose now that w is a function
analyticin @ and taking values of modulus less than one. By the lemma of
Julia—Carathéodory—Wolff inv M o (w ¢ 0) admits a unique representation
of the form

(4.13) Az + B@),

where A4 is a nonnegative real number, Re B(z) > 0, and
limz1B(z) = 0,

z tending to oo sectorially. Further

(4.14) z2[1 — we 0(z)]

possesses a limit as z — oo sectorially, the value being oo when 4 = 0
and otherwise 2/4 . We apply this observation taking

w= Mof; + Mofy)]2.
The sectorial limit of
(4.15) z2[1 — Mof;°0(z)]
as z— oo is positive and finite. Indeed,
(4.16) ReinvMe(Mof))e0 = (U+H)°0 = o(q)u,° 0

and so by the Lemma of Julia—Carathéodory—Wolff the coefficient 4 of
(4.13) for w = M o f; is at least as large as
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(4.17) 7(q) = inf [o(q)u° 0(z) | Rez],

Re 2>0

which is positive. Hence
(4.18) 2{1 = [Meofio0()+ Mefy°00)]/2}

possesses a sectorial limit as z — co , not exceeding 2/7(q) . By the observa-
tion made relative to (4.14), we see that

(4.19) Re [invM ° <ZM1_—:—J”—2%>J 0o 0(z) = t(q) Rez.

p4]

It follows by the boundary maximum principle for harmonic functions,
(4.19), and the boundary behavior of w, that

(4.20) Rel: inv M o <wﬁ_fz )] = o(q) u, .

A second application of the boundary maximum principle taken with the
boundary behavior of the w, shows that v = 0. Thus we are assured
that v e P .

A(w) = . We know at all events that

(4.21) Aw) = A I:Re inv M(WZH — A(H) .

Hence the kth component of A(v) agrees with that of =z, k=
1,:,%+1, vacuously when 5 = —1.

Suppose that we are concerned with a component of A(v) of the form
Rel(w;b,0) or Imi(v;b,0). We have

(4.22) Iw3b,0) = [fyb) — fHl@)] — UH ;b 0)
= (U, + H;b,0)—IH;b,0)
= [(U;;b,0).

This says that such a component of A(v) agrees with the component of
x having the same index.

There remain to be studied the components deriving from functionals
of the form (v ;b,k), k > 1. Essential use will be made of the fact that
“order of contact” is preserved by composition with univalent analytic
functions. The auxiliary map M and its inverse enter in this connection.
On introducing the local uniformizer 0 used in the definition of /(v ;b , k),
we see that

(4.23)

" [ of I of (k)
b, k) = %{meu(g Iy ;_le_@ﬂo} (0) — UH ; b, L)
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The Taylor coefficients at 0 of f,o 6 and f,° 6 agree for all indices not
exceeding k. It follows by contact considerations that

(4.24) invMo<w>o 6

and f;o60 have common Taylor coefficients at 0 for all indices not
exceeding k. It suffices to use the elementary observation that if f and
g are analytic at 0 and have common Taylor coefficients for all indices not
exceeding k£ ( = 0) and ¢ is analytic at f(0) = g(0), then ¢[g(z)] —
olf()] = O(lz**") . Hence

(4.25) Woib k) = - (fye 0)%(0) = UH 5B,
= Uy +h;b,k)—UH;b,k)
= (U ;b,k).
It now follows that A(v) = . The proof of Theorem 4.1 is thereby

completed.

The following theorem is a consequence of Theorem 4.1 and the observa-
tion of the sentence following (3.23).

Theorem 4.2. If weP satisfies Au) €D, then w may be re-
presented as the sum of at most
(4.26) 2+ 2 [nd)+1]

beB

minimal positive harmonic functions on F .

We shall see in § 5 that the bound (4.26) cannot be ameliorated for
assigned y and > [n(b)+1].

Theorem 4.1 permits us to obtain information concerning the points
of @(I') lying in a given supporting plane of A(P). We have

Theorem 4.3. Let IT denote a supporting plane of A(P) and let
g1, ", q, be the distinct points of I' (supposed n in number) such that
@(q,) €. Then @(q,), -+, D(g,) are linearly independent (over R ).
Each @(q,) is an extreme point of A(P) .

Proof. Let II be given by Il(y) = ¢ ( # 0), where [ is a linear function

on R™.If &(q,), -, ®(g,) are linearly dependent so that > t, &(g,) = 0,
where the #, are real and not all zero, then
(4.27) 0 = 1[26P4)] = (24)c.

Hence > #, = 0. From the fact that the sum of the positive ¢, plus the
sum of the negative ¢, is zero, we conclude the existence of distinct members
of P, say U, and U,, with A(U,) = A(U,) € IT. Contradiction,
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The fact that each @(g,) is an extreme point of A(P) may be seen as
follows. If @(q,) = A1—t)a, +taw,, 0 <t <1, 2,7, € A(P), then z,
and x, belong to IT and hence to D . With ij e P satisfying A(Ux]_)
=x;, j=1,2,we have (1-t) U, +tU,, = u, . Since u, is minimal,
U= U, =1, . Hence z, = z,. Consequently, &(g,) is an extreme
point of A(P) .

