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1. Introduction

Let G be a Lie algebra and 1( a subalgebra of G. If K is semi-
simple (or at least reductive) then the finite-dimensional /l-modules are
well-known. We can then pose the following question: What are the
irreducible G-modules which, when regarded as a l(-module, are direct
sums of irreducible finite-dimensional /{-modules? We call such modules
K-finite.

This problem has been extensivel-v studied in the following special
case (see e.g. [1]-[3], [5], [7]): Let '€/ be a non-compact semisimple
Lie group and let l( be the maximal compact subgroup of <i. Let G
(resp. K) be the Lie algebra of '1 (r:esp. ',K;. As was shor,vn by Harish-
Chandra, studSr of unitary irreducible represeltatiotrs of 'Q in a Hilbert
space leads in a natural rvav to a stud5' of irreclucible K-finite G-modules.

In this paper G is an arbitrarv (finite-dimensional) complex Lie algebra
and ff is a semi-simple (or recluctive) subalgebra of G. The u'ork is divided
into two parts. fn section 3 we study irreducible G-modules admitting
a vector of maximal weight ,1 with respect to a Cartan s,rbalgebra f1r
of G such l}'at H : K n H, is a Cartan subalgebra of K. We prove
that for a »special» subalgebra K (Definition 3.7) and for any v.eight 1
such that the restriction 2]n is a dominant integral weight of 1( there
exists a unique equivalence class of K-finite G-modules which have the
maximal lr,eight ),.

In section 4 we study irreducible G-modules 7 rvith the help of the
minimal componerrt 7*i" of Y; if x is a dominant integral rveight of
K we denote b;,, T/, the sum of all irreclucible finite-climensional K-
modules in V u-hich ha'r,'e a as their maximal u-eight; by definition
l/^io:V* if Vo l0 and Va:o forall B<x. Letrank G:rankK.
We prove that if or is »large enough» (see Definition 4.I) thenthere exists
a unique equivalence class lVl of irreducible K-finite G-modules V
such that l/^io: 2". Such G-modules are called discrete because they
are completely characterized by the weight a i.e. by a, sequence of integers
consisting of the components of or.

We take profit at crucial steps (Theorem 3.9 and Lemma 4.7) of the
results of J. Lepowsky and G. W. McCollum, [6]: If 7 is a G-module



Ann. Acad. Sci. Fennicre A. I. 598

such that T/ o + 0 for some dominant integral weight or and 7 is generated
by V*(V --'t(C)V* where ZG) is the enveloping algebra of G)

then V is K-finite. In addition Z is completely determined by the action
of Z1X1C on Z, where C is the centralizer of K in Z1G'1. These
results have earlier been obtained by Harish-Chandra, lI] and [2], in case

G is semi-simp1e.
See also for related recent results by van den Hombergh in »A note on

Mickelsson's step algebra» and »On some Harish-Chandra modules» (to app-
ear in fndagationes Mathematicre).

The author would like to thank Professor Kalevi Suominen for reading
the manuscript and. suggesting improvements.

2. Notation

fn this paper all Lie algebras are finite-dimensional. All algebras
and vector spaces are over C, the field of complex numbers. If -4. is an
algebra, V an A-module, § a subset of .4 and X a subset of 7 we
denote by §X the subset {sr ls e S, xeX) of V.

We denote by V* the dual space of a vector space V.
Let K be a semi-simple Lie algebra, H a Cartan subalgebra of K

and ( , ) the Killing form on K. Because ( , ) is non-degenerate, there
exists (for each a e H*) an element h, e H such that <h* , h> : a(h)
for all h e H. Let ( , ) be the symmetric non-degenerate bilinear form
on H* defined by (" , §) : (h* , hB).

X'or any Lie algebra G, we denote by rr-> adr the adjoint represen-
tation of G, adr(y) : ln , yf.

If Z is any Lie algebra then 21tr1 is the universal enveloping algebra
of L. If L' is a subalgebra of Z then 't(L') canbeidentifiedinanatural
way with a subalgebra of Z@1.

