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1. Introduction

Let G be a Lie algebra and K a subalgebra of G. If K is semi-
simple (or at least reductive) then the finite-dimensional K-modules are
well-known. We can then pose the following question: What are the
irreducible G-modules which, when regarded as a K-module, are direct
sums of irreducible finite-dimensional K-modules? We call such modules
K-finite.

This problem has been extensively studied in the following special
case (see e.g. [1]—[3], [5], [7]): Let < be a non-compact semisimple
Lie group and let ‘X be the maximal compact subgroup of <. Let G
(resp. K) be the Lie algebra of </ (resp. °X). As was shown by Harish-
Chandra, study of unitary irreducible representations of ¢/ in a Hilbert
space leads in a natural way to a study of irreducible K-finite G-modules.

In this paper G is an arbitrary (finite-dimensional) complex Lie algebra
and K isa semi-simple (or reductive) subalgebra of . The work is divided
into two parts. In section 3 we study irreducible G-modules admitting
a vector of maximal weight 4 with respect to a Cartan subalgebra H
of G such that H = KN H; is a Cartan subalgebra of K. We prove
that for a »specialy subalgebra K (Definition 3.7) and for any weight 1
such that the restriction 1|; is a dominant integral weight of K there
exists a unique equivalence class of K-finite G-modules which have the
maximal weight A.

In section 4 we study irreducible G-modules ¥V with the help of the
minimal component Vuw of T if « is a dominant integral weight of
K we denote by V, the sum of all irreducible finite-dimensional K-
modules in ¥ which have « as their maximal weight; by definition
Vain =V, if V,#£0 and V ;=0 for all f# < x. Let rank G = rank K.
We prove that if « is »large enough» (see Definition 4.1) then there exists
a unique equivalence class [V] of irreducible K-finite G-modules V
such that Vmw = V,. Such G-modules are called discrete because they
are completely characterized by the weight « i.e. by a sequence of integers
consisting of the components of «.

We take profit at crucial steps (Theorem 3.9 and Lemma 4.7) of the
results of J. Lepowsky and G. W. McCollum, [6]: If V is a G-module
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such that 7V, # 0 for some dominant integral weight « and V is generated
by V,(V=EC)V, where E(G) is the enveloping algebra of G)
then V is K-finite. In addition V is completely determined by the action
of ¢(K)C on V, where C is the centralizer of K in €(GF). These
results have earlier been obtained by Harish-Chandra, [1] and [2], in case
@G is semi-simple.

See also for related recent results by van den Hombergh in »A note on
Mickelsson’s step algebra» and »On some Harish-Chandra modules» (to app-
ear in Indagationes Mathematicee).

The author would like to thank Professor Kalevi Suominen for reading
the manuscript and suggesting improvements.

2. Notation

In this paper all Lie algebras are finite-dimensional. All algebras
and vector spaces are over C, the field of complex numbers. If 4 is an
algebra, 7 an A4-module, § a subset of A and X a subset of 7 we
denote by SX the subset {sz|s€S, x € X} of V.

We denote by V* the dual space of a vector space V.

Let K be a semi-simple Lie algebra, H a Cartan subalgebra of K
and (,)> the Killing form on K. Because <, ) is non-degenerate, there
exists (for each « € H*) an element A, € H such that <A,,h) = x(h)
for all » € H. Let (,) be the symmetric non-degenerate bilinear form
on H* defined by (x,p) = <{hy,hy).

For any Lie algebra ¢, we denote by x+>ad x the adjoint represen-
tation of G, ada(y) = [z, y].

If L is any Lie algebra then ‘©(L) is the universal enveloping algebra
of L. If L’ is a subalgebra of L then ‘¢(L’) can be identified in a natural
way with a subalgebra of ‘&(L).

It {#;,%,,..., 2.} is a basis of L then the monomials x;,%;q) . . - Zyp)
(z(1) =4(2) =... =1i(k)) along with 1 give a basis of ‘¢(L) (Poincaré-
Birkhoff-Witt theorem).

