ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{\text{eries}} \ A$

I. MATHEMATICA

598

ON IRREDUCIBLE MODULES OF A LIE ALGEBRA WHICH ARE COMPOSED OF FINITE-DIMENSIONAL MODULES OF A SUBALGEBRA

 $_{\rm BY}$

JOUKO MICKELSSON

HELSINKI 1975 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1975.598

Copyright © 1975 by Academia Scientiarum Fennica ISSN 0066-1953 ISBN 951-41-0214-2

Communicated 19 September 1974

KESKUSKIRJAPAINO HELSINKI 1975

.

1. Introduction

Let G be a Lie algebra and K a subalgebra of G. If K is semisimple (or at least reductive) then the finite-dimensional K-modules are well-known. We can then pose the following question: What are the irreducible G-modules which, when regarded as a K-module, are direct sums of irreducible finite-dimensional K-modules? We call such modules K-finite.

This problem has been extensively studied in the following special case (see e.g. [1]-[3], [5], [7]): Let \mathscr{G} be a non-compact semisimple Lie group and let \mathscr{K} be the maximal compact subgroup of \mathscr{G} . Let G (resp. K) be the Lie algebra of \mathscr{G} (resp. \mathscr{K}). As was shown by Harish-Chandra, study of unitary irreducible representations of \mathscr{G} in a Hilbert space leads in a natural way to a study of irreducible K-finite G-modules.

In this paper G is an arbitrary (finite-dimensional) complex Lie algebra and K is a semi-simple (or reductive) subalgebra of G. The work is divided into two parts. In section 3 we study irreducible G-modules admitting a vector of maximal weight λ with respect to a Cartan subalgebra H_T of G such that $H = K \cap H_T$ is a Cartan subalgebra of K. We prove that for a »special» subalgebra K (Definition 3.7) and for any weight λ such that the restriction $\lambda|_H$ is a dominant integral weight of K there exists a unique equivalence class of K-finite G-modules which have the maximal weight λ .

In section 4 we study irreducible *G*-modules *V* with the help of the minimal component V_{\min} of *V*; if α is a dominant integral weight of *K* we denote by V_{α} the sum of all irreducible finite-dimensional *K*-modules in *V* which have α as their maximal weight; by definition $V_{\min} = V_{\alpha}$ if $V_{\alpha} \neq 0$ and $V_{\beta} = 0$ for all $\beta < x$. Let rank $G = \operatorname{rank} K$. We prove that if α is »large enough» (see Definition 4.1) then there exists a unique equivalence class [V] of irreducible *K*-finite *G*-modules *V* such that $V_{\min} = V_{\alpha}$. Such *G*-modules are called discrete because they are completely characterized by the weight α i.e. by a sequence of integers consisting of the components of α .

We take profit at crucial steps (Theorem 3.9 and Lemma 4.7) of the results of J. Lepowsky and G. W. McCollum, [6]: If V is a G-module

A. I. 598

such that $V_{\alpha} \neq 0$ for some dominant integral weight α and V is generated by $V_{\alpha} (V = \mathcal{E}(C)V_{\alpha}$ where $\mathcal{E}(G)$ is the enveloping algebra of G) then V is K-finite. In addition V is completely determined by the action of $\mathcal{E}(K) C$ on V_{α} where C is the centralizer of K in $\mathcal{E}(G)$. These results have earlier been obtained by Harish-Chandra, [1] and [2], in case G is semi-simple.

See also for related recent results by van den Hombergh in »A note on Mickelsson's step algebra» and »On some Harish-Chandra modules» (to appear in Indagationes Mathematicæ).

The author would like to thank Professor Kalevi Suominen for reading the manuscript and suggesting improvements.

2. Notation

In this paper all Lie algebras are finite-dimensional. All algebras and vector spaces are over **C**, the field of complex numbers. If A is an algebra, V an A-module, S a subset of A and X a subset of V we denote by SX the subset $\{sx \mid s \in S, x \in X\}$ of V.

We denote by V^* the dual space of a vector space V.

Let K be a semi-simple Lie algebra, H a Cartan subalgebra of K and \langle , \rangle the Killing form on K. Because \langle , \rangle is non-degenerate, there exists (for each $\alpha \in H^*$) an element $h_{\alpha} \in H$ such that $\langle h_{\alpha}, h \rangle = \alpha(h)$ for all $h \in H$. Let (,) be the symmetric non-degenerate bilinear form on H^* defined by $(\alpha, \beta) = \langle h_{\alpha}, h_{\beta} \rangle$.

For any Lie algebra G, we denote by $x \mapsto \operatorname{ad} x$ the adjoint representation of G, $\operatorname{ad} x(y) = [x, y]$.

If L is any Lie algebra then $\mathcal{C}(L)$ is the universal enveloping algebra of L. If L' is a subalgebra of L then $\mathcal{C}(L')$ can be identified in a natural way with a subalgebra of $\mathcal{C}(L)$.

If $\{x_1, x_2, \ldots, x_n\}$ is a basis of L then the monomials $x_{i(1)}x_{i(2)} \ldots x_{i(k)}$ $(i(1) \leq i(2) \leq \ldots \leq i(k))$ along with **1** give a basis of $\mathcal{C}(L)$ (Poincaré-Birkhoff-Witt theorem).

For any subset S of $\mathscr{C}(L)$ we denote by $\mathscr{P}(S)$ the left ideal generated by S, $\mathscr{P}(S) = \mathscr{C}(L)S$.