If {rr,n2,..., r,} is a basis of Z then the monomials r,1rr,,r, ., . ni@)

(d(l) 
= 

i(2) <...<i,(k)) along rvith 1 give a basis of. 't(L) (Poincar6-
Birkhoff-Witt theorem).

X'or any subset B of Z@)'we denote by 7(§) theleftidealgenerated
by §,7(S):z(L)S.

Let .il be an associative algebra, §1,, an ideal of "B and, V a'81d,
-module. If g{z is any ideal of 'ä such that drc.:4, then by the
extension of V fufio a 'M1d,, -modulewemeanbhe 'il1d2 -module Y,
where the action of. 'il l:/,, is defined by

(b { :År)o : i,(b)a ; b e'il, a e V,

where i :'13 --+.l6ld, is tb.e canonical projection.
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3. Morlules with maximal weight

If Z is any Lie algebra and H, a Cartan subalgebra of -L then
we can write

L:Hr.*por"
where Lo is the root subspace corresponding to the non-zero root d.
Because we assume L to be finite-dimensional, the sum is finite. By
definition Zo consists of all elements a € -L such that

(adh - a(h))"r: 0 for some positive integer n.
Let Hf be the dual of H, and {hr,hr,...,ht} a fixecl basis of är.
Let ).,peHf with I*p.We saythat /, isbiggerthan pQ,>p)
if the first non-zero number in the sequence

l(hr) - F(h), . . ., ),(ht) - p(h')

isoftheform rfi,y .rith r)0 or r:0 and y>0. Wedenote by
L*(L-) the solvable subalgebra of L generated by the subspaces .Do with
a)0 ("<0).

Definition 3.1. Let 7 be an Z-module. We denote by V+ the subspace
of 7 consisting of all vectors o with the propert! xa :0 for all u e L1.
We say that V is bounded above if I < dim 7+ < co.

Lemma 3.2. If V is an 'i,rred,ucible L-mod,ule whi,ch is bounrLed, aboae

then d,im V+ : L ctncl there erists ). e Hf such thut hu : ),(h)u for each

a e V+ and, h e Hy (We say that )" i,s the marimal wei,ght of V and, u
,is ct, marimal uector,)

a common eigenvector a e V+ of all lL

Because of the irreducibility of V
theorem we have V - T,(L_)u. If
vector in V+ then

is a non-trivial (a Q V') invariant subspace if u'

and {r} is a basis of V+.

Detinition 3.3. Let V be an Z-module. For each

subspace V o consists of all vectors a e V for x-hich

(h - u(h))"u:0 for all heHL and for some positive integer n.

Theorem 3.4, Let L be a Li,e algebra and, let HL be a Cartan sub-

algebra of L. Eor each ).e Hf suck that ),lr*r,rr1:0 thereeristsa un'i,que

equ,i,ualence cl,ass of i,rreduci,ble L-mod,ules wh'i,ch are bound,ed, aboae &nd, haae

mar,i,mal wei,ght )". Any such an L-mod,ule is a d,irect sum of weight subspaces

and H L is nilpotent there is
e H 

" 
(V* is clearly H 

"-invariant).and of the Poincard-Birkhoff-Witt
,t)' 

- u,[ , % e '6 (L-)L-, is another

+ O. Thus a' _: 0

& e Hf, the u-eight
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of fi,ni,te d,imens'ion.

Proof . We define WL : Z@)f)^ where f ^ 
is an ideal,

7 
^ 
: W'*) + 7({h - }'(h)' I I h e H"\)'

Wi is ar Z- (and Z@) - ) module in a natural way. Letr ao:7 * 7i..
Then

L.,uo : 0, hao : ).(h)ao (h e H), W'' : Z1t -1uo.

ft follows that a basis of I{/i is given by vectors of the type

(*) ap,aB,...eunuo (lc:0,I,2,...)
where er. (i : I ,2 , . .. , ft) is any element of some f ixed basis of Lu,

and 0) §r.20r2...2§* are negative roots of L. Let W! bettte
subspace of Wl spanned by the vectors (*) for which

o:§r+...-t§u*1.
We show by induction on fr fhan W! is a weight subspace with weight a.
Assume that the vector u has weight p,

(h - p(h))"u: 0 for all lt, e H" .