For any subset S of E(L) we denote by “)(S) the left ideal generated
by 8, (S) = E(L)S.

Let “% be an associative algebra, <4; an ideal of %3 and V a “B|A,;
-module. If A, is any ideal of “% such that <A, C <A, then by the
extension of ¥ into a “%3/A, -module we mean the /A, -module V,
where the action of /A, is defined by

O+ Ay =1ibpw; bEB,veEV,

C

where 4 : % — P|A, is the canonical projection.
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3. Modules with maximal weight

If L is any Lie algebra and H, a Cartan subalgebra of L then
we can write

L=H, ® ® L,

a0
where L, is the root subspace corresponding to the non-zero root .
Because we assume L to be finite-dimensional, the sum is finite. By
definition L, consists of all elements x € L such that

(ad b — x(h))"z = 0 for some positive integer = .

Let H} be the dual of H; and {h;,h,,..., R} a fixed basis of Hj.
Let A,pu€Hf with 2 % u. We say that 4 is bigger than p (2> u)
if the first non-zero number in the sequence

Ahy) = ph) sy M) — ()

is of the form « + iy with >0 or a =0 and y > 0. We denote by
L, (L) the solvable subalgebra of L generated by the subspaces L, with
x>0 (x<<0).

Definition 3.1. Let V bean L-module. We denote by V+ the subspace
of V consisting of all vectors v with the property av = 0 forall x € L.
We say that V is bounded above if 1 < dim V+ << oo.

Lemma 3.2. If V is an irreducible L-module which is bounded above
then dim V+ =1 and there exists ) € H; such that hv = A(h)v for each
v€ VT and h€H,. (We say that 2 is the maximal weight of V and v
is a maximal vector.)

Proof. Because 1 =<dim V*+ < oo and H, is nilpotent there is
a common eigenvector v € V+ of all h € H, (V*+ is clearly H -invariant).
Because of the irreducibility of ¥ and of the Poincaré-Birkhoff-Witt
theorem we have V = E(L_)v. If o = wuv,u € €(L_)L_, is another
vector in V+ then

V' = E(Lw = E(L-)EHL )
is a non-trivial (v € V') invariant subspace if ¢ £0. Thus v =0
and {v} is a basis of T+,

Definition 8.3. Let ¥V be an L-module. For each « € Hf the weight
subspace V, consists of all vectors ¢ € V for which

(h — a(h))"v = 0 for all h € H; and for some positive integer n.
Theorem 3.4. Let L be a Lie algebra and let Hp be a Cartan sub-
algebra of L. For each 1 € HY such that Mgy ap =0 there exists a unique

equivalence class of irreducible L-modules which are bounded above and have
maximal weight A. Any such an L-module is a direct sum of weight subspaces
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of finite dimension.
Proof. We define W* = ‘6(L)[7), where ), is an ideal,
U, = NLs) + Vb — 2) -1 | b€ HyY).
W* isan L_ (and ‘¢(L) — ) module in a natural way. Let v, =1 + ..
Then
Livy=0, hvy = Ak), (h € H), W = E(L_)v, .
It follows that a basis of W* is given by vectors of the type

(*) €55, -0 (k=0,1,2,...)

where ¢, (i=1,2,...,k) is any element of some fixed basis of L,
and 0> B, =, =... = B are negative roots of L. Let W% be the
subspace of W* spanned by the vectors (*) for which

x=p 4+ ...+ B+ 4.

We show by induction on & than W} is a weight subspace with weight «.
Assume that the vector v has weight g,

(h — B(h))"v =10 forall h€H, .
Let y be arootand e, € L, ,
(ad b — y(h))" e, = 0 forall h€ H, .
Then

ntm
(h— (B + )W)y e = 3 (ad b — y(h))'e, - (n ) m) .

k=0

(b — B = 0.