Let \mathscr{B} be an associative algebra, \mathscr{A}_1 an ideal of \mathscr{B} and $V \neq \mathscr{B}/\mathscr{A}_1$ -module. If \mathscr{A}_2 is any ideal of \mathscr{B} such that $\mathscr{A}_2 \subset \mathscr{A}_1$ then by the extension of V into a $\mathscr{B}/\mathscr{A}_2$ -module we mean the $\mathscr{B}/\mathscr{A}_2$ -module V, where the action of $\mathscr{B}/\mathscr{A}_2$ is defined by

$$(b + \mathcal{A}_2)v = i(b)v$$
; $b \in \mathcal{B}$, $v \in V$,

where $i: \mathcal{B} \to \mathcal{B}/\mathcal{A}_1$ is the canonical projection.

3. Modules with maximal weight

If L is any Lie algebra and H_L a Cartan subalgebra of L then we can write

$$L = H_L \oplus \bigoplus_{lpha
eq 0} L_{lpha}$$

where L_{α} is the root subspace corresponding to the non-zero root α . Because we assume L to be finite-dimensional, the sum is finite. By definition L_{α} consists of all elements $x \in L$ such that

$$(ad h - \alpha(h))^n x = 0$$
 for some positive integer n .

Let H_L^* be the dual of H_L and $\{h_1, h_2, \ldots, h_l\}$ a fixed basis of H_L . Let $\lambda, \mu \in H_L^*$ with $\lambda \neq \mu$. We say that λ is bigger than $\mu \ (\lambda > \mu)$ if the first non-zero number in the sequence

$$\lambda(h_1) - \mu(h_1)$$
, ..., $\lambda(h_l) - \mu(h_l)$

is of the form x + iy with x > 0 or x = 0 and y > 0. We denote by $L_{+}(L_{-})$ the solvable subalgebra of L generated by the subspaces L_{α} with $\alpha > 0$ ($\alpha < 0$).

Definition 3.1. Let V be an L-module. We denote by V^+ the subspace of V consisting of all vectors v with the property xv = 0 for all $x \in L_+$. We say that V is bounded above if $1 \leq \dim V^+ < \infty$.

Lemma 3.2. If V is an irreducible L-module which is bounded above then dim $V^+ = 1$ and there exists $\lambda \in H_L^*$ such that $hv = \lambda(h)v$ for each $v \in V^+$ and $h \in H_L$. (We say that λ is the maximal weight of V and v is a maximal vector.)

Proof. Because $1 \leq \dim V^+ < \infty$ and H_L is nilpotent there is a common eigenvector $v \in V^+$ of all $h \in H_L$ (V^+ is clearly H_L -invariant). Because of the irreducibility of V and of the Poincaré-Birkhoff-Witt theorem we have $V = \mathcal{C}(L_-)v$. If v' = uv, $u \in \mathcal{C}(L_-)L_-$, is another vector in V^+ then

$$V' = \mathfrak{E}(L)v' = \mathfrak{E}(L_{-})\mathfrak{E}(H_{L})v'$$

is a non-trivial $(v \notin V')$ invariant subspace if $v' \neq 0$. Thus v' = 0 and $\{v\}$ is a basis of V^+ .

Definition 3.3. Let V be an L-module. For each $\alpha \in H_L^*$ the weight subspace V_{α} consists of all vectors $v \in V$ for which

 $(h - \alpha(h))^n v = 0$ for all $h \in H_L$ and for some positive integer n.

Theorem 3.4. Let L be a Lie algebra and let H_L be a Cartan subalgebra of L. For each $\lambda \in H_L^*$ such that $\lambda|_{[H_L, H_L]} = 0$ there exists a unique equivalence class of irreducible L-modules which are bounded above and have maximal weight λ . Any such an L-module is a direct sum of weight subspaces of finite dimension.

Proof. We define $W^{\lambda} = \mathcal{E}(L)/\mathcal{I}_{\lambda}$ where \mathcal{I}_{λ} is an ideal,

$$\mathcal{I}_{\lambda} = \mathcal{I}(L_{+}) + \mathcal{I}(\{h - \lambda(h) \cdot \mathbf{1} \mid h \in H_{L}\}).$$

 W^{λ} is an L_{-} (and $\mathcal{C}(L)-$) module in a natural way. Let $v_{0}=\mathbf{1}+\mathcal{J}_{\lambda}.$ Then

$$L_+v_0 = 0$$
, $hv_0 = \lambda(h)v_0$ $(h \in H_L)$, $W^{\lambda} = \mathcal{E}(L_-)v_0$.

It follows that a basis of W^{λ} is given by vectors of the type

(*)
$$e_{\beta_1}e_{\beta_2}\ldots e_{\beta_k}v_0 \ (k=0, 1, 2, \ldots)$$

where e_{β_i} (i = 1, 2, ..., k) is any element of some fixed basis of L_{β_i} and $0 > \beta_1 \ge \beta_2 \ge ... \ge \beta_k$ are negative roots of L. Let W_{α}^{λ} be the subspace of W^{λ} spanned by the vectors (*) for which

$$lpha = eta_1 + \ldots + eta_k + \lambda$$
 .

We show by induction on k than W^{λ}_{α} is a weight subspace with weight α . Assume that the vector v has weight β ,

$$(h - \beta(h))^n v = 0$$
 for all $h \in H_L$.

Let γ be a root and $e_{\gamma} \in L_{\gamma}$,

$$(\text{ad } h - \gamma(h))^m e_{\gamma} = 0 \text{ for all } h \in H_L.$$

Then

$$(h-(eta+\gamma)(h))^{n+m}e_{\gamma}v=\sum_{k=0}^{n+m}(\mathrm{ad}\;h-\gamma(h))^{k}e_{\gamma}\cdotinom{n+m}{k}\cdot (h-eta(h))^{n+m-k}v=0\;.$$

Thus the weight of $e_{\gamma}v$ is $\beta + \gamma$. It follows that each $v \in W_{\alpha}^{\lambda}$ is of weight $\alpha \leq \lambda$. It is clear that dim $W_{\alpha}^{\lambda} < \infty$ and each vector of weight α belongs to W_{α}^{λ} . Note that W_{λ}^{λ} is spanned by the vector $v_0 = \mathbf{1} + \gamma_{\lambda}$. Let N^{λ} be the sum of all invariant subspaces in W^{λ} which do not contain v_0 . Then $v_0 \notin N^{\lambda}$ and we define

$$V^{\lambda}=W^{\lambda}/N^{\lambda}$$
 .

