ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

599

DUAL C*-ALGEBRAS, WEAKLY SEMI-COMPLETELY
CONTINUOUS ELEMENTS, AND THE EXTREME
RAYS OF THE POSITIVE CONE

BY

KARI YLINEN

HELSINKI 1975
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1975.599


koskenoj
Typewritten text
doi:10.5186/aasfm.1975.599


Copyright © 1975 by
Academia Scientiarum Fennica
ISSN 0066-1953
ISBN 951-41-0216-9

Communicated 19 September 1974

KESKUSKIRJAPAINO
HELSINKI 1975



1. Introduetion

B. J. Tomiuk and P. K. Wong have defined in [14, p. 654] an element
w of a Banach algebra A to be weakly semi-completely continuous (w.s.c.c.)
if the map «+ uau is a weakly compact operator [4, p. 482] on A. One
of their results [14, Theorem 5.2] states that a C*-algebra A is dual (cf.
e.g. [3, p. 99]) if and only if every element of A4 is w.s.c.c. In this paper
we extend this theorem in two directions. In section 2 we show that A4 is
already dual if for every positive u € 4 the image of the unit ball of A4
is relatively weakly (i.e. o(4, 4%)) compact under some mapping x> F.(x)
where F.(x) is a finite product of positive powers of % and z (its form
depending on u). On the other hand, it is known that a C*-algebra is
dual if and only if its every element is compact [1, p. 17]. (An element u
of a Banach algebra A4 is called compact, if the map x +— uww is a compact
operator on A.) In section 3 we prove that even for a single element of
a C*-algebra compactness and weak semi-complete continuity are
equivalent. Combined with Theorem 3.1 in [18] this result shows that, for
a C*-algebra 4 and u € A, the weak compactness of the two-sided
multiplication operator a+> urw already implies the weak compactness of
the operators x> ux and a+>awu. This is in striking contrast with the
corresponding situation for compact instead of weakly compact multi-
plication operators. Indeed, it follows from Theorem 3 in [15] that if E
is any Banach space and L(E) the Banach algebra of all bounded linear
operators cn K, then the map X — TXT is a compact operator on L(E)
for every compact operator 7' € L(H), but neither X +- TX nor X > XT
is a compact operator on L(E) for any nonzero 7T € L(E), unless E is
finite-dimensional.

In section 4 (Corollary 3) we give one further characterization of dual
C*-algebras. A C*-algebra turns out to be dual if and only if its positive
cone is the closed convex hull of the union of its extreme rays. This criterion
is obtained as a consequence of a characterization of the extreme rays of
the positive cone of a C*-algebra (Theorem 4.1).

2. Monomial actions and dual C*-algebras

Definition. Let 4 be an algebra and « € A. The mapping F.: 4A—> A4
is called a monomial action of w on A, if there is a finite sequence dy, . . ., dp



4 Ann. Acad. Sci. Fennice A.I. 599

where each d; is 1 or —1 (both 1 and —1 occurring at least once), such
that

F.(z) = TE[ 27 (u + ) + dj(u —x)], x€A.
j=1

We now give a generalization and alternative proof of Theorem 5.2 in
[14].

Theorem 2.1. The C*-algebra A is dual if and only if for every positive
u € A there is some monomial action of w on A which maps the unit ball
of A into a weakly compact set.

Proof. If A is dual, then the operator x> ux is weakly compact for
all w €4 (see [9, p. 217, [3, p. 99]). Let us suppose, conversely, that the
monomial action condition is satisfied. Let B be an arbitrary maximal
commutative *-subalgebra of A. Let u € B be positive and x+ F.(x)
a monomial action of w on B such that F, maps the unit ball S of B
into a o(B, B*)-compact subset of B. (Observe that B is o(4 , 4*)-closed
and the relative (4 , 4*)-topology on B is the same as o(B, B¥).) By
commutativity F.(x) = wmz", x € B, for some positive integers m and
n. Denote S.={y€Bly>0,ly <1}. By spectral theory S =
{y"ly €84}, and so wmSi is relatively o(B, B*)-compact. Since the
operator ar>wu"xr maps S into w™(S+ — Sy + ¢Sy — S84)), vt is a
weakly completely continuous (w.c.c.) element of B in the sense of [8]
and [18], and so is » = («™)"™, which is a norm limit of polynomials in
4™ having no constant term. (The w.c.c. elements of B form a closed
ideal.) Thus every element of B is w.c.c. since its every positive element
is w.c.c. and B = B, — B, - i(B+ — B;), where B = {z € Bjx > 0}.
By Lemma 5 in [9, p. 20] the maximal ideal space of every maximal com-
mutative x-subalgebra of A is discrete, and so 4 is dual by [10, Theorem 1].

Corollary. Let z oy = 2 Yay + yx) denote the Jordan product in the
C*-algebra A. A is dual if and only if the map x+>wuox is a weakly
compact operator on A for every wu € A.

Proof. If A is dual, the operator z > u o 2 is weakly compact, because
the operators @+~ ux and x> au are so (see [9, p. 21], [3, p. 99]). The
converse follows from the above theorem (or [14, Theorem 5.2]) and the
well-known identity

urw = 2(u o (wox)) —ulox.

