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1. Introduction

The classical Pick-Nevanlinna interpolation problem has as its object
the study of the family of functions analytic on the open unit disk, 4,
taking values of modulus at most one, and having assigned initial Taylor
sections of specified orders at assigned points of A. Cf. [10], [11], [12],
[16]. By the Grenzkreis phenomenon is meant the fact that W(b), the set
of values taken by the members of the family at a given point b(€ 4)
distinet from the assigned points, is a closed circular disk with positive
radius in case the family contains more than one member. [Of course, in
this case W(b) € A.] We recall that W(b) is termed the Wertevorrat of
the family at b.

In this paper we show by counterexamples that the Grenzkreis pheno-
menon, which is inherent in Pick-Nevanlinna interpolation on A, does not
persist in the situation of domains of higher topological structure. To obtain
the examples we start by considering an annulus and assigning conveniently
a Taylor section of order one at one point.

The analysis of the question will make essential use of results obtained
by P. R. Garabedian in his study of Pick-Nevanlinna interpolation on a
plane region, Q, of finite connectivity »(> 1), no boundary component
of which reduces to a point, in the case where there are a finite number
k(= 1) of interpolating points and the interpolation conditions are of
zero order, i.e. only assign the value of the function [3]. In the cited paper
Garabedian showed that if the interpolating family contains more than
one member, then exactly one member of the family takes at 0(€ Q),
not an interpolation point, a given value on the frontier of 1 (b). [W(D)
is understood relative to the situation at hand.] Such a member of the
family will be called an extremal in accord with the terminology of Nevan-
linna. Cf. [11]. Garabedian further showed that the extremals are maps of
finite constant valence of © onto . and that the constant value of the
valence of a given extremal is bounded above by k - (n — 1). It is remarked
that this bound remains valid when the zero order condition is dropped,
but the matter is not pursued further.

We shall want to know that the extremals continue to enjoy the property
of being uniquely specified by interpolation at b to a given point of fr W (b)
and that they are maps of finite positive constant valence of £ onto 4
when the zero order condition is relaxed. In § 8 we give a general discussion
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of this question for the case of non-compact hyperbolic Riemann surfaces
with finite topological characteristics, interpolation being to a finite number
of initial sections of specified orders (given in terms of local uniformizers).
An extension of Garabedian’s upper bound for the valence of the extremal,
based on methods due to F. Riesz [15] and the Theorem of Cauchy-Read
[14], [7], will be included. [The extension of the Garabedian valence
bound for the special »Schwarz Lemma» case (involving one interpolation
condition of zero order) was treated by Ahlfors [1], who also observed for
the case in question that the contour number gave a lower bound for the
valence.] For the purposes of the example which we are examining, Gara-
bedian’s upper bound may be shown to persist by a limit argument (cf. § 3).
[The limit argument is available generally but would have no special
advantage in a general setting.] That a lower bound of the constant value
of the valence is #» is a direct consequence of the constant valence property
of the extremals and the fact that £ is n-tuply connected. It does not
depend on stipulations concerning order of interpolation.

Using a convexity property enjoyed by 11'(b) and results of [4], which
treats Pick-Nevanlinna interpolation on an annulus via uniformization
methods, and of [8] we obtain qualitative information concerning TV (d)
for the case of an annulus when the interpolating family contains more
than one member. In fact, then, as we shall see in § 6, either TI'(b) is a
closed circular disk lying in A for all allowed b, or is the intersection of
two closed circular disks, each a proper part of A, and such that their
circumferences have exactly two points in common, for all allowed b.
Examples of the first possibility are given in a straightforward way (e.g.
the »Schwarz Lemmay situation). That the second possibility is realized
follows from the counterexamples.

The convexity property of W(b) in question (which holds in the com-
pletely general setting of Pick-Nevanlinna interpolation on a Riemann
surface) is that TV (b) has the Study property, namely: whenever « is a
univalent analytic map of A onto @ convex region, o[1V(b)] s convexr. This
follows on considering

(1.1) invaol[(l —taof +txofy],

where 0 =t =1 and f; and f, are interpolating functions. [It is to be
observed that in his cited paper Garabedian discerned, using (1.1) with «
specialized to conformal automorphisms of ., a convexity property of
W(b) relative to a class of circular arcs. This latter property is subsumed
under the Study property (and may be used to show that W(b) has the
Study property).]

The study of W(b) for the general situation of a Riemann surface is
doubtless complicated.
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2. The counterexamples

We introduce a fixed 7, satisfying 0 <r <1, and ¢, small and
positive. We let B(c) denote the set of functions f, analytic on A =
{r < |z| <r7}, taking values of modulus less than one, and satisfying
the interpolation conditions

(2.1) =1 =0, f(—1)=c.