The *L*-module V^{λ} is irreducible, has $v_0 + N^{\lambda}$ as the maximal vector and λ is the maximal weight. The uniqueness part of the proof goes as in the case of a semisimple Lie algebra (see [4, p. 109]).

Let G be a Lie algebra, K a semi-simple subalgebra of G and H a Cartan subalgebra of K. Because K is semi-simple, there exists a subspace T in G such that $G = K \oplus T$ and $[K, T] \subset T$. We denote by T_0 the null component of H in T,

$$T_{\mathbf{0}} = \{ x \in T \mid [h, x] = 0 \quad \forall h \in H \}.$$

Lemma 3.5. Let H_T be a Cartan subalgebra of the Lie algebra $H + T_0 \subset G$. Then $H \subset H_T$ and H_T is even a Cartan subalgebra of G. *Proof.* There exists $x \in H + T_0$ such that

$$H_T = \{y \in H + T_0 \mid (\text{ad } x)^n y = 0 \text{ for some } n \in N\},\$$

[4, pp.79-80]. Now [x, H] = 0 for all $x \in H + T_0$, thus $H \subset H_T$. Next let S be the normalizer of H_T in G. From $[S, H_T] \subset H_T$ it follows that [S, H] = 0 and therefore $S \subset H + T_0$. Because H_T is a Cartan subalgebra of $H + T_0$ it follows that $S = H_T$ and we can conclude that H_T is a Cartan subalgebra of G.

Let Φ be the set of roots of K relative to $H, \Delta \subset \Phi$ is a set of simple roots and Φ^+ (resp. Φ^-) is the set of positive (resp. negative) roots with respect to Δ . Next we divide T into weight subspaces,

$$T_{\lambda} = \{x \in T \mid [h, x] = \lambda(h) x, \forall h \in H\}.$$

We denote by Ψ the set of weights of K in T, Ψ^+ (resp. Ψ^-) is the set of positive (resp. negative weights in Ψ relative to an ordered basis $\{h_1, \ldots, h_l\}$ of H which is dual to the basis $\{h_{\alpha_1}, \ldots, h_{\alpha_l}\}$,

$$\langle lpha_i(h_j) = \langle h_{lpha_i} \ , \ h_j
angle = \delta_{ij} \ .$$

Here $\alpha_1, \ldots, \alpha_l$ are the distinct simple roots of K.

Definition 3.6. The semi-simple subalgebra K of G is a special subalgebra if

$$\mathbf{N}(\{\alpha\}) \cap \mathbf{N}(\Psi^+) = \{0\}$$

for all $\alpha \in \Delta$. If $\Omega \subset H^*$ is any subset, we denote by $\mathbf{N}(\Omega)$ the linear span of Ω with non-negative integral coefficients.

Example 3.7. Let $G = \text{gl}(n, \mathbf{C})$, the Lie algebra with basis $\{e_{ij}\}_{i,j=1}^{n}$ and commutation relations

$$[e_{ij}, e_{kl}] = \delta_{jk}e_{il} - \delta_{il}e_{kj}$$
.

Let K be the subalgebra spanned by the vectors $(2 \le p \le n-2)$

$$e_{ij}\,,\,\,i
eq j\,,\,\,1\leq i\,,j\leq p\,;\,\,e_{ii}-e_{i+1\,i+1}\,,\,\,i=1\,,2\,,\ldots,p-1\,;$$

and

$$e_{ij}\,,\,i
eq j\,,\,p+1\leq i\,,j\leq n\,;\,e_{ii}-e_{i+1\,i+1}\,,\,\,i=p+1\,,\,p+2\,,\ldots\,,n{-}1.$$

Note that K is isomorphic to $A_{p-1} \oplus A_{n-p-1}$. As H we can take the subalgebra of K spanned by the vectors $e_{ii} - e_{i+1\,i+1}$, $1 \leq i \leq n-1$, $i \neq p$. It is easily seen that in this case

$$T_0 = \{a\sum\limits_{i=1}^{p}e_{ii} + b\sum\limits_{i=p+1}^{n}e_{ii} \mid a \text{ , } b \in \mathbf{C}\}$$

and $H_T = H + T_0$. Using the properties of the roots of the classical simple Lie algebras A_l it is not difficult to verify that K is special.

We return to the general case. Let K be a special subalgebra of Gand $l = \operatorname{rank} K$, $p = \operatorname{rank} G$. We fix an ordered basis $\{h_1, h_2, \ldots, h_p\}$ of H_T such that $\{h_1, h_2, \ldots, h_l\}$ is the basis of H described above. We define the following subalgebras of G:

$$egin{aligned} G_+ &= K_+ + \sum\limits_{\lambda > 0} T_\lambda + S_+ \ , \ G_- &= K_- + \sum\limits_{\lambda < 0} T_\lambda + S_- \end{aligned}$$

where K_+ (resp. K_-) is the subalgebra of K spanned by the vectors belonging to positive (resp. negative) roots of K. We define

$$H + T_0 = S_+ + S_- + H_T$$

to be the corresponding decomposition for $H + T_0$. Because of our choice of basis of H_T (see also Lemma 3.5) it is clear that $G = G_+ + G_- + H_T$ is a similar decomposition for G relative to the Cartan subalgebra H_T .

Definition 3.8. A G-module V is K-finite if it is a sum of finitedimensional K-modules when considered as a K-module by restriction to K.