3. A characterization of weakly semi-completely continuous elements

If A is a Banach algebra with identity and x € 4, we let Sp,x
denote the spectrum of x. For an arbitrary C*-algebra A and =z € 4,
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Splx will stand for Sp,x, where A, is the C*-algebra obtained by
adjoining an identity to A.

Lemma 3.1. If u is a self-adjoint w.s.c.c. element of the C*-algebra A,
then Sp,u consists of a countable number of points, which can accumulate
only in the origin.

Proof. Let A, be the sub-C*-algebra of 4 generated by u. Since A.
is commutative, the map x> u2x is a weakly compact operator on A..
(Observe that A4, is o(4 , A*)-closed and the relative o(4 , 4*)-topology
on A, agrees with o(4,, A¥).) By theorem 3.1 in [18] %2 is a compact
element of A., sothat by Theorems 1.4 and 1.6 in [16] Sp;,u'zﬂ is countable
and can accumulate only in the origin. Theorem 1.6.10 in [11, p. 32] shows
that Sp, u has the same properties, and so has Splu, because Sp,u =
Splu [3, Proposition 1.3.10].

The next lemma is due to Ogasawara [8, p. 361]. The proof of Proposition
2 in [12, p. 661] contains a different method. We sketch still another proof
based on a characterization of semi-simple finite-dimensional Banach
algebras due to I. Kaplansky.

Lemms 3.2. Every reflexive C*-algebra is finite-dimensional.

Proof. Let A be a reflexive C'*-algebra. Then A has an identity 1 by
the theorems of Alaoglu-Bourbaki and Krein-Milman, and Proposition 1.6.1
in [13]. Alternatively, apply [3, Cor. 12.1.3, p. 236]. For any u» € 4, let
A, denote the closed subalgebra of A4 generated by » and 1. Choose an
arbitrary x € A and write z = a + ib with ¢ and b self-adjoint. Then
A, is isometrically isomorphic to C(X) for some compact Hausdorff space
X. Since C(X) is reflexive [4, p. 67], the characteristic function of every
singleton is continuous, and so X is finite. Similarly, A4, is finite-
dimensional. It follows that A. is the linear span of a finite set
{1,a,b}U{ab*1 <j<m,1<k<mn} sothat Sp,xC Sp,x is{inite.
An application of Lemma 7 in [7, p. 376] completes the proof.

We are now in a position to prove the main result of this section.

Theorem 3.1. Let A be a C*-algebra and w € A. The operator x— uzxu
on A 1is compact if and only if it is weakly compact.

Proof. The weakly compact operators on 4 form a two-sided ideal of
L(A) [4, p. 484]. It follows easily that y*, 2y and ya are ws.cc.if y € 4
is w.s.c.c. and x € A. Assume that « € 4 is w.s.c.c. Then u*u is a self-
adjoint w.s.c.c. element of A. If A is realized as a sub-C*-algebra of
L(H) for a Hilbert space H, then Sp u*u = Sp'L(H)u*u [3, p. 8], so that
the spectrum of w*u as an operator on H is by Lemma 3.1 countable
and can accumulate only in the origin, the nonzero part in that spectrum
being the same as in SpL(H)u*u. Therefore the method used in the proof
of Theorem 3.8 in [16] yields a representation u*u = > l.e., where each



6 Ann. Acad. Sci. Fennica A 1. 599

¢, is a w.s.c.c. projection, A, > 0, and the series converges in norm. Since
the closed unit ball of e,de, is o(4, A*)-compact and thus
o(enden, (enden)*)-compact, the C*-algebra e,Ade, is reflexive [4, p. 425],
and therefore finite-dimensional by Lemma 3.2. It follows from Theorem
3.10 in [16] that |u| = (u*u)'® = > A%, is a compact element of A,
and so is |u*| = (wu*)"* by a similar argument. Since the map x> |u|z |u*|
is a compact operator on A by Theorem 3.9 in [16], so is the map
x> urw = s\u|x |[u*|t*, where u = slu] and wu* = ¢|u*| are the polar
decompositions of # and w*. The »only ify part being obvious, the theorem
is proved.

Combined with the theory of the compact elements of C*-algebras the
above theorem yields many corollaries. We state explicitly the analogue
of Corollary 2 in [18], section 3.

Corollary. Let H be a Hilbert space and A an irreducible sub-C*-algebra
of L(H). Then T € A is a compact operator on H if and only if the map
X+ TXT is a weakly compact operator on A.

Proof. Since the compactness of the operator X +—7TX7T on A is
equivalent to the compactness of 7' (see [15, Theorem 3] and [16, Corollary
2, p. 15]), the corollary is a consequence of Theorem 3.1.