Let y be a root and e, e L, ,

(ad h - y(h))* ey: 0 for all h e HL.

Then

Thus the rve'ght of e^,u i* f9 + 7. Itfollowsthateach o eW[ is of weight
a ! ).. It is clear that dim IYL < oo and each vector of weight cv belongs
to W[. Note that II'; is spamred bv the 'i'ector ao:71?i. Let NL
be the sum of all invariant subspaces in ll'i s-hich clo not contain oo.

Then oo € .N'1 and we define

Vi : lt-rl.]ii .

The Z-module V^ is irreducible, has uo { Iii as the maximal vector
and .l is the maximal weight. The uniqueness part of the proof goes as
in the case of a semisimple Lie algebra (see [4, p. 109]).

Let G be a Lie algebra, X a semi-simple subalgebra of G and H a
Cartan subalgebra of K. Because K is semi-simple, there exists a subspace
T in G such that G:K @7 and LK,TlcT. We denote by To
the null component of -[1 in T i

(adh - y(h))rn,. (" I*)
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Tr:{ref llh,nf :0 Y heH}.

Lemma 3.5. Let H, be a Cartan subalgebra of the Li,e algebra H {
Toc G. Then H c H, and, Hy is eaen a Cartan subalgebra of G.

Proof. There exists r e H + ?o such that

Hr : {a e H * To I @d r)"Y : 0 for some % € ltr},

14, pp.79-S01. Now lr,H):0 for all re H*To, thus HcHr.
Next let § be the normalizer of Hy it:r G. X'rom [§, Er] c Hr ib

follows that [S, 11] : 0 and therefore S c H * To. Because Hr is

a Cartan subalgebra of H I To it follorvs that B : Hr and we can

conclude that H, is a Cartan subalgebra of G.

Let @ be the set ofroots of K relative lo E,/c(D is a set of
simple roots and @+ (resp. @-) is the set of positive (resp. negative)

roots with respect to /. Next we divide T into weight subspaces,

T^ : {r e f lV, rl : )'(h) r,Y h e H) .

We denote by F the set of weights of K in T , Y+ (resp. P-) is the
set of positive (resp. negative weights in P relative to an ordered basis

thr,...,hrj of ä which is dual to the basis {äo, ,...,hor},

r,(ft;) : (ko,,hi) - äi; .

Here a, , . . . , xt are the clistinct simple roots of K.
Detinition 3.6. The semi-simple subalgebra K of G is a special

subalgebra if
N({"}) nN(P+) :{0}

for all a € A. If I c H* is any subset, we denote by N(O) the linear
span of O with non-negative integral coefficients'

Eramltle 3.7. Let G: gl(n,C), the Lie algebra with basis {r,i[,i:,
and commutation relations

leij , e*rf - öiuea - öaer"j .

Let K be the subalgebra spanned by the vectors (2 I p { n - 2)

eij, i *j, L <i,j <Pi eii - €i=ti-r, i : L,2,...,? - Li

and

e:1, i, lj, p + l <d,i {n; eii- €i+riat, i:p +l, p *2, ",h-l'

Note that K is isomorphic to Aot @ An-p-r. As ä 'wecantakethesub-
algebra of K spanned.bythevectors ai;-ai+t;1r,1( i1n-L,i, +p.
It is easily seen that in this case
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To - {a lo,b € C)

and Hr: H * To. Using the properties of the roots of the classical
simple Lie algebras At it is not difficult to verify that K is special.

We return to the general case. Let K be a special subalgebra of G
and l: rank K, p: rankG. \{Ie fix an ordered basis {å, ,hr,...,h0\
of H, such that {hr,hr,...,h,} is the basis of ä described above.
'W'e define the following subalgebras of G:

Pn,

f :1 i:pf 1

i>0

i<0

G+ - K+ +

G-: K- +

T)"*§+,

Tt+S-

where K+ (resp. K-) is the subalgebra of K spanned by the vectors
belonging to positive (resp. negative) roots of K. We define

H*?o:§+*S-*H,
to be the corresponding decomposition for H * To. Because of our choice
of basis of H, (see also Lemma 3.5) it is clear Lhat G: G+ * G_ * H,
is a similar decomposition for G relative to the Cartan subalgebra är.