Thus the we'ght of e v is f 4+ y. It follows that each v € W7 is of weight
o = A. It is clear that dim T’ < co and each vector of weight « belongs
to W.. Note that W7 is spanned by the vector v, =1 1 ),. Let N*
be the sum of all invariant subspaces in 7* which do not contain w,.
Then v, € N* and we define

Vi = TN

The L-module V* is irreducible, has vy + N* as the maximal vector
and A is the maximal weight. The uniqueness part of the proof goes as
in the case of a semisimple Lie algebra (see [4, p. 109]).

Let G be a Lie algebra, K a semi-simple subalgebra of ¢ and H a
Cartan subalgebra of K. Because K is semi-simple, there exists a subspace
T in G such that ¢ =K ® 7T and [K,T]cT. We denote by T,
the null component of H in 7T
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Ty={x€T |[h,2]=0 Vh€EH}.

Lemma 3.5. Let H, be a Cartan subalgebra of the Lie algebra H +
T,C G. Then HC Hy and Hyp is even a Cartan subalgebra of G.
Proof. There exists « € H + T, such that

Hy={y€H+T,|(ad z)'y = 0 for some n € N},

[4, pp.79—80]. Now [x,H]=0 for all * €H 4 T,, thus HC Hr.
Next let S be the normalizer of Hy in G From [S,H;]C Hy it
follows that [S,H] =0 and therefore S C H + T, Because Hp is
a Cartan subalgebra of H -+ T, it follows that § = H; and we can
conclude that H, is a Cartan subalgebra of G.

Let @ be the set of roots of K relative to H, A C @ is a set of
simple roots and @ (resp. @) is the set of positive (resp. negative)
roots with respect to 4. Next we divide 7' into weight subspaces,

T, ={x€T|[h,a]=Ah)z,V h€H}.

We denote by ¥ the set of weights of K in T, ¥+ (resp. ¥") is the
set of positive (resp. negative weights in ¥ relative to an ordered basis

{hy,...,} of H which is dual to the basis {A, ,..., %},
wi(hy) = <ko¢,~ iy = 0y .
Here «;,...,x are the distinct simple roots of K.

Definition 3.6. The semi-simple subalgebra K of G is a special
subalgebra if

N({x}) N N(¥*) = {0}

for all x €. If Q c H* is any subset, we denote by N(£2) the linear
span of 2 with non-negative integral coefficients.

Example 3.7. Let G = gl (n,C), the Lie algebra with basis {e;}7;_,
and commutation relations

[eij , em] = Ojear — Ouex; .
Let K be the subalgebra spanned by the vectors (2 =p =n — 2)
e, 1 #5, 1 =10, j=p; ei—e€ 1,0, t=1,2,...,p—1;
and
eij’i#j;p‘}‘lé?::jén;eii'—ei_'_lf_z_l, t=p+1,p+2,...,n—1L

Note that K is isomorphicto 4, ; @ 4,_,_,. As H wecan take the sub-
algebra of K spanned by the vectors e; — ¢, ;1,1 =1 =n— 1,1 #p.
It is easily seen that in this case
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P n
To={aei+b > ei|la,beC)
i=1 i=p1
and Hp = H + T, TUsing the properties of the roots of the classical
simple Lie algebras A4; it is not difficult to verify that K is special.
We return to the general case. Let K be a special subalgebra of G
and ! =rank K, p =rank G. We fix an ordered basis {k;, %y, ..., hp}
of Hy such that {h,h,,...,Hl} is the basis of H described above.
We define the following subalgebras of G-
Gp =K, +2>T,+8,,
>0
G_:K_—]—ZT,-'—[—S_
i<0
where K, (resp. K_) is the subalgebra of K spanned by the vectors
belonging to positive (resp. negative) roots of K. We define

H-+Ty=S. L8 +Hy

to be the corresponding decomposition for H - 7',. Because of our choice

of basis of H; (see also Lemma 3.5) it is clear that G = G + G- + H,

is a similar decomposition for @ relative to the Cartan subalgebra H;.
Definition 3.8. A G-module V is K-finite if it is a sum of finite-

dimensional K-modules when considered as a K-module by restriction to K.
Let A be the set of dominant integral elements in H*:

A ={2€H*|(A,«) is a non-negative integer for all «x € A} .

