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1. Introduction

The classical Pick-Nevanlinna interpolation problem has as its object
the study of the family of functions analytic on the open unit disk, /,
taking values of modulus at most one, and having assigned initial Taylor
sections of specified orders at assigned points of A. Cf. 1101, [f], [f2],
t161. By the Grenzlue'i,s phenomenom is meant, the fact that I{z(b), the set

of values taken by the members of the family at a given point bG /)
distinct from the assigned. points, is a closed circular disk with positive
radius in case the family contains more than one member. [Of course, in
this case W(b) c /.1 We recall that IU(b) is termed" the Werteuorrat of
the family at b.

In this paper n-e shorv b;' counterexamples that the Grenzkreis pheno-

n'tenon, whi,ch i,s 'i,nherent in Pick-Xeau,nl'irutcr' 'interpolat'ion on tl, d,oes not

ytersi,st in the si,tuati,ott, of donruins of higher topologi,cal structure. To obtain
the examples rve start by consiclering an annulus ancl assigning conveniently

a Taylor section of order one at one point.
The analysis of the question u'ill make essential use of results obtained

by P. R. Garabedian in his study of Pick-I{evanlinna interpo}ation on a
plane region, Q, of finite connectivity %(> l), no boundary component

of which reduces to a point, in the case where there are a finite number

k(> l) of interpolating points and the interpolation conditions are of
zero order, i.e. only assign the value ofthe function [3]' In the cited pap3r

Garabedian shorved that if the interpolating family contains more than
one member, then exactly one member of the family takes at bG Q),

not an interpolation point, a given value on the frontier of W(b). lf (b\

is understood relative to the situation at hand.] Such a member of the
family will be called aL ertremal in accorcl f ith the terrninologl' of Nevan-

linna. Cf. [11]. Garabedian further shorvecl that the extremals are maps of
finite constant valence of O onto J ancl that tlte cottstcr,ttt ua,lu'e of the

I)alence of a g'i,uen ertren'tal 'i,s bou,nded aboue by k 1 (tt, - 1). It is remarked

that this bound. remains valid when f]he zero orcler condition is dropped,

but the matter is not pursued. further.
We shall want to know that the extremals continue to enjoy the property

of being uniquely specified by interpolation at b to a given point of ft W(b)

and that, they are maps of finite positive constant valence of Q onto A

when the zelo order condition is relaxed. In § 8 we give a general discussion
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of this question for the case of non-compact hyperbolic Riemann surfaces
with finite topological characteristics, interpolation being to a finite number
of initial sections of specified orders (given in terms of local uniformizers).
An extension of Garabedian's upper bound for the valence of the extremal,
based on methods due to F. B,iesz [15] and the Theorem of Cauchy-Read

[14], U), rryill be included. lThe extension of the Garabedian valence
bound for the special »Schrvarz Lemma» case (involving one interpolation
condition of zero order) was treated by Ahlfors [1], who also observed for
the case in question that, the contour number ga,ye a lower bound. for the
valence.] For the purposes of the example which we are examining, Gara-
bedian's upper bound may be shown to persist by a limit argument (cf. § 3).

[The limit argument is available generally but would have no special
advantage in a general setting.] That a lower bound of the constant value
of the valence is z is a d.irect consequence of the constant valence property
of the extremals and the fact that J2 is rz-tuply connected. It does not
depend on stipulations concerning order of interpclation.

Using a convexit'y property enjoyed by fl'(b) ancl results of [4], lvhich
treats Pick-Nevanlinna interpolation or an annulus via uniformization
methods, and of [8] w'e obtain qualitative information concerning lv(b)
for the case of an annulus v-hen the interpolating famil5' contains more
than one member. In fact, then, as rve shall see in § 6, either trI'(ä) is a
closed. circular disk lying in / for all allowed b, or is the intersection of
two closed circular disks, each a proper pafi of A, and such that their
circurnferences have exactly two points in common, for all allorved b.

Examples of the first possibility are given in a straightforward v'ay (e.g.

the »Schwarz Lemlol.at> situation). That the second possibility is realized
follows from the counterexamples.