Detinition 3.8. A G-module Z is K-finite if it is a sum of finite-
dimensional rK-modules when considered as a ff-module by restriction to K.

Let A be the set of dominant integral elements in ä*:
A : U.e H* | (X , o) is a non-negative integer for all a e A\ .

Theorem 3.9. Let K be a special subalgebra of G. Thenfor each le H+
such that ).1H e A and, ),lg7r,orl : 0 there erists a un,ique equiualence class of
K-finite irred,uci,ble G-modules which ure bounded aboae and, haae ). as the
murimal, weight.

Proof. The uniqueness follorrs from Theorem 3.4. \Ye have to prove the
existence. We define an ideal

?^ : 7G*) + ?({h - }'(h)' t l h e Hr})

and ryt:Z(G)1f7. Consider the subset sr of Wr,

S, - {r?J' + 7^ | x e A}

where e
- 0(,

belongs to the root

na: 2

-& and

. (Alr,a) 
, a,e A(o,o)

Let [Ji:Z(q§, b" the submodule of WL generated by §r. We claim
that Ui does not contain the vector I * 7r ft is rrell-known that §,
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is arrnihilated by ff. (see [4, p. It5]). Now trUi is a direct sum of weight
subspaces, W,; is spanned by the vector 1*7^ and ,l is the highest.
weight in Wt (compare the proof of Theorem 3.4). Suppose that 1 f
7^e tl^; using the Poincar6-Birkhoff-Witt theorem it is easily seen that,
then there exists §r, fir,..., §o € F+ such that,

§'* §' + ' ' ' * §o - (n" * r)'a: 0

for at least one weight a e /. But this is impossible because ff is a
special subalgebra of G.

Let again ly'1 be the sum of all invariant subspaces of I/; not con-
taining the vector I *7t. It is clear that Ui c NL. lVe define

Y; : 1Yi17tri' .

The G-modale V)' is irreducible and has a maximal vector a : | * 7t *
-lP of weight /,. X'urthermore, 7r containsafinite-dimensional K-module,
namely Z(K)u ([4, p. ll5]). It follows from proposition 4.2, [6], that
VL is K-finite. (See also fl, Theorem l.l)

4. Discrete G-modules

If not otherrvise stated., the notation of the previous sections is in
force also in this section.

Let C be the centralizer of K in Z(G). The algebra C is a finitely
generated subalgebra of 2(G) (see 18, p. 162, Theorem 2.3.1.41).

Let an ordered basis {f, , tz, . .. , l,} be given for the subspace T of
G, such that

lh,til: trt(h)tt, lbe H, i : 1,2,...,r,

this to an ordered basis of G,

{t, , eor, hi , aBr}

where the order is defined through the ordering of roots,

and through a labelling of the basis elernents /a; of H. According to the
Poincar6-Birkhoff-Witt theorem this ordering incluces a basis for ZG\
by ordered monomials in the basis elements of G. If u e 2 (G) is such

a basis vector we denote by deg (u) lhe number of vectors f; contained
in u .If a e Z(G) is an arbitrary (finite) Iinear combination of ordered-

monomials,
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a : )rat"ur" (a* € C) ,

we define deg (z) :*11:,d"9 (uh).

Definition 4.7. Let c1 ,c2t -..,ce be a generating sequence of C.

We define

"': n:::.,, d"e ('*) '

We call an element )t of A, the set of dominant integral rveights of K,
large if

1l oor* rcoz-1 ...+ ane A for all t»ie Y, lt: I,2,...,11".
Let 7 be any G-module. Consider V as a /(-module by restriction. For
any tr e A we denote by V^ the sum of all irreducible finite-dimensional
K-submodules of Z with maximal weight ,1. We define

Vf :{re Vlle&:0 YB€@n},

the subspace of vectors'rvith maximal rveight, in Vi; in other words,

V^ : {" e Vr)hr : i(h)a Y h e H}.

