ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

599

DUAL C*-ALGEBRAS, WEAKLY SEMI-COMPLETELY CONTINUOUS ELEMENTS, AND THE EXTREME RAYS OF THE POSITIVE CONE

 $\mathbf{B}\mathbf{Y}$

KARI YLINEN

HELSINKI 1975 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1975.599

Copyright © 1975 by Academia Scientiarum Fennica ISSN 0066-1953 ISBN 951-41-0216-9

Communicated 19 September 1974

KESKUSKIRJAPAINO HELSINKI 1975

.

1. Introduction

B. J. Tomiuk and P. K. Wong have defined in [14, p. 654] an element u of a Banach algebra A to be weakly semi-completely continuous (w.s.c.c.) if the map $x \mapsto uxu$ is a weakly compact operator [4, p. 482] on A. One of their results [14, Theorem 5.2] states that a C^* -algebra A is dual (cf. e.g. [3, p. 99] if and only if every element of A is w.s.c.c. In this paper we extend this theorem in two directions. In section 2 we show that A is already dual if for every positive $u \in A$ the image of the unit ball of A is relatively weakly (i.e. $\sigma(A, A^*)$) compact under some mapping $x \mapsto F_u(x)$ where $F_u(x)$ is a finite product of positive powers of u and x (its form depending on u). On the other hand, it is known that a C^* -algebra is dual if and only if its every element is *compact* [1, p. 17]. (An element u of a Banach algebra A is called compact, if the map $x \mapsto uxu$ is a compact operator on A.) In section 3 we prove that even for a single element of C^* -algebra compactness and weak semi-complete continuity are а equivalent. Combined with Theorem 3.1 in [18] this result shows that, for a C^* -algebra A and $u \in A$, the weak compactness of the two-sided multiplication operator $x \mapsto uxu$ already implies the weak compactness of the operators $x \mapsto ux$ and $x \mapsto xu$. This is in striking contrast with the corresponding situation for compact instead of weakly compact multiplication operators. Indeed, it follows from Theorem 3 in [15] that if E is any Banach space and L(E) the Banach algebra of all bounded linear operators on E, then the map $X \mapsto TXT$ is a compact operator on L(E)for every compact operator $T \in L(E)$, but neither $X \mapsto TX$ nor $X \mapsto XT$ is a compact operator on L(E) for any nonzero $T \in L(E)$, unless E is finite-dimensional.

In section 4 (Corollary 3) we give one further characterization of dual C^* -algebras. A C^* -algebra turns out to be dual if and only if its positive cone is the closed convex hull of the union of its extreme rays. This criterion is obtained as a consequence of a characterization of the extreme rays of the positive cone of a C^* -algebra (Theorem 4.1).

2. Monomial actions and dual C^* -algebras

Definition. Let A be an algebra and $u \in A$. The mapping $F_u: A \to A$ is called a *monomial action* of u on A, if there is a finite sequence d_1, \ldots, d_p

where each d_j is 1 or -1 (both 1 and -1 occurring at least once), such that

$$F_u(x) = \prod_{j=1}^p 2^{-1}[(u+x) + d_j(u-x)], \ x \in A.$$

We now give a generalization and alternative proof of Theorem 5.2 in [14].

Theorem 2.1. The C*-algebra A is dual if and only if for every positive $u \in A$ there is some monomial action of u on A which maps the unit ball of A into a weakly compact set.