Theorem 38.9. Let K be a special subalgebra of G. Then for each }. € H
such that Aly € A and ZT[HT, = 0 there exists a unique equivalence class of

K-finite irreducible G-modules which are bounded above and have ) as the
maximal weight.

Proof. The uniqueness follows from Theorem 3.4. We have to prove the
existence. We define an ideal

0 =NGs) +){h — k)1 |h € Hp})
and W= ¢(@)[),. Consider the subset S, of W
S, = {9, |a €4}

where e__ belongs to the root — x and
(ZIH ’ 0")
=2-—F— €A.
" .2 * "

Let U" = €(@) S, be the submodule of W* generated by S,. We claim
that U* does not contain the vector 1 - ),. It is well-known that S,



JoUuK0 MICKELSSON 9

is annihilated by K, (see [4, p. 115]). Now W* is a direct sum of weight
subspaces, W% is spanned by the vector 1+ ), and 1 is the highest
weight in W* (compare the proof of Theorem 3.4). Suppose that 1 4
), € U* using the Poincaré-Birkhoff-Witt theorem it is easily seen that
then there exists f;,fs,..., 0 € ¥t such that

i+ Pt -+ P— g+ 1) x=0

for at least one weight « € 4. But this is impossible because K is a
special subalgebra of .

Let again N* be the sum of all invariant subspaces of ¥* not con-
taining the vector 1 - ), . It is clear that U* € N*. We define

Vi. — I/V/‘. / N/', .

The G-module V* is irreducible and has a maximal vector v =1 + %), 4
N* of weight A. Furthermore, V* contains a finite-dimensional K-module,
namely €(K)v ([4, p. 115]). It follows from proposition 4.2, [6], that
V* is K-finite. (See also [1, Theorem 1.])

4. Discrete G-modules

If not otherwise stated, the notation of the previous sections is in
force also in this section.

Let C be the centralizer of K in ‘6(G). The algebra C is a finitely
generated subalgebra of ‘¢(G) (see [8, p. 162, Theorem 2.3.1.4]).

Let an ordered basis {t; ,¢,,...,%} be given for the subspace 7' of
@, such that

[k,ti]zli(h)ti, kGH, 1::1,2,...,7',

where L €Y (¢=1,2,...,%) and 4, =2, =... = 4. We complete
this to an ordered basis of @,

{ti s eoci ) hi 5 eﬁi}
where the order is defined through the ordering of roots,
o <Tog < v g <0<y < By << By,

and through a labelling of the basis elements k; of H. According to the
Poincaré-Birkhoff-Witt theorem this ordering induces a basis for ()
by ordered monomials in the basis elements of G. If u € G (@) is such
a basis vector we denote by deg (u) the number of vectors t; contained
in w.If v €E(GF) is an arbitrary (finite) linear combination of ordered
monomials,
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v = Z arU (ak € C) )
k=

we define deg (v) = max deg (ux).

k=1,...,n
Definition 4.1. Let ¢, ,c,,...,c, be a generating sequence of C.
We define
n. = max deg (c).

k=1,2,...,¢
We call an element 4 of A, the set of dominant integral weights of K,
large if
Adto,+oy+ ...+ o€ forall w; €V, k=1,2,...,n..
Let V be any G-module. Consider V as a K-module by restriction. For

any A€ A we denote by V, the sum of all irreducible finite-dimensional
K-submodules of 7 with maximal weight 1. We define

Vf—_—{xGV;.]eﬁx:O V B € O},

the subspace of vectors with maximal weight in V,; in other words,

Vi ={x €V, hx=ihx VheH}.