It is obvious from Theorem 4.3 that x € A(P) N I1, which admits a
unique representation of the form >%t, &(q,), f, =0, D1t = 1, admits
a unique representation of the form >7¢, @(g,), t, real. In principle, the
t, may be calculated in terms of x and the &(g,) with the aid of
determinants, the @(g,) being linearly independent.

5. Some applications. (a) Augmented maps. Given /A we introduce
a linear functional /;, of the kind u —[(u;b,k), where k = 0 when
beF — B and k = n(b) + 1 when beB, and we let /A, denote the
map of the space of real-valued harmonic functions on F into R"** for
which the first m components of A,(u) are the same as the respective
components of A(u), the component of index m+1 of A,(u) is Rel;(u),
and the component of index m+2 is Im/;(u) . We term A, an augmenta-
tion of A . Let x be a given point of int A(P). We associate with
the set V(x) given by

(5.1) Vi) = {lj(u): welP, Au)=2a}.

It is, of course, a nonempty compact convex subset of C . We show

Theorem 5.1. Given we P such that Aw) =a. Then A(u) is
a point of determinacy of A,(P) if and only if Iy(u) € fr V(z).

Corollary 5.2. int V(z) = 0.

Proof of Theorem 5.1. We shall establish the theorem contrapositively.
Suppose that A,(x) is not a point of determinacy of ,(P). Then
A, () €int A,(P). Then for some neighborhood N of [;(u) it is the
case that A,(P) contains all points of R”'® whose first m components
are the same as those of a and whose last two components, ¥,,.1, ¥,.2,
are such that v, ., + ty,,, € N. Hence [;(u)¢fr V(x).

Suppose now that I,(u) € fr V(z) . Then [,(u) €int V(x) . We note that
for some v € P, satisfying A(v) = « the point A,(v) is not a point of
determinacy of A,(P) since not every v eP satisfying A(v) = is
a finite sum of minimal positive harmonic functions on F . Hence there
exist distinct members of P, say wv; and wv,, satisfying A(v;) =
A(wy) = v and A,(v,) = A,(v,) . Further there exist ¢, 0 <t <1, and
w € P satisfying A(w) = «, such that

(5.2) Lw) = (1=t)ly(v,) + tl(w), k=12,
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We conclude that ,(x) is not a point of determinacy of A,(P) since
Ay(u) = A4 [(A—t)v, + tw], k= 1,2, and the functions (1—t)v, + tw
are distinct. Theorem 5.1 follows.

Proof of Corollary 5.2. If int V(x) = O, then forall weP satisfying
A(w) =, A, (u) would be a point of determinacy of 4,(P). Hence all
such % would be finite sums of minimal positive harmonic functions.
This is not the case. The corollary follows.

Remark. 1t is clear that Theorem 5.1 and Corollary 5.2 admit extension
to the situation where A is “augmented” by several 7.

(b) Garabedian’s bound for the valence of an extremal solution of a Pick—
Nevanlinna interpolation problem. As noted in § 1, P. Garabedian [5] gave
a bound for the valence of the extremal functions associated with a finite
Pick—Nevanlinna interpolation problem for a finitely connected plane
region with nondegenerate boundary components where interpolation
conditions of order zero are assigned at n distinct points and there is more
than one interpolating function. [The validity of the bound for interpolation
conditions not necessarily of zero order was noted without proof.] He showed
that the extremal interpolating functions corresponding to the frontier
points of the Wertevorrat at a point different from the =» given points
were maps of the region onto the open unit disk having a constant valence
with value not exceeding n + (y+1) = (n+1) + y . [We shall recall the
formal definitions of “Wertevorrat” and “extremal” below.] Ahlfors [1]
obtained the corresponding bound for the ”Schwarz Lemma’ situation for
a Riemann surface I' of the type considered in the present paper. Here
n = 1, there being one interpolation condition of zero order. Ahlfors’
bound is 2+ y . The author [6] has extended the bound of Garabedian to
the case of a finite Pick—Nevanlinna interpolation problem on a Riemann
surface F', the orders of the interpolation conditions being not necessarily
zero. To obtain the extended bound use was made of a variational
formula of F. Riesz [13] applied to functions in a Hardy class, the
theorem of Cauchy—Read [12], and a limiting argument. We shall now
see that the extended Garabedian bound is a straightforward consequence
of (4.26).