We are concerned with the Wertevorrat W(1) for the present problem,
which we shall denote by W, to indicate dependence on the parameter c.
It is our object to show:

For ¢ sufficiently small W, is a set with non empty interior but is not
a circular disk.

It follows that the Grenzkreis phenomenon does not hold for B(c),
¢ small. We shall see, § 5, that the Grenzkreis phenomenon also fails for
the class C(c, k) of functions satisfying the conditions imposed on the
members of B(c) save that (2.1)is replaced by the two zero order conditions

(2.2) fl(—1)=0, f(—1-+h)=ch,

where ¢ is a fixed positive number, suitably small, and % is sufficiently
small and positive.

3. Valence analysis of extremals

When ¢ is small, B(c) is infinite and 1. has a non-empty interior,
as we see from a purely elementary consideration of

cz+ 1)+ dz + 1)>.

We continue supposing that ¢ is so restricted. Given w € fr IV, we denote
by f.. the extremal of B(c) taking the value w at 1. Welet »(c, w)
denote the constant valence of f.. on 1. Since A is doubly-connected,
v(c, w) = 2.

We now show, using Garabedian’s upper bound and a limit argument
that »(c,w) = 3. To that end, we fix o € int 1l and consider for small
positive £ the functions g, analvtic on 2, taking values of modulus
less than one, satisfying

B1)  g— D) =ful =) =0, g(—1 =0 =Ffou—1+h),

and such that g¢(1) lies on the ray issuing from o and passing through w.
There is a unique such g, which we denote by g¢,, for which |g(1) — o]
is maximized. The function ¢, is an extremal relative to the point 1 for
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the Pick-Nevanlinna problem specified by (3.1). By Garabedian’s upper
estimate the constant value of the valence of g» on 4 does not exceed
24 (2—1)=3. Now

f’-”w = lim Gh ,

h—>0

and we conclude that »(c,w) < 3.
The following theorem will play a central role in the examination of W..
Theorem 3.1. {v(c,w):w€frW.} = {2,3} for ¢ small
Proof. We fix o satisfying

0<po<(l—nm)2,
and note that with ¢ so chosen the following three sets are mutually dis-
joint:
{lz + 1 = o},
{r=lkl=r+o},
{r+o7=kl=r1}.
There exists an analytic function ¢ on 9 satisfying

— log lp| = 2G_,,

(. denoting Green’s function for A with pole a. The assertion follows
from the fact that the periods of the conjugate of 2G|, are integer
multiples of 27. We normalize ¢ by the requirement that ¢(1) > 0.
We proceed by relating ¢ and f. . with small ¢. In fact, the following
lemma holds:
Lemma 3.1. Given n > 0, for sufficiently small c there exists for each
pair (c,w), w €W, @ number w, u' =1, such that

(3.2) Vee@lg@EI? —ui <n, z+1 =o0.

Suppose the assertion of the lemma false. Then there would exist a
sequence of f. ., with ¢ tending to 0, say (F.), which converges uniformly
on compact subsets of 9 and is such that
(3.3) lim min {max |[F.(z)[p(z)] — v|}

ns>ow [p=1 |z+1=p
exists and is positive. We denote lim F, by F.
Let a € (0,1). Then for each b satisfying |b] =< a the function

(3.4) z—>c(z + 1) + bp(z), z€UA,

belongs to B(c) for ¢ small (in fact, for ¢ satisfying a + c(r* 4 1) < 1).
Setting z =1 in (3.4) we see that 2c + bp(l) € W. for ¢ so restricted.
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That is, the closed disk with center 2¢ and radius ag(l) is contained in
W.. If, in addition, 2¢ < agp(1), the interior of the disk contains 0. Hence
for ¢ small, W. being star with respect to 0 and containing the above disk,
[feu(1)] = |w| is at least as large as the distance from 0 to the point of
the circumference with center 2¢ and radius ag(l) which lies on the ray
issuing from 0 and passing through w. Hence for ¢ small

(3.5) foul)] = ap(1) — 2.

We conclude with the aid of (3.5) that [F(1)| = ag(l). Given the
arbitrariness of a, it follows that |[F(1)| = ¢(1). Now F is an analytic
function on A, taking values of modulus less than one and satisfying:
F(— 1) = F'(— 1) = 0. By the Lindelof principle F/p takes values of
modulus at most one. Since F/p takes a value of modulus 1 at 1, by the
maximum principle F/g is a constant of modulus 1. With u the value of
this constant we see that F.(z)/¢(z) tendsto w uniformly on {|z 4 1| = o}
and hence that (3.3) is zero. Contradiction. Lemma 3.1 is thereby established.

We now use Lemma 3.1 taking # = 1 and see by Rouché’s theorem
that for ¢ sufficiently small f.. has exactly two zeros in {z + 1] < o}.
They are distinct, and one of them is, of course, — 1. We consider hence-
forth ¢ which are so restricted.