We denote by <), the annihilator in ‘¢(K) of the maximal vector in an
irreducible finite-dimensional K-module with maximal weight 4; according

to [4, p. 115],
9= WKL) + I — k) -1 | h € HY) 4 I({e™" |« € 43)
where K, and the numbers n, are defined as in section 3.

For all # and ~ in A we define 4,, to be the subset of () for
which

A, Vi Vy
for any G-module V.
Lemma 4.2. 4, , = {u € &(Q) | Juc (@)},
Proof. Let V be a G-module such that V, = 0. Any such G-module
is a factor module of the left-module ‘&(G)/'¢(@)7),. It follows that

Ay ={u€S@) | uVycV;}
where V = 6(@)/€(G)7,. Let now u€4,, If x =1+ &I, then
x €V, and
ur = u + (), €Vy

and therefore Juc €(@)J,. To prove the converse, assume that
Duc E@)I,. Let x € V. Then
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Dgua € E(@)Ix = 0.

It follows that ‘6(K)ux is a finite-dimensional K-module with ux as the
vector of maximal weight (which is B) and thus uz € V;.

Lemma 4.3. Let o be an element of A such that o + L€ A for any
2 €Y. Then for each t; €T there exists w€ A, ; ., of the form

w=t+ 2 4
P>
where v; € E(K_).
Proof. We can write
(*) T=0 o)

where T is the irreducible component of 7' under the adjoint action of
K, with maximal weight ». We can assume that the basis {#;}7_, of T
is chosen in such a way that it is compatible with the decomposition (*);
thus we may assume that t; € 7® for some weight ».

Put D, = €(K)/9, and consider the tensor product 7" & D,,
which is a K-module under the diagonal action:

e@y)=[k,2]Qy+2Qky; kEK, x€TY, y€D, .

It is known that the module 7" @ D, contains an irreducible submodule
with maximal weight o -+ 4; (note that o + A€ A for any weight 2
in T®) with a multiplicity which is equal to the multiplicity m(% ,»)
of the weigth 4 in 7%; in other words there are m(Z ,») linearly
independent vectors in 7" & D, which are annihilated by 7 ;.
(see e.g. [4, pp. 141—142]). It follows that for each t € 7% =T, N T%
there exists a nonzero element w, of 7% & D of the form

Uy =t@ (@ 14+9,)+ > 42 (+7,),
/'.j;/.,'
aEC, ’UjECg(K_),

such that u, is annihilated by 9 11, We define vy =a-1 and let %
be the smallest value of the index j for which v € 9, ; because of

e g = 0 forall x € O+,

we have e, €9, for all x € @+. Now any vector in D, which is anni-
hilated by K, is a multiple of 1 + 9 ; thus k=17 and a # 0. We
may assume that a¢ = 1 (multiply u, by 7).

Consider the linear mapping
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p: 19 ® D, ~EG)E@) 2,
induced by the multiplication map 7% @ €(K)— €(G). This mapping
is a K-module homomcrphism; in fact,
¢kt Q@+9) =9k, 1@ @+9,)+t® (kv +9,))
= [k, o+ E(0) 9, + thv + E(G) 9, = o+ E@) 9,
Zk(p(t® (U_}—S?m))’
forall k€K, t€T® and v € E(K). Let u € E(Q),
U =1t + Z tjvj .
J: /-'j>;‘i

Then ¢(u,)) = u + €(G) I, and therefore 9 . ;0 CE(@) D, In other
words (Lemma 4.2), « €4,.;. -

We denote by P the projection P : ‘E(G)— E(GF) such that Ker P =
G, 4+ U,E(K-) and P(E(G)) = U, where U, consists of the ele-
ments

bl 4D a bty

where b, @, ;, €C and i} =... =i
Lemma 4.4. Let wu;,u, € 4,5, such that P(u,) = P(u,). Then

Uy — uy € E(G) D

o

Proof. We shall again use the fact that any vector in ‘¢ (K);.?, which
is annihilated by K. is a multiple of 1 - ). First we write
Up— Uy =W b o 1 0+ 2, oot Vi

{m,iv}

where each term is a sum of ordered monomials and w € ‘6(G) 7 , » and

by € G(K) and
TS M= A IR R

?