Let Λ be the set of dominant integral elements in H^* :

 $\Lambda = \{\lambda \in H^* \mid (\lambda, \alpha) \text{ is a non-negative integer for all } \alpha \in \Delta\}.$

Theorem 3.9. Let K be a special subalgebra of G. Then for each $\lambda \in H_T^*$ such that $\lambda|_H \in \Lambda$ and $\lambda|_{[H_T, H_T]} = 0$ there exists a unique equivalence class of K-finite irreducible G-modules which are bounded above and have λ as the maximal weight.

Proof. The uniqueness follows from Theorem 3.4. We have to prove the existence. We define an ideal

$$\mathcal{I}_{\lambda} = \mathcal{I}(G_{+}) + \mathcal{I}(\{h - \lambda(h) \cdot \mathbf{1} \mid h \in H_{T}\})$$

and $W^{\lambda} = \mathscr{C}(G)/\mathscr{P}_{\lambda}$. Consider the subset S_{λ} of W^{λ} ,

$$S_{\lambda} = \{ e_{-\alpha}^{n_{\alpha}+1} + \mathcal{I}_{\lambda} \mid \alpha \in \varDelta \}$$

where $e_{-\alpha}$ belongs to the root $-\alpha$ and

$$n_{lpha} = 2 \cdot rac{(\lambda|_H, \alpha)}{(lpha, lpha)}, \ lpha \in arDelta$$
 .

Let $U^{\lambda} = \mathscr{C}(G) S_{\lambda}$ be the submodule of W^{λ} generated by S_{λ} . We claim that U^{λ} does not contain the vector $\mathbf{1} + \mathcal{I}_{\lambda}$. It is well-known that S_{λ} .

is annihilated by K_+ (see [4, p. 115]). Now W^{λ} is a direct sum of weight subspaces, W^{λ}_{λ} is spanned by the vector $\mathbf{1} + \mathcal{I}_{\lambda}$ and λ is the highest weight in W^{λ} (compare the proof of Theorem 3.4). Suppose that $\mathbf{1} + \mathcal{I}_{\lambda} \in U^{\lambda}$; using the Poincaré-Birkhoff-Witt theorem it is easily seen that then there exists $\beta_1, \beta_2, \ldots, \beta_k \in \Psi^+$ such that

$$\beta_1 + \beta_2 + \ldots + \beta_k - (n_\alpha + 1) \cdot \alpha = 0$$

for at least one weight $\alpha \in \Delta$. But this is impossible because K is a special subalgebra of G.

Let again N^{λ} be the sum of all invariant subspaces of W^{λ} not containing the vector $\mathbf{1} + \mathcal{D}_{\lambda}$. It is clear that $U^{\lambda} \subset N^{\lambda}$. We define

$$V^{\lambda} = W^{\lambda}/N^{\lambda}$$

The *G*-module V^{λ} is irreducible and has a maximal vector $v = \mathbf{1} + \mathcal{D}_{\lambda} + N^{\lambda}$ of weight λ . Furthermore, V^{λ} contains a finite-dimensional *K*-module, namely $\mathcal{E}(K)v$ ([4, p. 115]). It follows from proposition 4.2, [6], that V^{λ} is *K*-finite. (See also [1, Theorem 1.])

4. Discrete G-modules

If not otherwise stated, the notation of the previous sections is in force also in this section.

Let C be the centralizer of K in $\mathcal{E}(G)$. The algebra C is a finitely generated subalgebra of $\mathcal{E}(G)$ (see [8, p. 162, Theorem 2.3.1.4]).

Let an ordered basis $\{t_1, t_2, \ldots, t_r\}$ be given for the subspace T of G, such that

$$[h, t_i] = \lambda_i(h)t_i, \ h \in H, \ i = 1, 2, \ldots, r$$
,

where $\lambda_i \in \Psi$ (i = 1, 2, ..., v) and $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r$. We complete this to an ordered basis of G,

$$\{t_i, e_{\alpha_i}, h_i, e_{\beta_i}\}$$

where the order is defined through the ordering of roots,

$$lpha_1 < lpha_2 < \ldots < lpha_q < 0 < eta_1 < eta_2 < \ldots < eta_q$$
,

and through a labelling of the basis elements h_i of H. According to the Poincaré-Birkhoff-Witt theorem this ordering induces a basis for $\mathcal{E}(G)$ by ordered monomials in the basis elements of G. If $u \in \mathcal{E}(G)$ is such a basis vector we denote by deg (u) the number of vectors t_i contained in u. If $v \in \mathcal{E}(G)$ is an arbitrary (finite) linear combination of ordered monomials,

$$v = \sum_{k=1}^n a_k u_k \ (a_k \in \mathbf{C}) ,$$

we define deg $(v) = \max_{k=1,\ldots,n} \deg (u_k).$

Definition 4.1. Let $c_1, c_2, \ldots, c_{\zeta}$ be a generating sequence of C. We define

$$n_c = \max_{k=1,2,\ldots,\zeta} \deg (c_k)$$
.

We call an element λ of Λ , the set of dominant integral weights of K, large if

$$\lambda + \omega_1 + \omega_2 + \ldots + \omega_k \in \Lambda ext{ for all } \omega_i \in \Psi, ext{ } k = 1, 2, \ldots, n_c$$
 .