Now W, is symmetric with respect to the real axis, for if f€ B(c),
then also =z —»% belongs to B(c), whence JT(T) € W, Since W, is
compact, it has a point with maximum real part. By the noted symmetry
of W, and its convexity, there is such a point which is real; trivially,
it is unique. We denote this point by «(c). We denote the member of
B(c) taking the value «(c) at 1 by w. Since y. hastwo zerosin {|z +
1] < o} and w.(2) :—yy—(—i), we conclude that the zero of . which is
in {0 < |z+ 1] <o} is real.

We recall that the period of the conjugate of G, taken along {z| =i}
negatively sensed relative to  is 27 times the harmonic measure of
{lz] = r} with respect to 2 at « and that a corresponding result holds
for {|z| =1} Now — log ly. is a sum of Green functions and the
period of its conjugate along {|z| = r} negatively sensed relative to U is
27 times a positive integer. We conclude that y. has at least three zeros
counted by multiplicity. From the fact that »(c,w) =3 we see that v,
has exactly three zeros. They are necessarily simple and real.

For ¢ sufficiently small the zero of f.. mot in {z—+ 1] < o}, if
there is one, lies in the union of the annuli {r < |z| <7 4 o} and
{(r + 0)™* < |z| < r'}. This observation follows from the fact that for
¢ small the period, taken along {|z| = r} as above, of the conjugate of G,
a being the zero of f.., not in {|z -+ 1| <o}, is necessarily close to 0
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or 2n. This fact, in turn, is a consequence of (1) the zero of f.. in
{0 <|z+ 1] <p} tends to — 1 as ¢—0, and (2) the period, taken
along {|z| = r} as above, of the conjugate of — log [f..| is 27 times a
positive integer, here necessarily 1 or 2. The observation may also be
concluded with the aid of Lemma 3.1.

We continue supposing that ¢ is further restricted to be so small that
the ’third’ zero of f. ., i.e. the one notin {|z + 1| < ¢} lies in the union
of the annuli of the preceding paragraph. We fix such an allowed ¢ and
propose to study the dependence of the 'third” zero on w € friV.. We
show that for at least two values of the parameter w the third zero disappears
(and, subsequently, that this happens for exvactly two values of w). To
that end, we consider

E = {weftW. :v(c,w) = 3}.

Since f.. depends continuously on w, E is open in the sense of the
relative topology of fr1l.. We introduce I°, the component of E con-
taining «(c). Now — «(c) is a (actually, as we shall see later, the) point
of W, furthest left, thanks to the symmetry of W, with respect to 0.
It is to be observed that when f€ B(c), sois z— — f(z71).

We show that — «(c) € I'. To see this, we note that the ’third’ zero
of f.. depends continuously on w for w €' and hence is always in
{r < |zl <r-+ o} or elseis always in {(r 4 o)™ < |z| <»7'}. Further

fc,—a(c)(z) = - fc,&((‘)(z—l) .

It follows that the ‘third" zeros of f, ., and [, are mutually
reciprocal and so are not in the same one of the above annuli. From this
fact and the continuous dependence of the third zero on w, it follows that
—ac) eI

The proof of Theorem 3.1 is now readily completed. The set ' is an
open subarc of frIV, with two distinct endpoints. The extremal of B(c)
corresponding to each endpoint has exactly two zeros, for otherwise the
endpoint in question would belong to I'. Recalling that 1[c, a(c)] = 3,
we see that Theorem 3.1 is established.

Extremals with exactly two zeros. The zero, different from — 1, of
an extremal of B(c) relative to 1, having exactly two zeros, lies on {|z| = 1}
as we see on considering the period of the conjugate of the Green function.
We recall the well known fact that

M
0 — Geiry(ﬁ 1)
is increasing on {0 = 6§ < z}. Using this fact and the relation

G(—1)=Gs(— 1), a€,
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we see that there are at most two extremals of B(c) relative to 1 which
have exactly two zeros. Since the extremals corresponding to the endpoints
of I' have this property, we see that there are exactly two such extremals.
The extremals corresponding to the points of fr W, — I’ have three zeros.

Now the set of extremals of B(¢) relative to 1 is mapped univalently
onto itself by both

(3.6) f—(—>—fiY)
and
(3.7) f—@—=[G).

The maps (3.6) and (3.7) preserve the constant value of the valence of an
extremal. Hence the set of values taken at 1 by the extremals of valence 2
is mapped onto itself by z->—z and z-—>Z. Since neither of these
values is real, we see that the set is of the form

{ip(c) . —if(e)}, 0 <fle) <1.
It may now be concluded that
I'={Rez>o0NnfrlIl.,

and that I is mapped onto itself by z-=Z and onto fr T, — I by

z2—> —Z.