We denote by ?, the annihilabor in 26) of the maximal vector in an
irreducible finite-dimensional K-module with maximal weight X; according
to [4, p. 115],

?t:7(K+) + 7«h - 1(h) .t lh e uD + 7k?J, I a. e /j)
where K1 and the numbers zzd are defined as in seotion 3.

X'or all p and a in A we define Au,o to be the subset of 'ä(G) for
which

Ap,"V; c VI

for any G-module Z.
Lemma 4,2. Ap,*:{ueZ(q I Tuuc't.G)?"}.
Proof . Let V be a G-module such that, Y, + 0. Any such G-module

is a factor module of the left-module ZG)|ZG)7*. It follows that

Ap.o:{uez9)l"VI .Vi}
where V :'tG)lZ(G)7*. Let now u e AB,o. If r : I +'8G)?* then
r e VI and,

un: ,u, a't1Q?" e YI

and therefore ?uu c'åp17* To proye the converse, assume that
TuucZG)?". Let reV!. Then
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?uux c'61G13r: o .

It follows that Z(K)ur is a finite-dimensional -K-module with ur as the

vector of maximal weight (which is p) and thus ur e Vt.
Lemma 4.3. Let a be an element of A such that a + )'e A for any

1 e V. ?hen for eq,ch ti e T there euists u e A-+i.i,,, of the form,

'l,C - ti

11

uhere \ e't6-).
Proof. \Ye can u'rite

(*)

where ?(') is the irreducible component of 7 under the adjoint action of
K, with maximal weight r. We can assume that the basis {f;}i.:r of 7
is chosen in such a way that it is compatible with the d.ecomposition (*);

thus we may assume that ti € T(') for some weight rr.

Put D,,:Z1K1I?,, and consider the tensor product Tb) 6t D-,
which is a /(-module under the diagonal action:

k(r@y):lk,n)8A *r8 ky; keK, ileTQ), AeDo,.

It is known that the module T@\ I D,, contains an irreducible submodule

with maximal weight @ * ),i (note that c,t * )" e A for any rveight 1

in ?(')) with a multiplicity which is equal to the multiplicit;' m()'i , u)

of the weigth ).i in T@; in other rvords there are m(),i,u) linearly
independent vectors in f@ I D,,, s-hich are annihilatecl by ?",.-,.,

(see e.g. [4, pp. I41-I42]). It follorrs that for each li ,T(,') f ,.. nTo)
there exists a nonzero element tto of ?(,) 8 D,,, of the form

LLo:tiA (o'l+:),,) +

aeC, ui €

§ (t,i + ?,,) ,

j
Lj>)i

't(K-)

such that LLo is annihilated by ? *+).; We define ',ui

be the smallest value of the index i for which ai Q ?,,; because of

aoilo: 0 for all a e (D+ ,

we have eoao e 7,,, for all a € @+. Now any vector in D,, which is anni-
hilated hy K* is a multiple of 1l?,,; thus k:i, and at'}. We

may assume that a,: | (multiply u, by a-1).

Consider the linear mapping
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e: T@ 8 D--->zgyftg17-
induced by the multiplication map T@ I Z(K) -->'ä(G). This mapping
is a K-module homomcrphism; in fact,

e @U g@ + 7,») : e $k,tl g (u + Z-) +, E) @u _y 2,,11

: lk ,tla + ZG)?", a tku + Z(C)?,,: lrta + ZG)?-
:keQ8@+?,,)),

for all lc e K, t eT@ and z e 't(K). Let u e Z1e1 ,

Q.t:[,;*ftlai.
j,,,j>).i

Then q(uo» : u a'å1G'1?", and therefore ?,ua;.iu C Z(G)?,,,. In other
words (Lemma 4.2), u e Ao,*ru,,, .

We denote by P the projection P : Z1G1-->2(Q such that Ker P :
't1G17* + ULZ(K-) and P(ZG» : UL rvhere [/, consists of the ele-
ments

b . | + Z or,...rotr,. . . tr*

where b, d;,...i10€C and irS.,.<ir".
Lemma 4.4. Let 1t111tr2e AB,o such that P(ur): p(ur). Then

xLL - 'tL2 e '8(G) 7* .