Let V be any G-module. Consider V as a K-module by restriction. For any $\lambda \in \Lambda$ we denote by V_{λ} the sum of all irreducible finite-dimensional K-submodules of V with maximal weight λ . We define

$$V_{\lambda}^{+} = \{ x \in V_{\lambda} \mid e_{\beta}x = 0 \quad \forall \ \beta \in \Phi^{+} \},$$

the subspace of vectors with maximal weight in V_{λ} ; in other words,

$$V_{\lambda}^{+} = \{ x \in V_{\lambda} \mid hx = \lambda(h)x \quad \forall h \in H \} .$$

We denote by \mathcal{D}_{λ} the annihilator in $\mathcal{E}(K)$ of the maximal vector in an irreducible finite-dimensional *K*-module with maximal weight λ ; according to [4, p. 115],

$$\mathcal{D}_{\lambda} = \mathcal{J}(K_{+}) + \mathcal{J}(\{h - \lambda(h) \cdot \mathbf{1} \mid h \in H\}) + \mathcal{J}(\{e_{-\alpha}^{n_{\alpha}+1} \mid \alpha \in \varDelta\})$$

where K_+ and the numbers n_{α} are defined as in section 3.

For all β and α in Λ we define $A_{\beta,\alpha}$ to be the subset of $\mathcal{E}(G)$ for which

$$A_{\beta,\,\alpha}\,V_{\alpha}^{+} \subset V_{\beta}^{+}$$

for any G-module V.

Lemma 4.2. $A_{\beta,\alpha} = \{ u \in \mathscr{E}(G) \mid \Im_{\beta} u \subset \mathscr{E}(G) \Im_{\alpha} \}.$

Proof. Let V be a G-module such that $V_{\alpha} \neq 0$. Any such G-module is a factor module of the left-module $\mathcal{E}(G)/\mathcal{E}(G)/\mathcal{A}_{\alpha}$. It follows that

$$A_{\beta,\alpha} = \{ u \in \mathscr{C}(G) \mid u \ V_{\alpha}^+ \subset \ V_{\beta}^+ \}$$

where $V = \mathcal{E}(G)/\mathcal{E}(G)\mathcal{I}_{\alpha}$. Let now $u \in A_{\beta,\alpha}$. If $x = \mathbf{1} + \mathcal{E}(G)\mathcal{I}_{\alpha}$ then $x \in V_{\alpha}^+$ and

$$ux = u + \mathscr{E}(G)\mathfrak{I}_{\alpha} \in V_{\beta}^{+}$$

and therefore $\mathcal{D}_{\beta}u \subset \mathcal{E}(G)\mathcal{D}_{\alpha}$. To prove the converse, assume that $\mathcal{D}_{\beta}u \subset \mathcal{E}(G)\mathcal{D}_{\alpha}$. Let $x \in V_{\alpha}^+$. Then

$$\mathcal{D}_{\mathfrak{s}}ux \subset \mathscr{C}(G)\mathcal{D}x = 0.$$

It follows that $\mathscr{C}(K)ux$ is a finite-dimensional K-module with ux as the vector of maximal weight (which is β) and thus $ux \in V_{\beta}^+$.

Lemma 4.3. Let ω be an element of Λ such that $\omega + \lambda \in \Lambda$ for any $\lambda \in \Psi$. Then for each $t_i \in T$ there exists $u \in A_{\omega+\lambda_i,\omega}$ of the form

$$u = t_i + \sum_{j, \lambda_j > \lambda_i} t_j v_j$$

where $v_j \in \mathcal{C}(K_-)$.

Proof. We can write

$$(*) T = \bigoplus_{v} T^{(v)}$$

where $T^{(v)}$ is the irreducible component of T under the adjoint action of K, with maximal weight v. We can assume that the basis $\{t_j\}_{j=1}^r$ of T is chosen in such a way that it is compatible with the decomposition (*); thus we may assume that $t_i \in T^{(v)}$ for some weight v.

Put $D_{\omega} = \mathcal{E}(K)/\mathcal{D}_{\omega}$ and consider the tensor product $T^{(r)} \otimes D_{\omega}$, which is a K-module under the diagonal action:

$$k(x\otimes y)=[k\ ,x]\otimes y+x\otimes ky;\ k\in K$$
 , $x\in T^{(r)}$, $y\in D_{\omega}$.

It is known that the module $T^{(v)} \otimes D_{\omega}$ contains an irreducible submodule with maximal weight $\omega + \lambda_i$ (note that $\omega + \lambda \in \Lambda$ for any weight λ in $T^{(v)}$) with a multiplicity which is equal to the multiplicity $m(\lambda_i, v)$ of the weigh λ_i in $T^{(v)}$; in other words there are $m(\lambda_i, v)$ linearly independent vectors in $T^{(v)} \otimes D_{\omega}$ which are annihilated by $\Im_{\omega+\lambda_i}$ (see e.g. [4, pp. 141–142]). It follows that for each $t_i \in T_{\lambda_i}^{(v)} = T_{\lambda_i} \cap T^{(v)}$ there exists a nonzero element u_0 of $T^{(v)} \otimes D_{\omega}$ of the form

$$u_{\mathbf{0}} = t_{i} \otimes (a \cdot \mathbf{1} + \mathfrak{I}_{\omega}) + \sum_{\substack{j \\ i_{j} > i_{i}}} t_{j} \otimes (v_{j} + \mathfrak{I}_{\omega}),$$
$$a \in \mathbf{C}, \quad v_{j} \in \mathfrak{C}(K_{-}),$$

such that u_0 is annihilated by $\mathcal{D}_{\omega+\lambda_i}$. We define $v_i = a \cdot \mathbf{1}$ and let k be the smallest value of the index j for which $v_j \notin \mathcal{D}_{\omega}$; because of

$$e_{\alpha}u_{0}=0$$
 for all $\alpha\in\Phi^{+}$,

we have $e_{\alpha}v_k \in \mathcal{D}_{\omega}$ for all $\alpha \in \Phi^+$. Now any vector in D_{ω} which is annihilated by K_+ is a multiple of $\mathbf{1} + \mathcal{D}_{\omega}$; thus k = i and $a \neq 0$. We may assume that a = 1 (multiply u_0 by a^{-1}).