The finite Pick—Nevanlinna interpolation problem for the case of an
allowed Riemann surface F may be formulated as follows. Let there be
given a finite nonempty subset 4 of I, maps a—0,, a—»(a), a —p,,
aed, where 0, is a uniformizer satisfying 0,(0) = @, »(a)is a non-
negative integer, and p, is a polynomial of degree not exceeding »(a) .
The Pick—Nevanlinna interpolation problem for F with the assigned data
is to determine necessary and sufficient conditions in terms of the data for
the existence of analytic functions f on F taking values of modulus at
most one which satisfy the conditions
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(5.3) fo0,6) — py(z) = O(z"""Y), aed

and to obtain information concerning functions satisfying the imposed
conditions. If there is exactly one solution, the problem is said to be
determinate.

We assert that if the problem is determinate, then the function f in
question is either a constant of modulus one or else is a map of constant
finite valence of I' onto the open unit disk, and the value of the valence
does not exceed
(5.4) 2+ 2 @) +1].

aed

To see this, we proceed as follows. We put aside the trivial case where f
is a constant of modulus one and note that Z%A [v(@) + 1] >1 and
[p,(0)] <1, aed. Wefix a, €4 and introduce a Mobius transformation
f mapping {[z] <1} onto {Rez> 0} and satisfying f[p, (0)] =1.
With «, taking over the role of a of the earlier sections and 4 taking
over the role of B, we take A as in §2, the »(a) now taking over the
role of the n(b). Then A(Repeof) is a point of determinacy of A(P)
whose first y+1 components are zero. For if w e P satisfies A(u) =
A(Re pof), then w is the real part of an analytic function g, g(a,) = 1,
such that invfog = f by the determinacy of the stated problem. Hence
u=Refof,ie, ARepef) is a point of determinacy of A(P). Con-
sequently, Re fof is a finite sum of minimal positive harmonic functions
on F, where the number of summands may be taken as no greater than
the bound given by (5.4) as we see with the aid of Theorem 4.2. It follows
that fof is a map of F onto { Rez > 0} of constant valence whose
value does not exceed the bound of (5.4). The function f is a map of F
onto { |z] << 1} of constant valence whose value is the same as that for
fof, and hence not greater than the bound of (5.4) as asserted.

The extended Garabedian bound pertains to the situation where more
than one admitted interpolating function exists. We suppose that this is
the case, we fix b e I' — A, and let W(b) denote the set of values f(b),
where f is an admitted interpolating function. The set W(b) is termed
the Wertevorrat at b for the given problem. It is compact and convex.
An admitted interpolating function f is termed extremal relative to b
(in the sense of R. Nevanlinna [10]) provided that f(b) € fr W(b) . It was
shown by Garabedian [5] for the plane case described above and by the
author [6] for the case of an allowed Riemann surface I’ that int W(b) # O
and that the augmented Pick—Nevanlinna problem which requires that f
satisfy in addition to the conditions of the stated problem the requirement
that f(b) = ¢ where ¢ is a given point of fr W (b) is determinate. We shall
see that these facts may be concluded by the methods of the present paper.
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It will then follow that the Garabedian bound is a consequence of the bound
(5.4) when one notes that augmentation by the condition at & increases
the sum > [v(a) + 1] by 1.

We introduce f and A of the second preceding paragraph in the
present context and, in addition, the augmentation 4; of A obtained by
adjoining Re/l(w;b,0) and Im/l(w;b,0). The common element z =
ARe fof), where f is a solution of the original problem (5.3) is not a
point of determinacy of A(P). By Corollary 5.2, int V(z) # O . Since
W) = [ V(x) + 1], we have int W(b) = @ . By Theorem 5.1 the con-
dition f(b) = ¢ implies that A,(Ref°f) is a point of determinacy of
A,(P) . Hence we conclude that the augmented Pick—Nevanlinna problem
is determinate. The bound

(5.5) 2+ |1+ S + 1)

aed
for the value of the valence of an extremal is now apparent. This is the
extended Garabedian bound.

A remark on the sharpness of the bounds of (4.26) and (5.4). We shall now
see that the bound (5.4) cannot be improved for given 4 and
= Z [v(@) + 1] when » = 2. Determinacy in the case where » = 1
occurs only for constant functions and so this case need not be considered
further. The asserted sharpness of (5.4) implies the sharpness of (4.26) for
given yx and > [n(b) + 1] when > [n(b) + 1] = 2. The case where
> [n(b) + 1] = 1 will be treated separately.

To establish the asserted sharpness of (5.4) we consider a plane region
Q of connectivity y+ 2, each boundary component of which is a regular
analytic closed Jordan curve. We fix a, b(# a) € @ and introduce
a point ¢ € 2 distinet from a and b which will be allowed to tend to
fr 2. We consider two extremal problems for functions analytic on @ and
taking values of modulus less than one. I. We impose the condition that
f have a zero at a and seek f maximizing |f(b)|. (Extremal problem of
Ahlfors [1].) Let f; denote the solution normalized to satisfy f,(b) > 0.
It is classical ([1], [5]) that f; has constant valence on the open unit disk,
the value being 2+ y (as is seen readily from (5.5) and the fact that an
analytic function mapping £ onto the open unit disk of constant valence
is such that the value of the valence is at least 2+ y ). The case » = 2 is
thus cared for and we put it aside. II. We impose the condition that f
have a zero at a and a zero of at least multiplicity »—2 at ¢ and seek f
maximizing [f(b)| . We let f, denote the extremal normalized to satisfy
fo(0) > 0.