If m =%k then j, s41¢ for at least one value of the index ». From
K, (u; — uy) € E(@) D, it follows that

K, vc 9,

and thus v€9, wéa-1- 9, for any a # 0 because of P(u; — u,)
= 0). By induction it follows that the coefficient of any ¢ ... t; ~ be-
longs to 7, and therefore w, — u,€ ¢ (G) .

It is clear that Lemma 4.4 is valid also if we replace 4, , by

A, :;Aﬁ,a.
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Lemma 4.5. Let « € A belarge. Then any w € A, such that deg (u) = n,
can be written in the form

wu=v4+a-14+ > wu ...u;, (@€C, v€EG)I,, wu, €EG)
kG,

=2

=1,2,...,k)
where k < deg (u), 1 S i, = ... =1 and

(*) ’LL;V’LLiVJI_l...uikEAav’a;(SD::06—%-/1,‘?—!—‘..—{— Z;k(v-—:l,.?,...,k).

Proof. (1) Let S be the set consisting of finite sequences i =
(¢ ,%2,...,%) where k£ =n. and the integers ¢, satisfy the inequalities

l<y =i, =...==r=dm?7.
We denote by e the empty sequence. We define an order in S by putting
(T, %0, e vvste) < (J1,J2see.sdm) if B <<m or k=m and

the first non-zero number in the sequence 4, — j;, 7, — j,, ... is positive.
In addition, for each i € S we define

tp=1t, ...t €@

and t, =1 €E(F). Let V be the subspace of ‘¢(¢) which has the set
{t, |1 €S} as an ordered basis (the order is defined through the ordering
of S).

(2) We put u®=1€4, From the fact that « is large and from
Lemma 4.3. it follows that for each i = (i;,%,,...,1%) €S there exists

W=l uf €A, WEEG);y=1,2,...,k)

where each % is of the type described in Lemma 4.3, P(«!) = t;, and w,

satisfies the relations (*). We denote by U the subspace of A, which
has the set

(Wi €8}

as an ordered basis.
(3) It is clear that the operator P induces a linear mapping from
U into V. Furthermore,

P(w') = t, 4 lower terms

as follows easily from the properties of the u’:s (see Lemma 4.3). Thus
the matrix representing P 1is triangular in the ordered basis described
above, the diagonal elements being equal to 1. It follows that the inverse
of P exists and therefore for each u € A,, deg (u) < n,, there exists
%'€ U such that
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P(u) = Pu') .

(Note that P(u) € V.) From Lemma 4.4 it follows that there exists
v € E(@) Y, such that w=wv + o

Lemma 4.6. Let «,p € A, and let V be an irreducible G-module such
that V, #0; then Vi = A,, V.

Proof. Tt is sufficient to prove the statement for V = ‘&(G)/€(G) 9,
(compare with the proof of Lemma 4.2). Then

Vi = {u 4+ E(@) 9, | D c E@) 9,
= Ay o+ EG) Iy = 4, (1 + 66D
cd,, V.

o

The relation A4, Vi c V; follows from the definition of A4, ,.

Let C be the centralizer of K in ‘&(G). If V¥ is any G-module
then V, and V] are C-modules by restriction of ‘“(() to the subalgebra
C; in fact V, is even a ‘€(K)C-module.

Lemma 4.7. Let V be an wrreducible G-module, V., = 0. Then the
equivalence class [V] of V is completely determined by the equivalence
class of the C-module V5. VS is an irreducible C-module.