Consider the linear mapping

$$\varphi: T^{(\nu)} \otimes D_{\omega} \to {}^{\mathcal{C}}(G)/{}^{\mathcal{C}}(G) \, \mathcal{I}_{\omega}$$

induced by the multiplication map $T^{(r)} \otimes \mathcal{C}(K) \to \mathcal{C}(G)$. This mapping is a K-module homomorphism; in fact,

$$egin{aligned} &arphi\left(k(t\otimes(v+arphi_{\omega}))
ight) = arphi\left([k\ ,t]\otimes\left(v+arphi_{\omega}
ight)+t\otimes\left(kv+arphi_{\omega}
ight)
ight) \ &= [k\ ,t]v+arepsilon(G)\,arphi_{\omega}+tkv+arepsilon(G)\,arphi_{\omega}=ktv+arepsilon(G)\,arphi_{\omega} \ &= k\,arphi\left(t\otimes\left(v+arphi_{\omega}
ight)
ight), \end{aligned}$$

for all $k \in K$, $t \in T^{(v)}$ and $v \in \mathcal{C}(K)$. Let $u \in \mathcal{C}(G)$,

$$u = t_i + \sum_{j, \lambda_j > \lambda_i} t_j v_j$$
.

Then $\varphi(u_0) = u + \mathscr{E}(G) \, \mathscr{D}_{\omega}$ and therefore $\mathscr{D}_{\omega+\lambda_i} u \subset \mathscr{E}(G) \, \mathscr{D}_{\omega}$. In other words (Lemma 4.2), $u \in A_{\omega+\lambda_i,\omega}$.

We denote by P the projection $P : \mathcal{E}(G) \to \mathcal{E}(G)$ such that Ker $P = \mathcal{E}(G)\mathcal{I}_{\alpha} + U_1\mathcal{E}(K_-)$ and $P(\mathcal{E}(G)) = U_1$ where U_1 consists of the elements

$$b \cdot \mathbf{1} + \sum a_{i_1 \cdots i_k} t_{i_1} \cdots t_{i_k}$$

where b, $a_{i_1...i_k} \in \mathbf{C}$ and $i_1 \leq \ldots \leq i_k$.

Lemma 4.4. Let $u_1, u_2 \in A_{\beta, \alpha}$ such that $P(u_1) = P(u_2)$. Then

$$u_1 - u_2 \in \mathcal{E}(G) \mathcal{D}_{\alpha}$$
 .

Proof. We shall again use the fact that any vector in $\mathcal{E}(K)/\mathcal{D}_{\alpha}$ which is annihilated by K_{+} is a multiple of $\mathbf{1} + \mathcal{D}_{\alpha}$. First we write

$$u_1 - u_2 = w + t_{j_1} \dots t_{j_k} v + \sum_{\langle m, i_y \rangle} t_{i_1} \dots t_{i_m} v_{i_1 \dots i_m}$$

where each term is a sum of ordered monomials and $w \in \mathcal{C}(G) \mathcal{D}_{\omega}$, v and $v_{i_1...i_m} \in \mathcal{C}(K_-)$ and

$$\lambda_{i_1} + \ldots + \lambda_{i_m} \geq \lambda_{j_1} + \ldots + \lambda_{j_k}$$

If m = k then $j_{\nu} \neq i_{\nu}$ for at least one value of the index ν . From $K_{+}(u_{1} - u_{2}) \in \mathcal{E}(G) \mathcal{D}_{\alpha}$ it follows that

$$K_+ v \subset \mathcal{D}_{\alpha}$$

and thus $v \in \mathcal{O}_{\alpha}$ ($v \notin a \cdot 1 + \mathcal{O}_{\alpha}$ for any $a \neq 0$ because of $P(u_1 - u_2) = 0$). By induction it follows that the coefficient of any $t_{i_1} \dots t_{i_m}$ belongs to \mathcal{O}_{α} and therefore $u_1 - u_2 \in \mathcal{C}(G) \mathcal{O}_{\alpha}$.

It is clear that Lemma 4.4 is valid also if we replace $A_{\beta,\alpha}$ by

$$A_{lpha} = \sum_{eta} A_{eta, lpha}$$

Lemma 4.5. Let $\alpha \in \Lambda$ be large. Then any $u \in A_{\alpha}$ such that deg $(u) \leq n_{c}$ can be written in the form

$$u = v + a \cdot \mathbf{1} + \sum_{k, \langle i_{p} \rangle} u_{i_{1}} u_{i_{2}} \dots u_{i_{k}} \quad (a \in C, \quad v \in \mathcal{C}(G) \mathcal{D}_{\alpha}, \quad u_{i_{p}} \in \mathcal{C}(G);$$
$$v = 1, 2, \dots, k)$$

where $k \leq \deg(u)$, $i_1 \leq i_2 \leq \ldots \leq i_k$ and

(*)
$$u_{i_{\nu}}u_{i_{\nu+1}}\ldots u_{i_k} \in A_{\delta_{\nu},\alpha}; \delta_{\nu} = \alpha + \lambda_{i_{\nu}} + \ldots + \lambda_{i_k} (\nu = 1, 2, \ldots, k).$$

Proof. (1) Let S be the set consisting of finite sequences $\mathbf{i} = (i_1, i_2, \ldots, i_k)$ where $k \leq n_c$ and the integers i_r satisfy the inequalities

$$0 < i_1 \leq i_2 \leq \ldots \leq i_k \leq r = \dim T$$

We denote by e the empty sequence. We define an order in S by putting

$$(i_1\,,\,i_2\,,\,\ldots\,,\,i_k) < (j_1\,,\,j_2\,,\,\ldots\,,\,j_m) \;\; ext{if}\;\;\; k < m \;\; ext{or}\;\; k = m \;\; ext{and}\;\;$$

the first non-zero number in the sequence $i_1 - j_1$, $i_2 - j_2$,... is positive. In addition, for each $i \in S$ we define

$$t_{i} = t_{i_{1}} \dots t_{i_{k}} \in \mathscr{C}(G)$$

and $t_e = \mathbf{1} \in \mathcal{C}(G)$. Let V be the subspace of $\mathcal{C}(G)$ which has the set $\{t_i \mid i \in S\}$ as an ordered basis (the order is defined through the ordering of S).