Proof. We shall again use the fact thab any vector in '€1X11?* which
is annihilated by K* is a multiple of 1 -l- ?o. X'irst we u-rite

ut- %z: w i tj,...tj*o -t Z t,,...t,^ui,...i^
1m, iu)

where each term is a sum of ordered monomials and w eZG)?-, a and
a, . eZ(1(-) and.L.. r.n

1,,* ... * l,^Z li. * ... I Lin.

If m : lc then i, + i, for at, least one value of the index y. X'rom
K+(ur- ur) €'å(G)7" it follows that

KaacTo
and thus ae?n @Q.a.l+7, for any a+O because of P(ur-uz)
- 0). By induction it follows that the coefficient of any t,....t, be-
tongs to 

" ?" and therefore u, - ure 't(G)7)*. 
v L' 'n

It is clear that Lemma 4.4 is valid also if rve replace Au,n by

A*:)AB,o.
§
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Lemma 4.5. Let a e A belarge. Then any u e Ao suchthat deg (u) { n"

can be written i,n the form

u:a*a.l* ) u,,%,"...,v,ik @e C, aeZ(q1", w,e'€(G1;
*,{-ir}

,rr:lr2r...rlc)

(*)'tLi,'tLi,1L. ..'ttike Auo,o; ö, : & { h, *. . . + X,o(, : L, 2,.. .,k).

Proof. (1) Let ,S be the set consisting of finite sequences i -(ir,ir,...,i*) where k {n" and the integers i, satisfy the inequalities

0 I i, ! i, !_. . . 
= 

i,,, ! r : dim 7.
\['e denote by e the empty sequence. We define an order in § byputting

(ir,ir,...,'i^)1(jr,jr,...,JÅ if lc<m or k:m and

the first norl-zero number in the sequence ir- jr, dr- jr, . . . is positive.
fn addition, for each i € B we define

tt: ti,. . .4heZ(G)

and. t" : I e Z(G). Let V be the subspace of 't(G) which has the set

{r, I i € B} as an ordered basis (the order is defined through the ordering
of B).

(2) We put u" :7 e Ao. From the fact that d. is large and frorn
Lemma 4.3. il follours that for each i : (h,ir,...,ir) €B there exists

tci : u,itriz...uLe A, (ul,eZ(G);,,-: t,2,...,k)
where eacb, ut, is of the type described in Lemma a3, PQI) : tr, anld lt,
satisfies the relations (*). We denote by U the subspace of Ao rvhich
has the set

{z'li€§}
a,s an ordered basis.

(3) It is clear that the operator P induces a linear mapping from
a into V. n'urthermore,

P(u') : f, f lower terms

as follows easily from the properties of the z' : s (see Lemma 4.3). Thus
the matrix representing P is triangular in the ordered. basis described
above, the diagonal elements being equal to I. It follows that the inverse
of P exists and therefore for each u e Ao, deg (u) { n", there exists
u'e U such that
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P(") : P(u') '

(Note that P@) e V.) X'rom Lemma 4.4 it follows that there exists
a e Z(G)?* such that u: u * u'.

Lemma 4.6. Let o ,0 e A, and, let V be a,n irred,uci,ble G-mod,wl,e such

that V* + 0; then Vi : Ap." V:.
Proof. It is sufficient to prove the statement for V :'tG)lZ(G)?*

(compare with the proof of Lemma 4.2). Then

VI - {u + Z(G)?o 1?ou c'€(G)7*)
: Ap,o + z(])?o: AB,o 0 + z(q?")
c A,,*VI .

The relation Au."Vj c Vf follorvs from the definition of AB,o.

Let C be the centralizer of 1( in 't:(G). If Z is an5- G-module
then Vo and VI are C-modulesbyrestriction of 'å(G) tothesubalgebra
C; in {äct Zo is even a lt1KlC-module.

Lemma 4,7, Let V be an irued,ucible G-mod,ule, V* + 0. ?hen, the

equi,ualence class lvl o.f V 'is completely d,etermined, by the equiualence

class of the C-mod,ule VI. V: is an'i,rued,uci,ble C-ntod,ul,e.