The conyexity propertl- of lY(b) in question (ivhich holds in the com-
pletely general setting of Pick-Nevanlinna interpolation on a Riemann
surface) is that lY(b) has the Study property, namel5r: wheneuer q. 'is a

uniaalent analyti,c magt of A onto ct, con'o^eia regiott', a[TI(b)] is conaer. This
follows on considering

inv a o t(t t)x " f, * t* . fr) 2(1.r)

where 0 < , < I and /, and f, are interpolating functions. [It is to be

observed. that in his cited. paper Garabedian discerned, using (1.I) with ot

specialized to conformal automorphisms of Å, a convexity property of
W(b) relalive to a class of circular arcs. This latter property is subsumed
undor the Study property (and may be used to show that l{z(b) has the
Study property).1

The study of W(b) for the general situation of a Riemann surface is
doubtless complicated.



Meunrcp Ilnrxs

2. The counterexamples

We introduce a fixed 12 satisfying 0 < r < l, and c) small and
positive. We let B(c) denote the set of functions /, analytic on ?I -
{r < lzl 1r-'}, taking values of modulus less than one, and satisfying
the interpolation conditions

(2.r)

(3.1)

We are concerned with the Wertevorraf WG) for the present problem,
which rre shall denote by W" to indicate dependence on the parameter c.

It is our object to show:
Ior c suffi,ci,ently smal,l, W" is a set w,i,th non empty ,i,nter,i,or but ,i,s not

a circular d,islt.

ft follows that the Grenzkreis phenomenon does not hold for B(c),
c small We shall see, § 5, that the Grenzkreis phenomenon also fails for
the class C(c,h) of functions satisfying the cond.itions imposed. on the
members of B(c) save that (2.1) is replaced by the two zero order conditions

(2.2) /(-r) :0, f(-t+h):ch,
r,vhere c is a fixecl positive uumber, suitabl5. small, and lt is sufficiently
small and positive.

3. Valence analysis of extremals

\{rhen c is small, B(c) is infinite and U/" has a non-empty interior,
&s we see fiom a purely elementary consideration of

c(z { L) { d,(z I t)z .

We continue supposing that c is so restricted. Given w e frl[" we denote
by f",. the extremal of B(c) taking the value w at' l. We let t(c , w)
denote the constant valence of f",," on ,7. Since ?I is doubly-connected,
u(c,w)22.

We nou- shorv, using Garabeclian's upper Irouncl ancl a limit argument
Lbal u(c , u) 

= 
3. To that encl, l'e fix o € int II-" ancl consider for small

positive h, ttre functions g, analvtic on ,t, taking r-alues of mociuhrs
less than one, satisfying

and such that g(t) lies on the ray issuing from r,'l and passing through
There is a unique such g, which u,e denote by !n, for rvhich IS(t) -
is maximized. The function gr, is an extremal relative to the point I

,LD.

c0l

for
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the Pick-Nevanlinna problem specified by (3.t). By Garabedian's upper
estimate the constant value of the valence of gn on A does not exceed
2+(2-l):3.Now

f'* :'JS ,o '

and we conclude ttrat a(c , w) { 3.

The following theorem will play a central role in the examination of W".

Theorem 3.1. {u(c,w):we fuW"}: {2,3) for c small.
Proof. We fix g satisfying

0<q<(L-r)12,
and note that with g so chosen the following three sets are mutually dis-
joint:

{lz*rl Ss},
{r{lzl(r*p},
{(r * p)-' ! lzl {r-L}.

There exists an analytic function E on »I satisfying

- log 1r1: ZGeq,

G, denoting Green's function for gl with pole o. The assertion follorrs
from the fact lhat the periods of the conjugate of 2G1_q are integer
multiples of 2n. We normalize E by the requirement that g(l) > 0.

Weproceed by relating g and f",* wit}r small c. Infact,thefollou-ing
lemma holds:

Lemma 3.1. Gi,aen ?l > 0, for sufficiently smull c there erists for each

pair (c , za) , w €frlY", ct, number IL , ',1.1', : l, su,ch that

(3.2) lf",*(z)lcp(z))-r-tci <t7,',2+Ll : S.