4. W. is not a circular disk for ¢ small

We continue with ¢ subject to the stated restrictions. If W. were a
circular disk, its center would be zero since W, is symmetric with respect
to 0. This would imply that «(c) = f(¢). But we shall show that for ¢
sufficiently small

(4.1) a(c) < fle) .

Thus we shall conclude

Theorem 4.1. W. is not a circular disk for ¢ small.

Proof of (4.1). Let w denote the extremal in B(c) relative to 1 which
has valence of constant value 2 on _1 whose zero 7, == — 1, has positive
imaginary part. Let v denote an extremal in B(c) relative to 1 which
takes a real value at 1. Let « denote the zero of » lying in
{0 < |z + 1| < o} and let b denote the other zero of v which is different
from — 1. We suppose, as we may with the aid of (3.6), that o is
so normalized that » < |b] <r -+ 0.



10 Ann. Acad. Sci. Fennice A.I. 596

We note the following relations:
(4.2) —log |[u| =G, + Gy,
(4.3) —log v| = Ga + Gy + Gy .

The parameters 7 ,a,b are subject to certain restrictions as we shall
now see. We introduce

A = lim [¢_y(2) + log |z + 1] .
z—>—1

From (4.2) and (4.3) we obtain, using the condition on the derivative at
— 1 for members of B(c),

(4.4) G(—1)+A=0C(—1)+G(—1)+4=—logc.

From the fact that the constant value of the valence of v on 4 is 3, we

conclude on calculating the period along {|z| = r} of the conjugate of
— log |v| that
log (jair)  log (bir)
logrz ~ logr?

is either 1/2 or 3/2. By the normalization of v the second term in the sum
exceeds 1/2. Hence the sum has the value 3/2. We conclude

(4.5) lab] = 7.

The proof of (4.1) will now be completed with the use of the behavior
of (; near — 1 and of the symmetry of the Green function. Indeed, the
number of zeros in U counted by multiplicity of (&), is 1 since U is a
doubly-connected region with non-degenerate boundary components. Since
Gz = G4(z) ,z €A, (), has its zero at — 1. We conclude that

(4.6) Gy(z) = G(— 1)+ B[(Rez + 12 — (Im=2)*] +o(z+ 12, B#0.

Now B < 0 since the restriction of ¢, to the segment [— r71, — 7]
attains its maximum at the zero of (G))., i.e. at — 1. Using (4.2), (4.3),
the symmetry of the Green function, and (4.6) we obtain

log —— = Gy(a) + G,(b) — Gy(7)
(4.7) > B(a + 12 + of(a -~ 17] + Gy(b)
+ B(Im 9)* + o[ + 117
From the boundary behavior of @; and the minimum principle for harmonic
functions, with
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¢ = [min,_,,, G4(2)]log (1 + or™Y),

we have
2]
G4(2) 2010g7 r <zl <ro.
Using (4.5) we conclude
1
(4.8) G,(b) = C log al

Further, using (4.4) and the symmetry of the Green function, we obtain

(4.9) log [ + 1] + o(1) = log (@ + 1) + o(1) — G(_y(b) -
We conclude from (4.9) and (4.5) that
i 1=
Hence from (4.7) and (4.8) we obtain
logﬁ(—c) > Clog — + 3B(a+ 1> 0
x(c) la]

for ¢ sufficiently small.
The inequality (4.1) follows, and Theorem 4.1 is thereby established.

5. The case of zero order interpolation

In this section we show by continuity considerations that the Grenzkreis
phenomenon does not persist in the case of zero order interpolation. To
that end, we introduce an auxiliary function, 6(z) =1 — 2%,z € U. We
fix ¢ positive and so small that

(5.1) csup |0] <1

and (4.1) holds. We consider the Pick-Nevanlinna interpolation problem
for A with the interpolation requirements

(5.2) f(=1) =0, f(=1+4+h)=ch,

where 0 <h <1 —r. Let V), denote the set of values taken at 1 by
the functions f, analytic on A, taking values of modulus less than one,
and satisfying (5.2). It is our object to show that for % sufficiently small
Vi is a set with nonempty interior but is not a circular disk.

We introduce m satisfying
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a(c)/plc) <m < 1
and consider the functions
ch — mep(— 1 + h)]°

(5.3) me + 60— 1+ 1) , ¢ €B(c),

which satisfy the interpolation conditions (5.2). There exists 7, ,
0 <hy <1—7r, such that

when 0 <A = hy. For such % the functions (5.3) take values of modulus
less than one and we proceed understanding that % is so restricted. Since
0(1) = 0, ma(c) , — ma(c) , mp(c)i , — mfB(c)i € Vi. Further 0 €int V,.

Let u(h) denote the maximum real point of V, and let i(%) denote the
minimum real point of V,. We first show that lim,_, u(h) = #(c) and
lim,_, (k) = — a(c). In fact, given ¢,0 <t < 1, we have u(h) > tx(c),
Ah) < — ta(c) for h small (as we see on introducing an allowed m > t).
Further there exists ¢ € B(c) such that (1) is real and at least as large
as lim sup p(h). We conclude that lim u(h) = «(c). Similarly, we conclude
that lim A(h) = — «(c).