(2) We put $u^e = \mathbf{1} \in A_{\alpha}$. From the fact that α is large and from Lemma 4.3. it follows that for each $\mathbf{i} = (i_1, i_2, \ldots, i_k) \in S$ there exists

$$u^{i} = u_{1}^{i}u_{2}^{i}\ldots u_{k}^{i} \in A_{\alpha} \quad (u_{\nu}^{i} \in \mathcal{C}(G); \nu = 1, 2, \ldots, k)$$

where each u_{ν}^{i} is of the type described in Lemma 4.3, $P(u_{\nu}^{i}) = t_{i_{\nu}}$ and u_{i} satisfies the relations (*). We denote by U the subspace of A_{α} which has the set

$$\{u^i \mid i \in S\}$$

as an ordered basis.

(3) It is clear that the operator P induces a linear mapping from U into V. Furthermore,

$$P(u^i) = t_i + \text{lower terms}$$

as follows easily from the properties of the $u^i : s$ (see Lemma 4.3). Thus the matrix representing P is triangular in the ordered basis described above, the diagonal elements being equal to 1. It follows that the inverse of P exists and therefore for each $u \in A_{\alpha}$, deg $(u) \leq n_c$, there exists $u' \in U$ such that

$$P(u) = P(u') \; .$$

(Note that $P(u) \in V$.) From Lemma 4.4 it follows that there exists $v \in \mathscr{C}(G) \mathscr{D}_{\alpha}$ such that u = v + u'.

Lemma 4.6. Let $\alpha, \beta \in A$, and let V be an irreducible G-module such that $V_{\alpha} \neq 0$; then $V_{\beta}^{+} = A_{\beta, \alpha} V_{\alpha}^{+}$.

Proof. It is sufficient to prove the statement for $V = \mathcal{E}(G)/\mathcal{E}(G)\mathcal{D}_{\alpha}$ (compare with the proof of Lemma 4.2). Then

$$\begin{split} V_{\beta}^{+} &= \{ u + \mathscr{E}(G) \, \mathscr{D}_{\alpha} \, | \, \mathscr{D}_{\alpha} u \subset \mathscr{E}(G) \, \mathscr{D}_{\alpha} \} \\ &= A_{\beta,\alpha} + \mathscr{E}(G) \, \mathscr{D}_{\alpha} = A_{\beta,\alpha} \, (\mathbf{1} + \mathscr{E}(G) \, \mathscr{D}_{\alpha}) \\ &\subset A_{\beta,\alpha} \, V_{\alpha}^{+} \, . \end{split}$$

The relation $A_{\beta,\alpha}V_{\alpha}^+ \subset V_{\beta}^+$ follows from the definition of $A_{\beta,\alpha}$.

Let C be the centralizer of K in $\mathcal{C}(G)$. If V is any G-module then V_{α} and V_{α}^{+} are C-modules by restriction of $\mathcal{E}(G)$ to the subalgebra C; in fact V_{α} is even a $\mathscr{C}(K)C$ -module.

Lemma 4.7. Let V be an irreducible G-module, $V_{\alpha} \neq 0$. Then the equivalence class [V] of V is completely determined by the equivalence class of the C-module V_{α}^+ . V_{α}^+ is an irreducible C-module.

Proof. This is an easy consequence of Theorem 5.5, [6]. (Note that the action of $\mathcal{E}(K)C$ on V_{α} is completely determined by the action of C on V^+_{α} .)

Let G'_{α} be the set of all equivalence classes [V] of irreducible Gmodules V such that $V_{\alpha} \neq 0$ and $V_{\alpha} = 0$ for each $\beta < \alpha$. We call V_{α} the minimal component of V. Now an irreducible G-module V is K-finite if and only if $V_{\chi} \neq 0$ for some weight $\chi \in A$, [6, proposition 4.2]. It follows that V is K-finite if and only if V has a minimal component. Thus the set G' of all equivalence classes of irreducible K-finite Gmodules is equal to

$$\bigcup_{\alpha \in \Lambda} G'_{\alpha} .$$

Of course $G'_{\alpha} \cap G'_{\beta} = \phi$ when $\alpha \neq \beta$. Let $M_{\alpha} = \sum_{\beta < \alpha} A_{\beta, \alpha}$. If $[V] \in G'_{\alpha}$ then V^+_{α} is in a natural way a $C/C \cap \mathscr{E}(G)M_{\alpha}$ -module. We denote by C'_{α} the set of all equivalence classes of irreducible $C/C \cap \mathcal{C}(G)M_{\alpha}$ -modules.

Theorem 4.8. The mapping $V \rightarrow V_{\alpha}^+$ induces a bijection between G'_{α} and C'_{α} . *Proof.* If $[V], [W] \in G'_{\alpha}$ then it is clear that V^+_{α} and W^+_{α} are equivalent as C-modules if and only if they are equivalent as $C/C \cap \mathscr{C}(G)M_{\alpha}$ modules. The injectivity of the mapping follows now from Lemma 4.7.