Proof. If A is dual, then the operator $x \mapsto ux$ is weakly compact for all $u \in A$ (see [9, p. 21], [3, p. 99]). Let us suppose, conversely, that the monomial action condition is satisfied. Let B be an arbitrary maximal commutative *-subalgebra of A. Let $u \in B$ be positive and $x \mapsto F_u(x)$ a monomial action of u on B such that F_{μ} maps the unit ball S of B into a $\sigma(B, B^*)$ -compact subset of B. (Observe that B is $\sigma(A, A^*)$ -closed and the relative $\sigma(A, A^*)$ -topology on B is the same as $\sigma(B, B^*)$.) By commutativity $F_u(x) = u^m x^n$, $x \in B$, for some positive integers m and Denote $S_+ = \{y \in B | y \ge 0, \|y\| \le 1\}$. By spectral theory $S_+ =$ n. $\{y^n | y \in S_+\}$, and so $u^m S_+$ is relatively $\sigma(B, B^*)$ -compact. Since the operator $x \mapsto u^m x$ maps S into $u^m (S_+ - S_+ + i(S_+ - S_+))$, u^m is a weakly completely continuous (w.c.c.) element of B in the sense of [8] and [18], and so is $u = (u^m)^{1/m}$, which is a norm limit of polynomials in u^m having no constant term. (The w.c.c. elements of B form a closed ideal.) Thus every element of B is w.c.c. since its every positive element is w.c.c. and $B = B_+ - B_+ + i(B_+ - B_+)$, where $B_+ = \{x \in B | x \ge 0\}$. By Lemma 5 in [9, p. 20] the maximal ideal space of every maximal commutative \ast -subalgebra of A is discrete, and so A is dual by [10, Theorem 1].

Corollary. Let $x \circ y = 2^{-1}(xy + yx)$ denote the Jordan product in the C*-algebra A. A is dual if and only if the map $x \mapsto u \circ x$ is a weakly compact operator on A for every $u \in A$.

Proof. If A is dual, the operator $x \mapsto u \circ x$ is weakly compact, because the operators $x \mapsto ux$ and $x \mapsto xu$ are so (see [9, p. 21], [3, p. 99]). The converse follows from the above theorem (or [14, Theorem 5.2]) and the well-known identity

$$uxu = 2(u \circ (u \circ x)) - u^2 \circ x .$$

3. A characterization of weakly semi-completely continuous elements

If A is a Banach algebra with identity and $x \in A$, we let $Sp_A x$ denote the spectrum of x. For an arbitrary C*-algebra A and $x \in A$,

 $Sp'_{A}x$ will stand for $Sp_{A_{1}}x$, where A_{1} is the C*-algebra obtained by adjoining an identity to A.

Lemma 3.1. If u is a self-adjoint w.s.c.c. element of the C*-algebra A, then $Sp'_{A}u$ consists of a countable number of points, which can accumulate only in the origin.

Proof. Let A_u be the sub- C^* -algebra of A generated by u. Since A_u is commutative, the map $x \mapsto u^2 x$ is a weakly compact operator on A_u . (Observe that A_u is $\sigma(A, A^*)$ -closed and the relative $\sigma(A, A^*)$ -topology on A_u agrees with $\sigma(A_u, A_u^*)$.) By theorem 3.1 in [18] u^2 is a compact element of A_u , so that by Theorems 1.4 and 1.6 in [16] $Sp'_{A_u}u^2$ is countable and can accumulate only in the origin. Theorem 1.6.10 in [11, p. 32] shows that $Sp'_{A_u}u$ has the same properties, and so has Sp'_Au , because $Sp'_Au = Sp'_{A_u}u$ [3, Proposition 1.3.10].

The next lemma is due to Ogasawara [8, p. 361]. The proof of Proposition 2 in [12, p. 661] contains a different method. We sketch still another proof based on a characterization of semi-simple finite-dimensional Banach algebras due to I. Kaplansky.

Lemms 3.2. Every reflexive C*-algebra is finite-dimensional.

Proof. Let A be a reflexive C^* -algebra. Then A has an identity 1 by the theorems of Alaoglu-Bourbaki and Krein-Milman, and Proposition 1.6.1 in [13]. Alternatively, apply [3, Cor. 12.1.3, p. 236]. For any $u \in A$, let A_u denote the closed subalgebra of A generated by u and 1. Choose an arbitrary $x \in A$ and write x = a + ib with a and b self-adjoint. Then A_a is isometrically isomorphic to C(X) for some compact Hausdorff space X. Since C(X) is reflexive [4, p. 67], the characteristic function of every singleton is continuous, and so X is finite. Similarly, A_b is finitedimensional. It follows that A_x is the linear span of a finite set $\{1, a, b\} \cup \{a^{j}b^k | 1 \leq j \leq m, 1 \leq k \leq n\}$ so that $Sp_Ax \subset Sp_{A_x}x$ is finite. An application of Lemma 7 in [7, p. 376] completes the proof.