If Vi were a circular disk, the center of ¥, would be real, the points
of frV, on the imaginary axis being the negative of one another since
Vi is mapped onto itself under z — Z. The radius would be [u(kh) — i(h)] 2
and so

[u(h) — A(h)]'2 = mp(c) .
Hence if V), were a circular disk for arbitrarily small %, we would have

z(c) = mp(c) .

From this contradiction we conclude that V7, is not a circular disk for
small positive h. The Grenzkreis phenomenon is seen not to persist for
zero order interpolation.

6. Positive results concerning the Wertevorrat in the case of an annulus

A Pick-Nevanlinna interpolation problem for a Riemann surface may
be referred with the aid of a conformal universal covering to the case of
the unit disk and be reduced to a problem concerning interpolation by
analytic functions on A which take values of modulus at most one and are
automorphic with respect to the Fuchsian group of conformal auto-
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morphisms of /4 leaving the conformal universal covering invariant.
[For this reduction, cf. [4] where only the case of an annulus and of zero
order interpolation is considered. The discussion is, however, applicable
to the general situation and prepares the way for the developments of the
following paragraph.] With the aid of this reduction, in the situation where
the problem on the Riemann surface has more than one solution, the question
of the Wertevorrat may be reformulated as follows thanks to uniqueness
considerations given by R. Nevanlinna in his memoir on Pick-Nevanlinna
interpolation [11].

Given a Riemann surface S, a Pick-Nevanlinna interpolation problem
on S having more than one solution, and ¢, a conformal universal covering
of § having domain 4, there exist functions 4 , B, (, analytic on 4,
taking values of modulus less than one, such that

A(z)w + B(z)

(6.1) w— A.(w) =

maps A into A for each z€ 4 and A4 — BC is not the constant 0,
having the property that the interpolation functions for the given Pick-
Nevanlinna problem on S composed with ¢ are given exactly by the
functions,

(6.2) s~ AlE)], =<1,

where the g are those functions analytic on .1, taking values of modulus
at most one and satisfving the system of equations

(6.3) geot=[Inva(r)]eog,

for all v € I, the group of conformal automorphisms of .I, leaving ¢
invariant, «(7) being the Mdbius transformation®*) mapping A onto itself
and satisfying

(6.4) A W) = Ada(7)(w)],

z] <1, |w| = 1. Thus, the Wertevorrat question is referred to the question
of studying the image with respect to (6.1) of the set of g(z) at & non inter-
polation point z ,q being an allowed solution of (6.3). In the case where I’
is not abelian, the precise nature of the Wertevorrat appears to be elusive.
However, the situation for a non-degenerate annulus is particularly
favorable, for here I is generated by a hyperbolic conformal automorphism
of 4.

*) We need to allow the possibility of constant ¢ taking a value having modulus
one. Hence the distinction made relative to a«(r).
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We shall see that in the case of a non-degenerate annulus either for all
non-interpolation points z the Wertevorrat is a closed circular disk D(z) C A,
or for all non-interpolation points z the Wertevorrat is the intersection I(z)
of two closed circular disks, each contained properly in A, their circum-
Sferences having exactly two points in common.

The problem may be referred to the nature of «(r) where 7 is a generator
of I'. Since o(r) maps A onto itself, «(r) is non-loxodromic. Simple
interpolation situations yield examples where «(7) is the identity or elliptic
(e.g. the problem on A with (1) f(— 1) =f'(—1) =0, resp. (2)
f(— 1) = 0). The examples of §§ 4, 5 will show that a hyperbolic «(t) is
realizable. We have not decided whether parabolic «(7) are realizable.
The proof of the assertion of the previous paragraph, to which we now turn,
does not depend on the answer to the question.

If «(7) is the identity, the set of ¢(z) is 1. If «(r) is elliptic, the
problem may be reduced to the case where the fixed points of «(7) are 0
and oo. A direct examination then shows that when «(7) is elliptic, the
set of g(z) is a closed circular disk of positive radius lying in 4. If «(7)
is parabolic, the problem may be reduced with the aid of a suitable Mébius
transformation mapping 4 onto {Rez > 0} to the study of the set of
values at z € 4 of the solutions A of

(6.5) hot=h+1,

h being either the constant co or else analytic on A and taking values
with positive real part. The set of &(z) is of the form

{Rez =c¢(> 0)} U {0}

and consequently the set of g(z) is a closed circular disk contained properly
in A, the circumference of which is tangent to the unit circumference at
the fixed point of «(7).

We now conclude that in the three cases considered thus far the Werte-
vorrat at a non-interpolation point is a closed circular disk of positive
radius in /.