4. The extreme rays of the positive cone

There are several equivalent definitions of an extreme ray of a convex
cone in a real vector space (see e.g. [2, pp. 98—99]). For example, a geometric
characterization requires the relative complement of the ray with respect
to the cone to be convex. In dealing with the extreme rays of the positive
cone of a C*-algebra the description we give below, valid for any convex
proper (pointed) cones (see [2, pp. 100—101]), turns out to be particularly
convenient. Let A4 be a C*-algebra and a €4, 0 <a # 0. Denote
R ={A€R|A>0}. The ray .= Rya generated by « is called an
extreme ray of the positive cone P ={u € Aju >0} if ¢« —b€P for
b € P implies b € .. The definition is clearly independent of the choice
of the generator a of the ray. Note that we have adopted the convention
of including the endpoint 0 in the rays of P. To avoid trivialities, the
C*-algebras we consider are assumed to contain nonzero elements.

Theorem 4.1. Let A be a C*-algebra, P = {u € Alu >0}, and
0 #a€P. Then 6. = Ryia is an extreme ray of P if and only if aAa is
one-dimensional, in which case a = xe for some projection ¢ € A and
« € R+.

Proof. Suppose d, is an extreme ray of P. Denote e = |ja||"'a. Then
e —e2€P, since || =1, so that by assumption e2 = le for some
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A€ER:. As ¢ =14 =1, we have A =1, and so e is a projection.
We consider A realized as a sub-C*-algebra of L(H) for a Hilbert space
H. Take b€P. For every £€H we have (ebe&, &) = (bef,ef) <
[1blllegl2 = |bl](e& , &), and so by assumption ebe € d.. Since A is the linear
span of P, we have thus a4da = eAe = Ca. Suppose, conversely, that
dim (@da) = 1. The technique used in the proof of Theorem 3.8 in [16]
shows that @ = ue for some nonzero projection e € 4 and u € Ry. As
e €Eede, we have thus ada = ede = Ce. We show that J.(= d.) is an
extreme ray of P. If 0 <b <e, then e¢b =be = b (see e.g. [5, p. 89]).
Thus b = ebe €ede = Ce, and so b = ve for some » € R;.

Corollary 1. The extreme rays of the positive cone of a C*-algebra A are
precisely the rays generated by the projections e € A with dim (ede) = 1.
In particular, the extreme rays of the cone of all positive operators on a Hilbert
space are those generated by the (orthogonal) projections onto one-dimensional
subspaces.

In the next two corollaries 4 is a C*-algebra, whose socle in the sense
of [11, p. 46], if it exists, is denoted by S. As before, P = {u € A|ju > 0}.
We let U denote the union of the extreme rays of P.

Corollary 2. The socle S of A exists if and only if P has at least one
extreme ray. If this is the case, P NS isthe convex hull of U, and S 1is the
linear span of U.

Proof. All statements follow from the above theorem in conjunction
with Theorems 5.1, 3.3, 3.10, 3.8 and 4.2 in [16].

Corollary 3. Let C denote the set of the compact (equivalently, weakly
completely continuous, or weakly semicompletely continuous, see [18] and
section 3) elements of A. P has no extreme rays if and only if C = {0}. If
C == {0}, then C is the closed linear span of U and CN P is the closed
convex hull of U. The following three conditions are equivalent:

(i) A s dual,
(ii) P s the closed convex hull of U,

(iii) A4 s the closed linear span of U.

Proof. The first two assertions follow from Corollary 2 and the fact
that C s {0} if and only if S exists, in which case C is the norm closure
of 8 (see Theorems 5.1 and 3.10 in [16]). Since every positive u € C can
be approximated in norm with elements from S N P by the same theorems
and Theorem 3.8 in [16], Corollary 2 shows that C N P is the closed
convex hull of U, if C # {0}. 4 is known to be dual if and only if 4 = C
[1, Corollary 8.3], and on the other hand 4 = C if and only if AN P =
C NP, since A is the linear span of P and C is a linear subspace of
A [16, Theorem 3.10]. Therefore the last claim follows from the first part
of the corollary.

Remark. All previously known characterizations of a dual C*-algebra
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involve directly the multiplicative structure of the algebra. The existence
of a characterization only in terms of the structure of an ordered Banach
space, as above, is not surprising, however. Forif 4 and B are C*-algebras
and 7 :A4-— B a linear, isometric order isomorphism, then 7' preserves
self-adjointness and the Jordan algebra structure of the spaces of self-
adjoint elements in A and B (see [6, p. 502] or [17, p. 33]), and it follows
easily that T (27wy + 2z) = T(xoy) =Txo Ty for all x,y € A4, so
that by the corollary in section 2, A is dual if and only if B is dual. Our
present approach yields a slightly sharper result in this direction:

Corollary 4. Let A and B be C*-algebras and T :A-—>B a vector
space isomorphism such that Ta > 0 if and only if a > 0. Then T maps
the socle of A (if it exists) onto that of B, and A is dual if and only if
B is dual.

Proof. As T preserves the property of being an extreme ray of the
positive cone, the first assertion is a consequence of Corollary 2. Since 7'
is continuous (see the proof of Theorem 3.1 in [17]), the second assertion
follows from the first and the fact that a C*-algebra is dual if and only if
it has a dense socle (see [1, Corollary 8.4] or [3, p. 99]).
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