Nowas ¢ tends to fr @, the corresponding f, tendsto f;, uniformly on
compact subsets of £ . Granting this assertion for the moment, we see
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that f, has 24y zeros counted by multiplicity near the zeros of f, (by
Hurwitz’s theorem) and at least »—2 more at ¢ counted by multiplicity
for ¢ € 2— K where K is a suitably chosen compact subset of £ . Hence
using (5.4) we see that for such ¢ the valence of f has the constant value
on the open unit disk y+v», which is the Garabedian bound. We see that
the bound (5.4) is sharp for assigned » ( = 2) and .

To treat the question of the convergence of f, to f, we proceed as
follows. We note that there exists a function ¢, analytic on @, taking
values of modulus less than one, having a zero of multiplicity »—2 at ¢
and no others, and such that ¢, (b) > 0 and ¢, tends to 1 uniformly on
compact subsets of 2. We take ¢, specified by the conditions ¢ (b) > 0
and

.
(5.6) ~log lp] = (-2 2 (b oy + 1))

where G, is Green’s function for £ with pole at ¢, the w, are the
harmonic measures of y+1 of the boundary components and the £, are
fixed by the requirement that the periods of the conjugate of the right side
of (5.6) are zero along yx+1 fixed closed curves in 2 whose homology
classes form a basis for the 1-dimensional homology group of £ . The
point ¢ is taken as not lying on these curves. As ¢ tends to fr 2, the
, tend to zero and we conclude that ¢, tends to 1, uniformly on compact
subsets of 2. Now

(5.7) f10) (b)) = fold) = f1(d) .

Hence f, converges to f, as asserted.

There remains to be considered the sharpness of (4.26) when
> [n(b) + 1] = 1. The case where y = —1 is to be put aside, the question
of determinacy being meaningless. When y = 0, we refer again to 2 and
a € Q as introduced. Here it is convenient to take the y, as y+1 com-
ponents of the level set { @, = 2} where A is small and positive. We recall
that the origin of R*'! is an inner point of A(P) taken relative to the
present situation. We consider the two points on fr A(P) whose first
y components are zero. The preimage with respect to A |P of at
least onc of these points is the sum of y+1 minimal positive harmonic
functions on @2 which have their singularities on distinct components of
fr @. It is to be observed that the preimages with respect to A | P of
both of the points of fr A(P) in question have singularities on the com-
ponents of fr @ close to y,, ---,,. (Otherwise the first y periods would
not all be zero.) If neither preimage had a singularity on the component of
fr @ near y,,,, the (y+1)st components of the points of fr A(P) under
consideration would have the same sign. This is not possible since the origin
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of R**! is an inner point of A(P). We conclude that the bound y+1
prevailing in this case cannot be improved. The obvious conventions are
to be understood when y = 0.

(¢) An extremal problem of S. Fisher. The following problem has been
treated by S. Fisher [4]:

Let a and b be distinct points of an admitted Riemann surface I".
Let B denote the family of functions f, analytic on /', taking values of
modulus less than one, and satisfying both f(a) = 0 and f(p) # 0, p # a.
Determine the nature of the f maximizing |[f(b)] .

Essentially, the result of Fisher is: An extremal function f for this
problem has the property that

(5.8) —log |f| — n(a;f) G,

may be represented as the sum of at most y+1 minimal positive harmonic
functions on F, n(a;f) being the multiplicity of f at a . I'urther the
situation where there is more than one normalized extremal function does
indeed occur [4], p. 1188, normalization being understood in the sense that
the function in question takes a positive value at b .

We shall now see that the set of normalized extremals is finite. The case
where F is simply-connected is immediate and will be put aside. We shall
approach the question by introducing a countable family of auxiliary
extremal problems defined on appropriate subfamilies of B, which are such
that each has a unique normalized solution and that a normalized extremal
of the problem of Fisher is also an extremal for one of these problems. It
will be seen that only a finite number of the normalized extremals for the
auxiliary problems may compete as candidates to be a normalized extremal
of the problem of Tisher. The asserted finiteness property follows.