Suppose the assertion of the lemma false. Then there x'ould exist a
sequence of f",- 'lvith c tending to 0, say (-F"), which conrrerges uniformly
on compact, subsets of !I and is such that

lim min { max lU"(z)lp@1-l - al}
n-->@ lrl :1 lzf 11 :q

(3.3)

(3.4)

exists and is positive. lVe denote
Let a, e (0 , 1). Then for each

lim y'" by I.
b satisfyirg lbl { a the function

+bv@), z€?{,z --> c(2, + t)

belongs to B(c) for c small (in fact, for c satisfying a I c(r-r + l) < l).
Setting z : L in (3.a) we see that 2c I bgQ) e W" for c so restricted.
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That is, the closed disk with center 2c and radius ag(l) is contained in
W". If, in ad.dition, 2c <aE(l), the interior of the disk contains 0. Hence

for c small , w. being star with respect to 0 and containing the above disk,

lfr.1tll : lwl is at least, as large as the distance from 0 to the point of
the circumference with center 2c and radius o9(I) which lies on the ray
issuing from 0 and passing through w. I{errce for c small

(3.5) lf" *(1)l > ev\) 2c

We conclude with the aid of (3.5) that l.E'(l)l> a'cp(L). Given the
arbitrariness of a, it follows that l?'(1)l > 9(f). Now 7' is an analytic
function on 2I, taking values of modulus less than one and. satisfying:

1(- 1) : E'(- 1) :0. By the Lindelöf principle Plq takes values of
modulus at most one. Since llq Lakes a value of modulus I at 1, by the
maximum principle Tlq is a constant of modulus l. with u l}Jre value of
thisconstantwesee thaL F"(z)lE(z) tendsto z uniformlyon {le -l- Il : S}

and hence that (3.3) is zero. Contradiction. Lemma 3.1 is thereb;- established'
'We nov, use Lemma 3.1 taking rl : L and see bv Rouch6's theorem

that for c sufficientll- srnall ,f",,. has exacth- trro zeros iri { iz * I I < S}'
They are distinct, and one of them is, of course, - l. \\re consider hence-

forth c which are so restricted.
I{ow W" is symmetric with respect to the real axis, for if f e B@),

then also 
"---J121 

belongs to B(c), whence Jgeil'". Since W" is
compact, it has a point with maximum real part. By the noted symmetry
of w" and its convexity, there is such a point which is real; trivially,
it is unique. we denote this point by or(c). we denote the member of
B(c) taking the value a(c) aL I by ,p". Since rp" has two zeros in { lz f
t | < p) ancl g,"(:) : y1.1, rve conclude that the zero of rp" which is

in {0 < lz t Ii < e} is real.
We recall that the periocl of the conjugate of G. taken along {\21 : r}

negatively sensed relatir.e to !{ is 2t tirnes the harmouic tleasure of

{lzl : r} with respect to ?I at n ancl that a corresponcling result holcls

for {lzl: r-1). Norv - log ly'" is a sum of Green fturctions aDcl the

period of its conjugate along {|zi : r} negativelr. serrsecl re]ative to !{ is

2n Limes a positive integer. We conclude that g," has at least three zeros

counted by multiplicity. From the fact lhat a(c , w) 
= 

3 rve see that tp"

has eractly three zeros. They are necessarily si,m,ple «,ncl, reu,l.

For c sufficiently small the zero of f".* not' in {;z f 1] < p}, if
there is one, lies in the union of the annuli {r < lzl < r * g} and

{(, * e)-t < lzl < r-!). This observation follov's from the fact that for
c small the period, taken along { lzl : r} as above, of the conjugate of Go'

a being the zero of f".* not in { lz * 1l < p}, is necessarily close to 0
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or 2n. This fact, in turn, is a consequence of (l) the zero of f",* in
{0<lz*tl <e} tendsto -l as c--->0, and.(2) theperiod,taken
along { lzl : r} as above, of the conjugate of - log 1"f",- | it 2n Limes a

positive integer, here necessarily I or 2. The observation may also be

concluded with the aid of Lemma 3.1.