It now follows, thanks to the example of § 4, that the case of hyperbolic
a7) is indeed realized, the Wertevorrat not being a circular disk.

The case where o(7) is hyperbolic may be reduced with the aid of
suitable M6bius transformations to the study of

(6.6) h(iz) = ph(z) ,

where 1 < A, u < + oo, and solutions % are considered having domain
{Re z > 0} which are the constant 0, the constant co, or else are analytic
maps of {Rez > 0} into itself. One concludes with the aid of the lemma of
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Julia-Wolff-Carathéodory that a necessary condition for (6.6) to have
allowed solutions other than the constants 0 and oo is that

(6.7) p=A.

That it is sufficient may be seen with the aid of

log u
(6.8) exp <log 7 Log z) ,
where »Log» denotes the principal logarithm. Further, in case u = 4,
the only non-trivial solutions are of the form cz,c a positive number,
as we see with the aid of the lemma of Julia-Wolff-Carathéodory. Cf. [5].
Given z, satisfying Rez, > 0, the set of h(z) for given 4 and p,u = 4,
is of the form

(6.9) {f =Argz =y U {0, o},
where — /2 <f =y <=2, as we see by considering the maximum
and minimum of Arg h(z,) for solutions A satisfying |h(z)| =1 and

using the fact that the family of allowed % is positive homogeneous and
closed with respect to addition. Here »Arg» denotes the principal argument.
We remark that = y exactly when u = i. Cf. (6.8) and the observation
following (6.8).

Returning to the situation for the unit disk, we see that for the uni-
formized version of the interpolation problem only multipliers © < 4
arise. This is so, because when there is more than one interpolating function,
the Wertevorrat at a non-interpolating point, having the Study property,
has a non-empty interior. Cf. § 1 of this paper, [13], [8], and [9]. One may
also use the results of § 8 of this paper.

We are led to the conclusion that when «(z) is hyperbolic, the Werte-
vorrat at a non-interpolation point is a closed convex lune lying in A,
the frontier of which is the union of two circular arcs, or a circular arc and
a rectilinear segment, having common endpoints. The second alternative
is excluded by the Study property. Cf. [8], [13]. It is a direct consequence
of the theorem of p. 172 and the lemma of p. 173 of [8] that the arcs lie in
closed disks bounded by oricycles to which they are tangent. We are re-
ferring to the representation of Minkowskian type given in [8] for proper
subsets of 4, which are closed in the sense of the relative topology of 4
and have the Study property. We see that the circumferences containing
the circular arcs lie in the closed disks in question. The Wertevorrat is the
intersection of the closed disks bounded by these circumferences. The
asserted property of the Wertevorrat is seen to follow.
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7. Precisions on W. of § 4, ¢ small

We now see that W. is bounded by the union of two circular arcs having
common endpoints. More precisely, they are the circular arcs with endpoints
1f(c) , — 1B(c) which contain respectively «(c) and — a(c). This observation
is a consequence of the fact that z — 2 and z — — z map W, onto itself,
which, taken with the fact that the endpoints are characterized by being
corners, implies that it is not the case that one endpoint has a non-zero
real part and the other has a non-zero imaginary part (for otherwise, there
would be four distinct points in the set of endpoints). There remains to
exclude the case where the endpoints are «(c) and — a(c). It cannot occur
since the disk bounded by the circumference passing through «(c), — «(c),
1f(¢) does not contain — if8(c). The asserted property of V. follows.

8. Some general facts concerning Pick-Nevanlinna interpolation

In this section we give an account of the results we have used concerning
Pick-Nevanlinna interpolation with a finite set of data in a setting of Rie-
mann surface theory. We are proceeding under the assumption that the
given Riemann surface has finite topological characteristics, is hyperbolic,
and that the boundary components are non-degenerate. Consequently, we
suppose, as we may, that the given surface is a region £ of a compact
Riemann surface S, the frontier I' of £ consisting of a finite number
of mutually disjoint closed Jordan curves which are regular and analytic,
that I'= fr (S — 0), and that there exists a univalent anticonformal
map o of § onto itself keeping the points of I' fixed and mapping 2
onto S — Q. Thus S is a Schottky double of Q. Our objectives are to
show that when there is more than one interpolating function, (1) the Werte-
vorrat at a noninterpolation point b has a nonempty interior, and (2)
there is a unique interpolating function taking at b an assigned value
lying in the frontier of the Wertevorrat and it has the constant valence
property. We also show (3) the Garabedian bound extends in a natural
way.

We shall call a Pick-Nevanlinna problem determinate provided that it
has exactly one solution. In the case of the problem we are considering on
Q (with a finite set of data) determinacy implies, as a consequence of the
exchange principle given on pp. 63, 64 of [7] that the solution is a unitary
function (Einheitsfunktion) in the sense of Carathéodory [2], i.e. is the
restriction to 2 of a meromorphic function on S which is analytic in 2
and takes values of modulus one on ['. It is classical that a non-constant
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analytic function on 2 taking values of modulus less than one has constant
finite valence on A if and only if it is unitary.