We now turn to the details. For convenience we let b take over the
role of @ of §2 and suppose to put aside unessential questions that the
curves y,, ***, 7, do not contain . The functions —log |f|, feB,
are characterized by the fact that they admit a representation of the form

(5.9) nG, +u,

where n is a positive integer, » is a nonnegative harmonic function on
I, and onG,+u;y)/(2x) is an integer, j =1, -, y+1. Given
(n,vy,*,v,;) where n is a positive integer and the »; are integers,
we introduce the family H(n,»,, --*,v,,;) of non-negative harmonic
functions w on F satisfying

(5.10) wmnG,+u;y,) = 2ay;, j=1,,x+1.
It is clear that fe B has multiplicity n at a and satisfies

(5.11) o(=log |fl;v) = 27y, J=1,,x+1,
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if and only if —log |f| admits a representation of the form (5.9) with

weHm,v,, " ,v,.,). Given (n,v;, ,v,,), f, maximizes |[f(b)]
in the family of f e B which have multiplicity n at @ and satisfy (5.11)
if and only if the corresponding w, = —log |fy] — n (, minimizes wu(b)
in the family H(n,vy, - ,v,,4).

There are two cases to consider: (1) w(nG,;y) =2mv;, j=
1,+, z+1; (2) the assumption of (1) is not fulfilled.

In case (1), trivially, the minimizing « is the constant 0. This case is
indeed realizable as one sees on considering a two-sheeted covering of the
open unit disk with simple ramification points over 0 and some other
point of the open unit disk and no others, the point @ being the ramification
point over zero and the point b being the other.

We turn to case (2). Here a minimizing wu is positive. We introduce
A formed from the period system o( ;y;), j=1,",x+1, as in
§ 2 and show that w e H(n,»,, -+, %,,,) minimizes the value at b if and
only if Afuju(d)] € fr A(P) . Indeed, let w be the unique member of P
such that A(w) e fr A(P) and Afu/u(b)] is a positive multiple o (neces-
sarily < 1) of A(w). Then = minimizes the value at 0 if and only if
o = 1. To see this we proceed contrapositively. If p << 1, then A(u) =
Alo w(b) w] and so (D) is not the least value at & of the members of

Hn,vy, o ,v,,,). If weHn,vy, ,v,,) does not minimize the
value at b, let veH(n,v,, -+ ,v,,,) satisfy ov(b) < u(b). From
(5.12) A [L] = 402 iy,

v (b) v(b)

we conclude that w(b)p/v(b) <1 and hence that o < 1.

It now follows that in case (2) there is a unique minimizing » and that
it admits a representation as the sum of at most y+1 minimal positive
harmonic functions on F . To the auxiliary extremal problem associated
with an assigned multiplicity at ¢ and the period conditions (5.11) there
therefore corresponds a unique normalized extremal.

Since
(5.13) —log |f(0)] = n(a;f)G,(b), [feB,

it is clear that the extremals of the auxiliary problems enter into con-
sideration only for a finite set of 7. For given = only a finite set of
(v1, ***,v,4,) need be considered, for the minimum value at b of members
of Hn,vy, +,v,,,) is at least as large as

(5.14) 27 (>+2)* - 4] B,

where A doesnot depend on (v;, -+, ,,;) and B is the maximum of the
euclidean lengths of the vectors « e fr A(P).
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We conclude that there are only a finite number of normalized extremals
in B for the original problem.

In the cited paper of S. Fisher analogous problems are considered in
which several zeros or poles are allowed. On considering the decomposition
of the logarithm of the modulus with the aid of Green’s functions, we find
that the above developments are applicable.

6. Support functions. We recall that the support function M of
anonempty compact convex set K < R” is defined as the function with
domain R™ given by
(6.1) My) = max <z ,y>,

xeK
<, > denoting the inner product for R™. The function M is sub-
additive and homogeneous of order one relative to nonnegative scalar
factors. It is a classical consequence of this fact that M is continuous [2].

When K = A(P), M is determined by @ since the points of A(P)

are given barycentrically in terms of @ . In fact,
(6.2) M(y) = max <D(q),y> .
gel’
Since the origin O of R™ is an inner point of A(P), M(y) > 0 for y #£ 0.
From standard results concerning convex sets [2] we have

(6.3) AP) = N {z: <w,y> < M(y)}.
yeR™
On noting that a supporting plane of A(P) passes through each point of
fr A(P) we see that o (€ R™) belongs to A(P) if and only if
(6.4) u(@) = min [M(y) — <x,y>] = 0,
<yy>=1
and that « is a point of determinacy of A(P) if and only if w(z) = 0.

We now suppose that m > y+1 and let n = m — (x+1) and let =
denote the projection map of R”™ onto R”" defined by

(65) .7'[(3?1 » T xm) = (xx+2 » T xm) .
Let P, denote the set of weP satisfying w(u;y,) =0, k=
1, -+, x+1. The set n[A(P,)] is compact and convex. We seek to

determine its support function in terms of M and hence ultimately in
terms of @ . The significance of =[A(P,)] lies in the fact that the points
of a[A(P,)] correspond to the data of Pick—Nevanlinna interpolation
problems with the harmless modification that one considers analytic
functions with positive real part subject to the normalization that they
take the value 1 at a rather than analytic functions taking values of
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modulus less than one (the trivial case involving constants of modulus one
being set aside). By the extension of Theorem 5.1 indicated in the remark
following Corollary 5.2 we see that x € A(P,) is a point of determinacy
of A(P,) if and only if n(x) € fr z[A(Py)]. [The obvious meaning of
determinacy that there is exactly one element of u € P, such that A(u) = z
is understood.]