We continue supposing t'hat a is further restricted to be so small that
the 'third' zero of f,*, i.e. the one not in { lz * I I < S} lies in the union
of the annuli of the preceding paragraph. We fix such an allowed c and
propose t'o stucly the dependence of the 'third' zero on ute fvlT". We
show that for at least two aalu,es of the parameter w the third, zero d,i,saptpears

(and, subsequently, that this happens for eractly trvo values of w). To
that end, we consider

E : {w € frlli" : u(c, u:) : 3} .

Since /.,- depends continuousl)- on ?r, -E is open in tlle sense of the
relative topology of frII'". \Ye introcluce f, the component of E con-

taining a(c). Norv - e(c) is a (actually, as lt.e shall see later, the) point
of lV" furthest left,, thanks to the symmetry of lY" v'ith respect to 0.

It is to be observed that 'when f e B@), so is z * - f("-').
We show that - a.(c) Q. F. To see this, rve note that the 'third' zero

of f",* depends continuously on w for w e f and hence is ahvays in

{r <i"l <r* e} or else is always in {(rt e)-t <lzl <r-'}. Further

f",-*al@) : - f",*<q(z-')'

It follot's that the 'thircl' zeros of f,.-.G) ancl f,,1"1 are rnutually
reciprocal ancl so are not in the same one of the abor-e anuuli. Frorn this
fact ancl the continuous cLepenclence of the thilcl zero o11 rr', it follorrs that

- a(c) 4. F.
The proof of Theorem 3.1 is norr reac1il1- cornpletecl. The set J- is an

open subarc of frW" u'ith trvo clistinct enclpoints. The extremal of B(c)
corresponding to each endpoint has exactly trvo zetos, for otherrvise the
endpoint in question li'ould belong to l. Recalling lhal vla, or(o)]:3,
'we see that Theorem 3.I is established.

Extremals with exactly two zeros. The zero, different from - l, of
an extremal of B(c) relative to 1, having exactly two zeros, lies on {lzl : t}
as we see on considering the period of the conjugate of t'he Green function.
We recall the u,ell known fact that

0 ___> G 
",r(_ 

l)

is increasing on {0 < 0 
-< 

z}. Using this fact ancl the relation
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.we see that there are aL most two extremals of B(c) relative to I which
have exactly two zeros. Since the extremals corresponding to the endpoints

of ,l- have this property, we see that there are eractlg two such extremals.

The extremals corresponding to the points of ft W" - ,1- have three zeros.

Now the set of extremals of B(c) relative to t is mapped univalently
onto itself by both

The maps (3.6) and (3.7) preserve the constant value of the valence of an

extremal. Hence the set of values taken at I by the extremals of valence 2

is mapped onto itself by z'--> - z and z'--> 2. Since neit'her of these

values is real, we see that the set is of the form

{iA@), - i[3(c)], 0 ( 0@) < t .

It may norv be concludecl that

J-: {Re z > 0} O fr TI-" ,

and that J- is mappecl onto itself b;'- z -+2 ancl onto fr Il:" - f fy
a- 

- 
4,

4. W, is not a eircular disk for e small

(3.6)

ancl

(3.7)

We continue
circular disk, its
to 0. This would
sufficiently small

(4.1)

with c subject to the stated restrictions. If tr'V, were a

center rvould be zero since W " is symmetric with respect

imply that a(c) - §(c). But we shall shor'v that for c

u(c) < §(c)

Thus we shall conclude
Theorem 4.1. lV" i,s not a circu'lar clisk for c smctll.

Proof of (+.t).Let u clenote the extremal in B(c) relative to I rrhich
has valence of constant value 2 on J g'hose zero ?j , * - I, has positive

imaginary part. Let o denote an extremal in B(c) relative to I 'u'hich

takes a real value at 1. Let o denote the zeto of c l5ri1g in

{0 < la+ 1l <q} andlet ä denotetheotherzetoof o rvhichisdifferent
from - l. We suppose, as we may u'ith the aid of (3.6), that a' is

so normalized that r < lbl < r * q.
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We note the following relations:

(4.2) - log lul : Gr 1 G1-r1 ,

(4.3) - log lal: G" -p Go * Ge\.
The parameters rl , a , b are subject to certain restrictions as we shall
now see. We introduce

A : limtl4l_q(z) f log la f I ll .