We are now in a position to prove the main result of this section.

Theorem 3.1. Let A be a C*-algebra and $u \in A$. The operator $x \mapsto uxu$ on A is compact if and only if it is weakly compact.

Proof. The weakly compact operators on A form a two-sided ideal of L(A) [4, p. 484]. It follows easily that y^* , xy and yx are w.s.c.c. if $y \in A$ is w.s.c.c. and $x \in A$. Assume that $u \in A$ is w.s.c.c. Then u^*u is a selfadjoint w.s.c.c. element of A. If A is realized as a sub- C^* -algebra of L(H) for a Hilbert space H, then $Sp'_Au^*u = Sp'_{L(H)}u^*u$ [3, p. 8], so that the spectrum of u^*u as an operator on H is by Lemma 3.1 countable and can accumulate only in the origin, the nonzero part in that spectrum being the same as in $Sp'_{L(H)}u^*u$. Therefore the method used in the proof of Theorem 3.8 in [16] yields a representation $u^*u = \sum \lambda_a e_a$, where each e_n is a w.s.c.c. projection, $\lambda_n > 0$, and the series converges in norm. Since the closed unit ball of e_nAe_n is $\sigma(A, A^*)$ -compact and thus $\sigma(e_nAe_n, (e_nAe_n)^*)$ -compact, the C*-algebra e_nAe_n is reflexive [4, p. 425], and therefore finite-dimensional by Lemma 3.2. It follows from Theorem 3.10 in [16] that $|u| = (u^*u)^{1/2} = \sum \lambda_n^{1/2} e_n$ is a compact element of A, and so is $|u^*| = (uu^*)^{1/2}$ by a similar argument. Since the map $x \mapsto |u| |x| |u^*|$ is a compact operator on A by Theorem 3.9 in [16], so is the map $x \mapsto uxu = s|u| |x| |u^*| t^*$, where u = s|u| and $u^* = t|u^*|$ are the polar decompositions of u and u^* . The »only if» part being obvious, the theorem is proved.

Combined with the theory of the compact elements of C^* -algebras the above theorem yields many corollaries. We state explicitly the analogue of Corollary 2 in [18], section 3.

Corollary. Let H be a Hilbert space and A an irreducible sub-C*-algebra of L(H). Then $T \in A$ is a compact operator on H if and only if the map $X \mapsto TXT$ is a weakly compact operator on A.

Proof. Since the compactness of the operator $X \mapsto TXT$ on A is equivalent to the compactness of T (see [15, Theorem 3] and [16, Corollary 2, p. 15]), the corollary is a consequence of Theorem 3.1.

4. The extreme rays of the positive cone

There are several equivalent definitions of an extreme ray of a convex cone in a real vector space (see e.g. [2, pp. 98-99]). For example, a geometric characterization requires the relative complement of the ray with respect to the cone to be convex. In dealing with the extreme rays of the positive cone of a C^* -algebra the description we give below, valid for any convex proper (pointed) cones (see [2, pp. 100-101]), turns out to be particularly convenient. Let A be a C^* -algebra and $a \in A$, $0 \le a \ne 0$. Denote $\mathbf{R}_+ = \{\lambda \in \mathbf{R} | \lambda \ge 0\}$. The ray $\delta_a = \mathbf{R}_+ a$ generated by a is called an *extreme ray* of the positive cone $P = \{u \in A | u \ge 0\}$ if $a - b \in P$ for $b \in P$ implies $b \in \delta_a$. The definition is clearly independent of the choice of the generator a of the ray. Note that we have adopted the convention of including the endpoint 0 in the rays of P. To avoid trivialities, the C^* -algebras we consider are assumed to contain nonzero elements.