To obtain the support function of n[A(P,)] in terms of M we proceed
as follows. Given y e R", we let I(y) denote the unique preimage of y
with respect to # whose first y+1 coordinates are zero and introduce

(6.6) My(y) = min M[l(y) + w],

where w € R” and its last » coordinates are zero. It is readily verified
that the minimum in question is attained and that M, is subadditive and
homogeneous (of order 1) with respect to nonnegative scalar factors. We
shall show

Theorem 6.1. M, s the support function of =[A(P,)] .

Proof. We put aside the obvious case where y = —1. We observe
that @ e a[A(P,)] if and only if
(6.7) <z,y>, = M[(y) + w]

for all allowed y and w, < , >, signifying the standard inner product
of R". It follows that x €n[A(P,)] if and only if

(6.8) <w,y>, = Myy), yeR".
Further « e fra[A(P,)] if and only if
(6.9) min [Myy) — <x,y>,] = 0.

<Py =1

To establish this assertion we proceed as follows. It is to be noted that M
vanishes only at the origin O of R”™. When z € fr a[A(P,)] , equality in
(6.7) holds for some y and w with I(y) + w # 0, as follows from the
indicated extension of Theorem 5.1. If I(y) = 0, then Mw) =
<x,y>, =0 and so w = 0 and consequently /(y) + w = 0. This is
not possible. We conclude (6.9). If (6.9) holds, then at least x e a[A(P,)]
and equality holds in (6.7) for some y not the origin of R" and some
allowed w . Hence I(x) € fr A(P). A second application of the indicated
extension of Theorem 5.1 shows that « € fr a[A(P,)] .

We now verify that M, is the support function of =[A(P,)]. Because
of the noted subadditivity and homogeneity of M, by a classical result
of the theory of convex sets [2, p. 26], [11], M, is the support function of
a nonempty compact convex set. By the representation of a compact
convex set in terms of its support function, M, is the support function of
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(6.10) N {<z,y> < M)}
yeR"
It follows on reference to (6.8) that M, is the support function of #[A(P,)] .
We remark that M, vanishes only at the origin of R”, as we see on
noting that the origin of R* is an inner point of z#[A(P)] .

7. The Schwarz Lemma extremal problem. The Schwarz Lemma
extremal problem for a Riemann surface F may be solved in terms of @
and M as we shall now see. We recall that one is concerned with given
points @, b(# a) €F andone seeks to maximize |f(b)| in the family
of functions f analytic on F , taking values of modulus less than one, and
satisfying f(a) = 0. The set of values f(b) is a closed circular disk with
center 0 having a positive radius less than one. With the aid of the Mobius
transformation z - (1+2)/(1—2) the problem reduces to maximizing
Reg(b) in the family of functions ¢ analytic on F , having positive real
parts and normalized to take the value 1 at a. With A(x) now having
as components the w(u;y,), Rel(w;b,0) and Im/l(u;b,0) and with
Rel(u;b,0) the (y+2)nd component of A(u) we see that the maximum
Reg(b) is 1 + My(1,0). It follows that the maximum [f(b)| is

(7.1) My(1,0) ] [My(1,0) + 2].

The extremal g may be determined as follows. Let y = (y1, ***, ¥,41,1,0)
be such that M(y) = My1,0) and let E denote the set of ¢ el
satisfying <®(q),y> = M(y). Then the @(q), q ek, are linearly
independent. The point (0, --+, 0, My(1,0),0) admits a unique bary-
centric representation of the form > .. t(q) @(q), t(q) =20, > tg) = 1.
The t(q) are determined algebraically on the basis of these facts. For the
extremal g wehave Reg = > #(q)u,. The extremal g and hence the
extremal f normalized to take a positive value at b are thereby determined.

8. The Painlevé problem for Riemann surfaces. The support function
M, leads to a theoretical solution of the Painlevé problem for Riemann
surfaces. A solution for the case of plane regions was given by
P. R. Garabedian [5]. The problem of Painlevé, we recall, is to obtain
a necessary and sufficient condition for a given Riemann surface to admit
non-constant bounded analytic functions.

We suppose that we have at hand a given noncompact Riemann surface
2 and that (£,)7 is an exhaustion of 2 satisfying the following con-

ditions: 2, is relatively compact, .(—2,, c®,,.,, fro =f(2-02) and
consists of a finite number of disjoint regular analytic Jordan curves,
n=1,2,-+. We fix ae 2, and a local uniformizer 6, 6(0) =a.

Given a positive integer » we introduce A,, on the space of harmonic
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functionson 2, asa map A relative to 2, formed in terms of the periods
of the conjugates on curves p,, -+, yy,+1, as above and the real and
imaginary parts of

2
(8.1) S 0)E0), k=1,
Here y, denotes the Euler characteristic of 2, . It is supposed that the
components of A, (u) are so arranged that the last component is

(8.2) _?TIm (u o 6)7-(0) .
v!