Proof . This is an easy consequence of Theorem 5.5, [6]. (Note that
the action ol Z(K)C ort Vo is completely determined by the action of
C on VJ.)

Let G" be the set of all equivalence classes lvl of irreducible G-

modules Z suchthat Yot'} and V,:0 foreach P<*. Wecall Vo

the minimal component of Y. Nov an irreclucible G-moclule Z is K-finite
if and only if V, +0 for some x-eight xe t'L, [6, proposition 4.21]. It
follows that Z is ,K-finite if anci onl5- if tr' has a minimal component'.
Thus the set G' of all equivalence classes of irreducible 1(-finite G-

modules is equa,l to

uun" '

Of course G" n G;: { when u # 0.
Let Mo:ZAp,*. If lvle G" then VI is in anatural wa,y a,

p<d
CIC n't(G)M*-module. We denote by C" the set of all equivalence
classes of irreducible CIC n't(G)M" -modules.

Theorem 4.8. Themapping V-->V[ ind'uces abijecti,onbetween G*and, C',.

Proof. If lvl,lwl e Gi then it is clear lhaf Vj and tr{/i are equivalent
as C-modules if and only if they are equivalent as CICIZ(G)M"-
modules. The injectivity of the mapping follov's norv from Lernma 4.7.

Let next lwleC',. We have to show that there exists [7] € Gi such
that Vtr :W as CIC nZ(q JLlo -modules. X'irst we extend W to a C-
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module. Lel r be a non-zero element of W, and let 9t be the annihilator
of r in C so that 

,W 
- Clz{. We define a left ideal of ?(G) by

=)1" : {u e Z@)l'6(G)u n C c Z} .

Consider the G-module V :'t9)fll. X'irst we show that Z is irreducible
i.e. the left ideal ')Z is maximal. Let 9ll" c Z(G) be a left ideal such that
I eltl and ')l c11t. Then

4:C 61?Zc CnZ(G)911-.

Because of the irreducibility of W ,-1 is a maximal left ideal in C. Now
I e C nZG)"lt and thereforc el : C nZ(G)111. From the definition
of ')L it follows that c"l'll q c)?; thus c'llt: ?l and ?Z is maximal.

Since ?oc')l the vector l+')Le Y is annihilated by 7o, and
therefore I + ')L e lry . X'rom Lemm a 4.7 we conclude that VI consists
of vectors c +'')t, ce C. From C n1L:q it then follows that the
mapping

q I VI -+C1:Z , E@ 1-'ll1 : c +4
is a C-linear isomorphism. Thus V; =ly as C-modules. Next u,e obserye
t}nat C nZG)c)lL- cgl!, so ')lloc ")1 ancl therefore V{ : AB., V! :0
for p < a. ft follorvs that lvl e G*.

By Lemma 3.5, rank K : rank G if ancl only if To: 0.

Theorem 4.9. Let rank 4 : rank -K. Then for any l«rge weight a e A
the set G'o contains eractl,y one element lVl and, d,im, VJ : L.

Proof. Let, o beoneof thegenerators ct,...,c, of C (seeDefirftion
4.1). Then ce Ao, deg (c) {n" and III ,cf :0. Then c ca\bewritten
intheformdescribedin Lemma4.5. Since lH, c): 0, 1,, * 1,, I . . . * 7,^

:0 for each of the products ,u,1,,t11o...,t1i1". Now 1,,}:1,,2...\ ),i6

and Li,*0 (z:1,2,...,k) (To:0); thus ),;1"10 arrd u,,,tl,,...xLik
e '')llo. It follorvs that the generators c belong to the subalgebra C . l +
Cn1Q)1lto of C; hencethisistruefor all ce C.

IÄre ccnclude that the algebra CIC n1(G)')ll* is isomorphic (rvhen cr

is large) to the algebra C of complex numbers ancl therefore t'here exists
exactly one equivalence class of irreducible (non-zero) CIC n'E(])')ll*-
modules and the dimension of such a module is equal to one. Theorem 4.8

completes the job.
Remark 4.10. The results of this section can be easily extended to the

case in which K is a reductive subalgebra of G.
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