Let next $[W] \in C'_{\alpha}$. We have to show that there exists $[V] \in G'_{\alpha}$ such that $V_{\alpha}^+ \simeq W$ as $C/C \cap \mathscr{C}(G) M_{\alpha}$ -modules. First we extend W to a C- module. Let x be a non-zero element of W, and let \mathcal{L} be the annihilator of x in C so that $W = C/\mathcal{L}$. We define a left ideal of $\mathcal{E}(G)$ by

$$\mathcal{N} = \{ u \in \mathcal{E}(G) | \mathcal{E}(G)u \cap C \subset \mathcal{L} \}.$$

Consider the *G*-module $V = \mathcal{C}(G)/\mathcal{N}$. First we show that *V* is irreducible i.e. the left ideal \mathcal{N} is maximal. Let $\mathcal{M} \subset \mathcal{C}(G)$ be a left ideal such that $1 \notin \mathcal{M}$ and $\mathcal{M} \subset \mathcal{M}$. Then

$$\mathcal{L} = C \cap \mathcal{N} \subset C \cap \mathcal{E}(G) \mathcal{M}.$$

Because of the irreducibility of W, \mathcal{L} is a maximal left ideal in C. Now $\mathbf{1} \notin C \cap \mathcal{E}(G) \mathcal{N}$ and therefore $\mathcal{L} = C \cap \mathcal{E}(G) \mathcal{N}$. From the definition of \mathcal{N} it follows that $\mathcal{M} \subset \mathcal{N}$; thus $\mathcal{M} = \mathcal{N}$ and \mathcal{N} is maximal.

Since $\mathcal{D}_{\alpha} \subset \mathcal{D}l$ the vector $\mathbf{1} + \mathcal{D}l \in V$ is annihilated by \mathcal{D}_{α} , and therefore $\mathbf{1} + \mathcal{D}l \in V_{\alpha}^+$. From Lemma 4.7 we conclude that V_{α}^+ consists of vectors $c + \mathcal{D}l$, $c \in C$. From $C \cap \mathcal{D}l = \mathcal{L}$ it then follows that the mapping

$$arphi: V^+_{lpha}
ightarrow C/\mathscr{L} \ , \ arphi(c+\red{l}) = c+\mathscr{L}$$

is a *C*-linear isomorphism. Thus $V_{\alpha}^{\perp} \cong W$ as *C*-modules. Next we observe that $C \cap \mathscr{C}(G) \cap \mathscr{H}_{\alpha} \subset \mathscr{L}$, so $\cap \mathscr{H}_{\alpha} \subset \cap \mathscr{H}$ and therefore $V_{\beta}^{\perp} = A_{\beta,\alpha} \quad V_{\alpha}^{\perp} = 0$ for $\beta < \alpha$. It follows that $[V] \in G'_{\alpha}$.

By Lemma 3.5, rank K = rank G if and only if $T_0 = 0$.

Theorem 4.9. Let rank $G = \operatorname{rank} K$. Then for any large weight $\alpha \in \Lambda$ the set G'_{α} contains exactly one element [V] and dim $V^+_{\alpha} = 1$.

Proof. Let c be one of the generators c_1, \ldots, c_{ϱ} of C (see Definition 4.1). Then $c \in A_{\alpha}$, deg $(c) \leq n_c$ and [H, c] = 0. Then c can be written in the form described in Lemma 4.5. Since [H, c] = 0, $\lambda_{i_1} + \lambda_{i_2} + \ldots + \lambda_{i_k} = 0$ for each of the products $u_{i_1}u_{i_2}\ldots u_{i_k}$. Now $\lambda_{i_1} \geq \lambda_{i_2} \geq \ldots \geq \lambda_{i_k}$ and $\lambda_{i_{\varrho}} \neq 0$ $(\nu = 1, 2, \ldots, k)$ $(T_0 = 0)$; thus $\lambda_{i_k} < 0$ and $u_{i_1}u_{i_2}\ldots u_{i_k} \in \mathcal{M}_{\alpha}$. It follows that the generators c belong to the subalgebra $C \cdot \mathbf{1} + C \cap \mathcal{E}(G) \mathcal{M}_{\alpha}$ of C; hence this is true for all $c \in C$.

We conclude that the algebra $C/C \cap \mathcal{E}(G) \mathcal{M}_{\alpha}$ is isomorphic (when α is large) to the algebra C of complex numbers and therefore there exists exactly one equivalence class of irreducible (non-zero) $C/C \cap \mathcal{E}(G) \mathcal{M}_{\alpha}$ -modules and the dimension of such a module is equal to one. Theorem 4.8 completes the job.

Remark 4.10. The results of this section can be easily extended to the case in which K is a reductive subalgebra of G.

University of Jyväskylä Department of Mathematics SF - 40 100 Jyväskylä 10 Finland

References

- HARISH-CHANDRA: Representations of a semi-simple Lie group on a Banach space I. - Trans. Amer. Math. Soc. 75, 1953, pp. 185-243.
- [2] -»- Representations of semi-simple Lie groups II. Trans. Amer. Math. Soc. 76, 1954, pp. 26-65.
- [3] -»- Representations of semi-simple Lie groups III. Trans. Amer. Math. Soc. 76, 1954, pp. 234-253.
- [4] HUMPHREYS, J.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics 9, Springer-Verlag, New York - Heidelberg - Berlin, 1972.
- [5] LEPOWSKY, J.: Algebraic results on representations of semi-simple Lie groups. Trans. Amer. Math. Soc. 176, 1973, pp. 1-44.
- [6] LEPOWSKY, J., and G. W. Mc COLLUM: On the determination of irreducible modules by restriction to a subalgebra. - Trans. Amer. Math. Soc. 176, 1973, pp. 45-57.
- [7] PARTHASARATHY, K. R., R. RANGA RAO and V. S. VARADARAJAN: Representations of complex semi-simple Lie groups and Lie algebras. - Ann. of Math. 85, 1967, pp. 383-429.
- [8] WARNER, G.: Harmonic analysis on semi-simple Lie groups I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 188, Springer-Verlag, Berlin - Heidelberg - New York, 1972.