We continue under the assumption that the set Pick-Nevanlinna
problem has more than one solution. Let W denote the Wertevorrat of
the family of solutions at the non-interpolation point b. Let w € V.
We consider the augmented problem requiring that, in addition to the
conditions already put down, a solution f satisfy: f(b) = w. The following
theorem holds.

Theorem 8.1. If the augmented problem is not determinate, then w € int V.

The stated properties of the Wertevorrat will be seen to follow.

The proof to be given of Theorem 8.1 will be based on the exchange
principle and is related to the one we used for the zero order case. Cf. [6,
p. 572]. However, the auxiliary polynomial introduced there is not adequate
for interpolation of higher order. To construct for the present purposes a
convenient auxiliary function, we fix ¢ € S — £, ¢ being a non-Weier-
strass point of S, and note the existence of functions analytic on S — {g}
having an assigned simple zero but no other zeros. The existence of such
*primary’ functions is assured by construction with the aid of harmonic
functions having singularities of an elementary kind at ¢, resp. at ¢ and
the assigned point. With the aid of the reciprocals of such primary functions,
we may construct a meromorphic function ¢ on S — {q} having at a
finite number of assigned points of S — {q} assigned principal parts
(possibly 0) relative to fixed local uniformizers for these points. Suppose
now that A is a finite subset of S — {¢} and B is a finite subset of
S — ({q} U 4). We introduce a function v, the product of a finite number
of primary functions, having zeros of assigned positive orders at the points
of A, and zeros at the points of B. We now introduce ¢ as above, which
is analytic at the points of S — ({g} U 4) and has principal parts at the
points of A in terms of the fixed local uniformizers which are such that
the initial Tavlor section of ¢y (taken in terms of the uniformizer) of order
equal to the multiplicity of y at the point less one has assigned coefficients.

We now turn to the proof of Theorem 8.1. Using the exchange principle
we see that there are two distinct unitary functions, say f; and f,. satis-
fying the conditions of the augmented problem. Let [ = (f; — fa) 2. We
let A denote the union of {b} and the set of points at which the set Pick-
Nevanlinna problem specifies interpolation conditions, and we let B
denote the finite set on I" at the points of which f takes values of modulus
one. We specialize y to have zeros at the points of A having orders equal
to the order of the interpolation condition of the augmented problem plus
one and zeros at B. We thereupon choose ¢ so that ¢y satisfies the
interpolation conditions of the augmented problem.

For t sufficiently small and positive
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g = (1 —=0f +toy
satisfies the interpolation conditions of the augmented problem and also

max |g] < 1.

We fix such ¢. Now let 6 be a product of primary functions having zeros
at the points of interpolation of the originally given Pick-Nevanlinna
problem, the order being the order of interpolation plus one, but no other
zeros. On considering

(8.1) g+ 10

for small complex ¢, we conclude that w € int W. Theorem 8.1 is thereby
established.

It is now easy to conclude the stated properties (1) and (2) of the Werte-
vorrat.

(1) Suppose that int W = ¢. Let f,, f, satisfy the set Pick-Nevanlinna
problem and let f, = (f; + f,)/2. The augmented problem with the supple-
mentary condition f(b) = fi(b) where k takes one of the values 1, 2, 3
is determinate since int 1" = ¢. The three functions f,,f,,fs must be
unitary functions. Consequently, f; taking boundary values of modulus
one on I',f, = f,. It follows that there is only one solution to the set
Pick-Nevanlinna problem. Contradiction. We conclude that int W +# ¢.

(2) This is immediate by Theorem 8.1, since, when w € fr II", trivially
w ¢ int W. By the observations made above the solution is unitary.

(3) The Garbedian bound. We consider a determinate Pick-Nevanlinna
problem relative to Q2 with a finite set of data and denote the solution
by f. We seek to obtain a Garabedian upper bound for the number of zeros
of f, which is the constant value of the valence of f on the open unit disk
when f is not constant. (We put aside the trivial case where f is constant.)
Now f is the unique analytic function on £ satisfying the stated inter-
polation conditions and having the least sup norm of those which do.
Indeed, the minimum of the sup norms of the functions in question cannot
be less than one, for otherwise the stated Pick-Nevanlinna problem would
not be determinate. For an interpolation point b we let »(b) denote the
order of interpolation at b augmented by one. We let » denote the sum
of the »(b) taken over the interpolation points b. The Euler characteristic
of Q will be denoted by %. We shall show

Theorem 8.2. f has at most v - 7 zeros counted by multiplicity.