Proof. This is an easy consequence of Theorem 5.5, [6]. (Note that
the action of ‘S(K)C on V, is completely determined by the action of
C on V)

Let G, be the set of all equivalence classes [V] of irreducible G-
modules ¥V such that V, %% 0 and V, = 0 for each g <<«. We call V,
the minimal component of ¥. Now an irreducible (¢-module V' is K-finite
if and only if V7, = 0 for some weight ~ € .1, [6, proposition 4.2]. It
follows that ¥V is K-finite if and only if 17 has a minimal component.
Thus the set @ of all equivalence classes of irreducible K-finite G-
modules is equal to

Ué..
x€A
Of course G, N G; = ¢ when « = p.
Let M,=> A,, If [VI€G, then V7 is in anatural way a
ol

p

C/C N E(@)M, -module. We denote by €. the set of all equivalence
classes of irreducible C/C N ‘€(G)M, -modules.
Theorem 4.8. The mapping V— V. induces a bijection between G-, and C.,.
Proof. If [V],[W] € G., then it is clear that V; and W are equivalent
as C-modules if and only if they are equivalent as C/C N E(G)M,-
modules. The injectivity of the mapping follows now from Lemma 4.7.
Let next [W] € C,. We have to show that there exists [V] € G, such
that Vi~ W as C/CN E(G) M, -modules. First we extend W to a C-
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module. Let = be a non-zero element of W, and let <£ be the annihilator
of  in C sothat W = C/:£. We define a left ideal of ‘&(GF) by

N ={u€E@DEGuNCcL).

Consider the G-module V = €(G)/ . First we show that V is irreducible
i.e. the left ideal “/{ is maximal. Let )/l C ‘6(G) be a left ideal such that
1¢90 and 1 c N Then

L=0nNconEE) N,

Because of the irreducibility of W, <£ is a maximal left ideal in C. Now
1¢ 0N E@G) N and therefore <L = C N E(G) ). From the definition
of “I it follows that ) < “Nl; thus 9l = Il and Il is maximal.
Since ), € 9/l the vector 1 + )l € V is annihilated by <, and
therefore 1 4 1L € V). From Lemma 4.7 we conclude that V] consists
of vectors ¢ - 1, ¢ €C. From C NI =< it then follows that the

mapping
p:Vi—=>0/L, plc+N)=¢c+L

is a C-linear isomorphism. Thus V; >~V as C-modules. Next we observe
that C'NE(@) I, c <L, so N, Il and therefore V; = A, , Vi =0
for B < . It follows that [V] € G..

By Lemma 3.5, rank K = rank @ if and only if 7, = 0.

Theorem 4.9. Let rank G = rank K. Then for any large weight ~ € A
the set &, contains exactly one element [V] and dim V, = 1.

Proof. Let ¢ be one of the generators ¢;,...,c, of C (see Definition

> Yo

4.1). Then c € 4,, deg (¢c) =n. and [H ,c] = 0. Then ¢ can be written
in the form described in Lemma 4.5. Since [H ,c] =0, A, + 4, + ...+ Ay
= 0 for each of the products wu, ...u;. Now 4, =2 =...=12,
and 4, #0 (v=1,2,...,k) (Ty=0); thus 4, <0 and U Uy, e Ui,
€ “1ll,. Tt follows that the generators ¢ belong to the subalgebra C -1 -+
O NE(G) N, of C; hence this is true for all ¢ € C.

We ccnclude that the algebra €/C' N ‘E(G)11, is isomorphic (when «
is large) to the algebra C of complex numbers and therefore there exists
exactly one equivalence class of irreducible (non-zero) C/C N ‘&(G) -
modules and the dimension of such a module is equal to one. Theorem 4.8
completes the job.

Remark 4.10. The results of this section can be easily extended to the
case in which K is a reductive subalgebra of G.
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