Theorem 4.1. Let A be a C*-algebra, $P = \{u \in A | u \ge 0\}$, and $0 \ne a \in P$. Then $\delta_a = \mathbf{R}_{+a}$ is an extreme ray of P if and only if aAa is one-dimensional, in which case $a = \alpha e$ for some projection $e \in A$ and $\alpha \in \mathbf{R}_{+}$.

Proof. Suppose δ_a is an extreme ray of P. Denote $e = ||a||^{-1}a$. Then $e - e^2 \in P$, since ||e|| = 1, so that by assumption $e^2 = \lambda e$ for some

 $\lambda \in \mathbf{R}_+$. As $||e|| = ||e^2|| = 1$, we have $\lambda = 1$, and so e is a projection. We consider A realized as a sub- C^* -algebra of L(H) for a Hilbert space H. Take $b \in P$. For every $\xi \in H$ we have $(ebe\xi, \xi) = (be\xi, e\xi) \leq ||b||||e\xi||^2 = ||b|||(e\xi, \xi)$, and so by assumption $ebe \in \delta_a$. Since A is the linear span of P, we have thus $aAa = eAe = \mathbf{C}a$. Suppose, conversely, that dim (aAa) = 1. The technique used in the proof of Theorem 3.8 in [16] shows that $a = \mu e$ for some nonzero projection $e \in A$ and $\mu \in \mathbf{R}_+$. As $e \in eAe$, we have thus $aAa = eAe = \mathbf{C}e$. We show that $\delta_e(=\delta_a)$ is an extreme ray of P. If $0 \leq b \leq e$, then eb = be = b (see e.g. [5, p. 89]). Thus $b = ebe \in eAe = \mathbf{C}e$, and so $b = \nu e$ for some $\nu \in \mathbf{R}_+$.

Corollary 1. The extreme rays of the positive cone of a C^* -algebra A are precisely the rays generated by the projections $e \in A$ with dim (eAe) = 1. In particular, the extreme rays of the cone of all positive operators on a Hilbert space are those generated by the (orthogonal) projections onto one-dimensional subspaces.

In the next two corollaries A is a C^* -algebra, whose socle in the sense of [11, p. 46], if it exists, is denoted by S. As before, $P = \{u \in A | u \ge 0\}$. We let U denote the union of the extreme rays of P.

Corollary 2. The socle S of A exists if and only if P has at least one extreme ray. If this is the case, $P \cap S$ is the convex hull of U, and S is the linear span of U.

Proof. All statements follow from the above theorem in conjunction with Theorems 5.1, 3.3, 3.10, 3.8 and 4.2 in [16].

Corollary 3. Let C denote the set of the compact (equivalently, weakly completely continuous, or weakly semicompletely continuous, see [18] and section 3) elements of A. P has no extreme rays if and only if $C = \{0\}$. If $C \neq \{0\}$, then C is the closed linear span of U and $C \cap P$ is the closed convex hull of U. The following three conditions are equivalent:

(i) A is dual,

(ii) P is the closed convex hull of U,

(iii) A is the closed linear span of U.

Proof. The first two assertions follow from Corollary 2 and the fact that $C \neq \{0\}$ if and only if S exists, in which case C is the norm closure of S (see Theorems 5.1 and 3.10 in [16]). Since every positive $u \in C$ can be approximated in norm with elements from $S \cap P$ by the same theorems and Theorem 3.8 in [16], Corollary 2 shows that $C \cap P$ is the closed convex hull of U, if $C \neq \{0\}$. A is known to be dual if and only if A = C [1, Corollary 8.3], and on the other hand A = C if and only if $A \cap P = C \cap P$, since A is the linear span of P and C is a linear subspace of A [16, Theorem 3.10]. Therefore the last claim follows from the first part of the corollary.