Let M, of (6.6) be taken relative to 4,, and let p(n,») denote the value
that M, takes at the coordinate vector of R® whose last component is
1 and others are 0. It is to be observed that n — p(n,) is decreasing,
y=1,2,--.

We shall show that the double sequence (p(n,»)) yields a necessary
and sufficient condition of the desired kind. In fact, we have

Theorem 8.1. 4 necessary and sufficient condition for @ to admit
nonconstant bounded analytic functions is that

(8.3) sup [lim p(n, v)] > 0.

Proof. Suppose that £ admits a nonconstant bounded analytic func-
tion. We are then assured that there exists a function b analytic on 2,
nonconstant, taking values of modulus less than one and satisfying
b(@) = 0. For some ne{l,—-1,i, -4}, and », the function f =
1+ b, which is analytic on 2 and nonconstant, and has positive real
part, satisfies

(8.4) Im (fo 0)"(0) > 0.
For this » and all positive integers n , the inequality
(8.5) pn,v) = Im (fo 6)"(0) |

holds since Re (f | 2,) belongsto P, relative to £, . The condition (8.3)
follows.

Suppose now that the condition (8.3) holds. For some » we have
lim, . p(n,v) > 0. It follows that there exists a sequence (f,), where
S, is analytic and has positive real part on 2,, f,(@) = 1, and
(8.6) inf Im (f, o 6)*(0) > 0.

It suffices to take f, as an extremal function in the class of functions f
analytic on £, , having positive real part and satisfying f(a) = 1, which
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maximizes Im (fe 6)”(0). On taking a subsequence of (f,) which con-
verges uniformly on compact subsets of 2, we see that its limit is a non-
constant analytic function on @ with positive real part. We conclude that
2 admits nonconstant bounded analytic functions.

The result that we have obtained may be restated in terms of the clas-
sification theory of Riemann surfaces. We recall that O,, denotes the
class of Riemann surfaces which do not admit nonconstant bounded analytic
functions. Theorem 8.1 may be recast to read: 2 €0,, if and only if
lim,  pnr,»)=0, »=1,2,--.

One matter calls for comment. Given a positive integer », we shall
construct with the aid of a method due to P.J. Myrberg [8] an 2¢ O0,,
which contains a point a such that every bounded analytic function f
on £ has the property that (feo 6)”(0) =0, » =1, ,,. Here we
have lim,  pn,») =0, »=1, - ,v, . Hence with Z a nonempty,
finite set of positive integers the condition

(8.7) max I:lirn pn , v)] > 0
veE n— 0
is not necessary and sufficient for 2¢0,, .

To construct an @ of the desired kind, it suffices to consider the
(vo+ 1) -sheeted covering of the open disk defined by z-—>20"1 and to
introduce a sequence of slits on two ’’successive sheets” lying over the
interval (0, 1) such that their endpoints tend to one and satisfy the
Blaschke divergence condition. On joining the two successive sheets across
the slits in the standard manner (the upper edge of one sheet being joined
to the lower edge of the other) we obtain a (v,+ 1) -sheeted covering of the
open unit disk which has the property that a bounded analytic function f
on it takes the same value at all points of the surface lying over a given
point of the open unit disk. It then follows on taking a as the unique
preimage of 0 with respect to the modified covering map that
(fe0)0) =0, v=1,,5.

9. Some allied problems. In this section we shall indicate how the
methods of the present paper may be applied to the study of body problems
for certain other classes of harmonic functions, for which, in fact, the
results turn out to have a very simple character. We shall be concerned
with the harmonic Hardy classes kb, on F, 1 <p < + 0. To be precise,
by the class h, we understand the class of real-valued harmonic functions
u on I' satisfying the condition that |u|? possess a harmonic majorant
when 1 << p << + oo and the condition that » be bounded when p = + co.
In the former case we introduce the norm
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(9.1) el l, = <if || 6Ga>1/1’,

where u* denotes the Fatou boundary function of . In the latter case
we define ||u||, to be sup |u|. [It is to be observed that we are putting
aside the case where p = 1 which does not fit into the developments
of this section because of the breakdown of convenient properties. This
case can be treated in terms of differences of nonnegative harmonic func-
tions and may, in fact, be referred to the earlier developments of the present
paper.]