We note that, thanks to (2), Theorem 8.2 subsumes the upper estimate
of Garabedian, for in the situation which he studied %X == — 2 and
» = k + 1. Cf. the result quoted in the third paragraph of § 1 of this paper.
The lower estimate of the valence in the non-constant case as the number
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of boundary contours does not call for special comment. [In the situation
where some boundary components may be pointlike but not all, it suffices
to consider the surface obtained by the adjunction of points corresponding
to the pointlike boundary components and to observe that determinacy
relative to the stated problem holds or fails simultaneously for the surface
and its extension. The upper bound for the valence of a determinate relative
to the extended surface yields for the valence of a determinate relative to
the given surface an ameliorated upper bound which takes into account
the number of pointlike boundary components. One must, of course, reckon
on the valence being smaller at the points of A corresponding to the point-
like boundary components. Correspondingly, one also obtains a lower
bound subject to suitable qualification.]

Proof of Theorem 8.2. We shall reduce the question to that of obtaining
an upper bound on the number of zeros, counted according to multiplicity,
of H, minimizers satisfying the stated interpolation requirements,
1=9p <+ . The latter question will be treated with the aid of a
variational formula of F. Riesz [15] and the theorem of Cauchy-Read [14].
For the basic facts concerning Hardy classes on Riemann surfaces, cf. [7].
Given F analytic on 2, F is said to belong to the Hardy class H,(£)
provided that |F P, which is subharmonic, has a harmonic majorant
(resp. to H_(Q) when F is bounded). We fix « € 2 and define the H,
norm of F € H,(L2) as the pth root of the value at @ of the least harmonic
majorant of [F|P. It is a standard fact that the H, norm of F is given by

y lp
(8.2) (2—1 f :F*[vaga) ,
-

where F* is the Fatou boundary function of F,g, is Green’s function
for £ with pole @, and dg. is the abelian differential given in terms of
a local uniformizer 0 by 2(¢.c 0).dz. Cf. [7]. We consider for a given p
the member(s) of H,(2) satisfving the interpolation conditions of the
set Pick-Nevanlinna problem with which we are concerned and having
minimum norm. [When 1 < p < -~ o, there is uniqueness. When p =1,
the question of uniqueness is not settled, as far as I am aware. However,
we shall have no need to concern ourselves with uniqueness questions.]
These minimizers tend to f, the unique solution of the determinate problem,
when p — oo, as we see with the aid of the qualitative Harnack inequa-
lity for Q. We thus see that the proof of Theorem 8.2 reduces to sho-
wing that for a given p the number of zeros, counted by multiplicity, of
a member of Hy(Q2) satisfying the stated interpolation conditions which
has mintmum H, mnorm does not exceed v - %.

Let I denote the »interpolation» divisor defined on £ by I(b) = »(b)
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at points of interpolation b and by I(c) = 0 at the remaining points
¢ of Q. The cited variational formula of F. Riesz, which was given by him
for the case p =1 and Q = A but is available suitably modified when
1=p <+ o and £ is not specialized, yields the result that for all
¢ € H,(2) such that 9, the divisor of ¢, satisfies

(8.3) 0, =1,
we have
(8.4) f PP lsg(F*)g*0g, = 0 .

v

Let 0 denote — (9,, -+ I), where d,, is the divisor of dg. (on ).
Let ¢ denote p/(p — 1) when 1 <p < + o, and -+ oo when p =
Let H ,(£2) denote the class of meromorphic functions y on £ satisfying:
(1) 0, =0, and (2) the function

(8.5) lplexp [ 2.eo 9(c)g.]

is bounded, g¢. being Green’s function for £ with pole ¢, when ¢ = + <o,
and its qth power, which is subharmonic, has a harmonic majorant, when
1 <p <+ oo. [For the class H (), cf. [7, p. 79].] It follows from the
theorem of Cauchy-Read that |F*P~'sg(F*) is the Fatou boundary func-
tion of a function G € H ,(Q).

Now FG € H, ,(£2) and further has real (non-negative) Fatou boundary
values. Hence F(@ is the restriction of a function A meromorphic on S
which takes finite non-negative real values on I'. Further A/ is not the
constant zero since not all interpolated values are zero. Since ' € H, ,(2),
we conclude that F and (' each have only a {inite number of zeros. On
appeal to the reflexion property of 3/ under the anti-conformal map «
introduced in the first paragraph of this section, namely

0gq

(8.6) Moow=1,

we see that

(8.7) Deealp(c) + de(e)] = 0.

Thus we see that the number of zeros of ¥ in 2, counted by multiplicity,
does not exceed — > c,04(c). Since G € H, ,(2), we have

(8.8) Sealel() = Seeadle) = — (v - 7).

Thus the number of zeros of F, counted by multiplicity, does not exceed
y - % as we wished to show. Theorem 8.2 follows.

University of Maryland
Department of Mathematics
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