Remark. All previously known characterizations of a dual C^* -algebra

involve directly the multiplicative structure of the algebra. The existence of a characterization only in terms of the structure of an ordered Banach space, as above, is not surprising, however. For if A and B are C^* -algebras and $T: A \rightarrow B$ a linear, isometric order isomorphism, then T preserves self-adjointness and the Jordan algebra structure of the spaces of selfadjoint elements in A and B (see [6, p. 502] or [17, p. 33]), and it follows easily that $T(2^{-1}xy + 2^{-1}yx) = T(x \circ y) = Tx \circ Ty$ for all $x, y \in A$, so that by the corollary in section 2, A is dual if and only if B is dual. Our present approach yields a slightly sharper result in this direction:

Corollary 4. Let A and B be C*-algebras and $T: A \rightarrow B$ a vector space isomorphism such that $Ta \ge 0$ if and only if $a \ge 0$. Then T maps the socle of A (if it exists) onto that of B, and A is dual if and only if B is dual.

Proof. As T preserves the property of being an extreme ray of the positive cone, the first assertion is a consequence of Corollary 2. Since T is continuous (see the proof of Theorem 3.1 in [17]), the second assertion follows from the first and the fact that a C^* -algebra is dual if and only if it has a dense socle (see [1, Corollary 8.4] or [3, p. 99]).

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

References

- ALEXANDER, J. C.: Compact Banach algebras. Proc. London Math. Soc. (3) 18, 1968, 1-18.
- [2] CHOQUET, G.: Lectures on analysis. Vol. II: Representation theory. W. A. Benjamin, Inc., New York - Amsterdam, 1969.
- [3] DIXMIER, J.: Les C*-algèbres et leurs représentations. 2ième éd. Cahiers scientifiques, Fas. XXIX, Gauthier-Villars, Paris, 1969.
- [4] DUNFORD, N. and J. T. SCHWARTZ: Linear operators. Vol. I: General theory. -Pure and Appl. Math., vol. 7, Interscience, New York, 1958.
- [5] FUKAMIYA, M., Y. MISONOU and Z. TAKEDA: On order and commutativity of B*-algebras. - Tôhoku Math. J. (2) 6, 1954, 89-93.
- [6] KADISON, R. V.: A generalized Schwarz inequality and algebraic invariants for operator algebras. - Ann. of Math. 56, 1952, 494-503.
- [7] KAPLANSKY, I.: Ring isomorphisms of Banach algebras. Canad. J. Math. 6, 1954, 374-381.
- [8] OGASAWARA, T.: Finite-dimensionality of certain Banach algebras. J. Sci. Hiroshima Univ. Ser. A 17, 1951, 359-364.
- [9] -»- and K. YOSHINAGA: Weakly completely continuous Banach *-algebras. -J. Sci. Hiroshima Univ., Ser. A 18, 1954, 15-36.
- [10] —»— —»— A characterization of dual B^* -algebras. J. Sci. Hiroshima Univ. Ser. A 18, 1954, 179–182.
- [11] RICKART, C. E.: General theory of Banach algebras. D. Van Nostrand Company, Inc., Princeton - Toronto - London, 1960.
- [12] SAKAI, S.: Weakly compact operators on operator algebras. Pacific J. Math. 14, 1964, 659-664.
- [13] -»- C*-algebras and W*-algebras, Springer-Verlag, Berlin Heidelberg New York, 1971.
- [14] TOMIUK, B. J. and P. K. WONG: Weakly semi-completely continuous A*-algebras. - Illinois J. Math. 16, 1972, 653-662.
- [15] VALA, K.: On compact sets of compact operators. Ann. Acad. Sci. Fenn. Ser. A I 351, 1964.
- [16] YLINEN, K.: Compact and finite-dimensional elements of normed algebras. -Ann. Acad. Sci. Fenn. Ser. A I 428, 1968.
- [17] —»— Vector space isomorphisms of $C^*\mbox{-algebras.}$ Studia Math. 46, 1973, $31\mbox{-}34.$
- [18] —»— Weakly completely continuous elements of C^* -algebras. Proc. Amer. Math. Soc. (to appear).

Printed in January 1975