We propose to characterize the image of the unit ball B, of h, with
respect to a map A, obtained from A by augmentation, the component

(9.2) ul@) = E%/u* 0a,

being added. We let ¥ denote the corresponding augmentation of @ . It is

obtained merely by the adjunction of a component equal to one. The role

of A, forinterpolation problems is apparent. It is easy to see that A,(B,)

is a compact convex set. We shall determine the support function of A,(5,)

interms of ¥ and thereby give a characterization of A,(B,) in terms of ¥ .
We start with the observation that

9.3) ) = Lfl.rfu* 5G,, weh,.
27
I

Hence for y € R™*! we have

(9.4) <A(u),y> = ;—/ <V ,y> u* oG,.
7
I

[Here <¥,y> denotes the function ¢ — <¥(q),y>, q€l'.] We first
consider the case where p = + 0.
In this case using (9.4) we conclude that

(9.5) <Ayu),y> < 2if|<aff,y>iaGa,
Tt
I

and that when y is not the zero vector, equality holds if and only if
u*(q) = sg <¥(q),y> save possibly at the zeros of <¥ ,y> . It is to be
noted that the component functions of ¥ are linearly independent over
R . It follows that s, , the support function of A,(B,), is given by

(9.6) soy) = f <¥,y>| 86, .
27
I
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From the condition for equality in (9.5), it follows that there is a unique
point in the supporting plane < ,y> = s_(y) belonging to A,(B,) .
Further, as follows from, say, the linear independence of the components of
¥, the origin of R™*! is an interior point of A,(B.) .

It is easily verified that the points of determinacy of A,(B.) (with
respect to B ) are exactly the frontier points of A,(B_). To see this we
proceed as follows. We recall that there is a supporting plane of A,(B_)
passing through a given point of fr A,(B,). Let x efr A,(B,) and let
y # 0 besuch that <z ,y> = s_(y), O denoting the origin of R”*!,
The facts concerning the case of equality in (9.5) show that x is a point
of determinacy. We note that O is not a point of determinacy. Indeed, it
suffices to introduce harmonic measures of m+2 disjoint subarcs of I’
and to note that their images with respect to A, are linearly dependent
over R tobe assured that O is not a point of determinacy. It follows that
a point of int A,(B,) is not determinate. Indeed, such a point has a
preimage u with respect to A, satisfying sup |u| < 1, so that with v
a preimage of O with respect to A; which is small but not the constant 0
we have u+v € B, and 4;(u+v) = A,(u) . Hence a point of determinacy
is a point of fr A,(B,) . The identity of fr A,(B,) and the set of points
of determinacy of A,(B,) with respect to B, follows.

For y not the origin and with u, given by

(9.7) u,(t) = éif sg <¥,y> 906G, tel,
7
r

we see that () is the unique point of fr A,(B,) in the supporting
plane { <x,y> = s,(y)}. It is now easily concluded that y-— Aq(u,)
maps { |ly|| = 1} onto fr A,(B,).

There remains to be considered the case where 1 < p << +co. Here
the Holder inequality and the standard facts concerning the situation of
equality play an essential role. From (9.4) we obtain

‘ (p-1)/p
(98) <A1(u) H .7/> é ,:E“"f |<T ’y> ,P/(P_—U 6Ga:l ? %€ Bﬁ ’
44
r

and the fact when y is not the zero vector, equality occurs in (9.8) if and
only if

(9.9)  w*q) = cly) |<WP(q),y>"""Vsg <¥(q),y>, qel,

where c¢(y) is the positive number yielding a function of p-norm 1, namely,
[|<¥,y>]]7"%"Y . The details required to complete the discussion of the
case at hand are straightforward, We find that the support function, s, ,
for A,(B,) is given by
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i - - (p=1ip
(910) Sp(y) = é_;t ]< ’ ?/> I 6Ga ’
I

the determinacy set relative to B, is fr A,(B,), and that with y given by

(9.11)  w,(t) = _zf_fc(y) <@ ,y>VtVsg <V ,y> 06G,, telk,
T
r

y— Ay(uw,) maps {|ly[]| =1} univalently onto fr 4,(B,). Only the
question of univalence calls for comment. If A,(u,) = A4(u,) where

llyl]l = |lz]| = 1, then u, = u,. Hence <¥,y> =c <¥,z> where ¢
is a positive number. By the linear independence of the components of ¥,
y =cz. Since ||y|| = ||z]| =1, we conclude that ¢ = 1. The asserted

univalence follows.

Univalence does not hold for the corresponding map in the %, theory.
To see this it suffices to consider the classical Carathéodory setting: F =
{lz] <1}, Uu;0,k), E=1,--,n (>1), u(0), and to note that
le—112", |zl =1, m =1, ,n,yield <¥,y> forwhich sg <¥,y>
are equal but the y are not proportional.

The support functions which have been determined in this section may
be applied to study “Painlevé” problems relative to the classes &,
(l1<p<+ow) and H, (1 <p< +00) on unrestricted noncompact
Riemann surfaces. We plan to return to these questions and allied extremal
problems in a subsequent paper.

It is to be remarked that Nehari [9] has studied extremal problems for
bounded analytic functions on multiply-connected plane regions of finite
connectivity by referring the question to the study of harmonic functions
taking values in [0, 1]. The relationship of the work of Nehari to the
indicated study of A,(B,) is apparent. His results which are based on
variational methods have a qualitative character.

-
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