X'rom (4.2) and (4.3) we obtain, using the condition on the derivative at

- I for members of. B(c),

(4.4) G,(-r) + A:G"(-L) *Gu(-r) + A: -logc.
From the fact that the constant, value of the valence of o on zl is 3, we
conclude on calculating the period along {lrl : r} of the conjugate of

- log lal that

is either L 12

exceeds L 12.

(4.5)

log ('pir) log ('b'r)
l'9,.e -i- t'g 

"
or 312. By the normalization of a the secorlcl term in the sum

Ilence the sum has the value 3,' 2. \Ye conclude

The proof of (a.1) will now be completed with the use of the behavior
of G, near - I and of the symmetry of the Green function. Indeed, the
number of zeros in 2[ counted by multiplicity of (Gr), is I since ![ is a
doubly-connected region with non-degenerate boundary components. Since
Gr(z-'): Gt@),2€W, (G,), has its zero at, - l. We conclude that

(4.6) Gr("): G.(- l) f B[(Re zl r)' - (I- z)z)+o(]zt Llz), B +0.
Nou, B < 0 since the restriction of GL to the segment [- r-' , - r)
attains its maximum at the zeto of (G,)", i.e. at - I. L'sing (4.2), (4.3),

the symmetry of the Green function, and (f.6) we obtain

(4.7)

From the boundary behavior of
functiorls, $,ith

Gr(a) + Gr(b) - Gr(,t)

B(a -r- I)' + ol@ -r- I)'l + Gr(b)

B(Tm q)z + olin + I l'l .

GL and the minimllm principle for harmonic

- §(c)
ros M-
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(4.8)

we have

lryl

r

Using (4.5) we conclude

G,(b) > clos *.
Further, using (4.4) and the symmetry of the Green function, we obtain

(4.e) log l,l * Ilf o(t) :log(o* I) *o(t) - G(-,)(ä) .

We conclude from (a.9) and (4.5) that

ln + 1l
limi=-l-I
c->o ',a + Ii

Ilence from (4.7) and (4.8) we obtain

Bb\ I
to* ö > Clog 

^ 
+ \B(a * l)'> 0

for c sufficiently small.
The inequality (a.1) follorrs, and Theorem 4.I is thereby established.

5. The case of zero ortler interpolation

In this section rye show by continuity considerations that the Grenzkreis

phenomenon does not persist in the case of zero order interpolation. To

that end, we introd.uce an auxiliary function, 0(z) : L - zz , z e 2I. We
fix c positive and so small that,

(5.1) c sup l0l < t
and (4.I) holds. We consider the Pick-Nevanlinna interpolation problem

for 2[ rvith the interpolation requirements

(5.2) /(-1) :o,f(-L+h):ch,

where O<h<l- r. Let 7l, denotethe setof valuestakenat l by
the functions /, analytic on 21, taking values of modulus less than one,

and satisfying (5.2). It is our object to show that for ft, sufficiently small
Yn is a set with nonempty interior but is not a circular disk.

We introduce m satisfying
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a(c)l§@)

and consider the functions

ch-mV(-t+
0(- I + tL)

the interpolation conditions
r 2 such that

veB@),

(5.2). There exists ho ,

(5.3)

which satisfy

mv+ 
L

h)1'
-] ,

ch-mV(- I +h,)
I o(- r +tt) < c(I nL) ,

when 0 <h < ä0. x'or such ä the functions (s.3) take values of modulus
less than one and we proceed understanding that ä is so restricted. Since
A(1) :0,ma(c), -ma(c),mp(c)i,,-rnl3(c)ie Vn, Further 0 €int 7l.

Let p(h) denote the maxim,m real point of Ya andlet 2(h) denote the
minimum real point of Vn. \Ye first shorv that limr_o p(h) : t(c) and
limo-o 1(h): - "(c).fn fact, given l,o <t q l, r-e have p(h)-;, tx(c),
1(h) < - ta(c) for ä small (as rve see on introchrcing an allor.r'ecl m > t).
x'urther there exists q e B@) such that g(l) is real ancl at least as large
as lim sup p(ä). \IIe conclucle that, lim p(h) : a(c). Similarlv, lr-e conclucle
that lim ),(h) : - o(c).

If Vn were a circular disk, the center of Tn would be real, the poiuts
of frVn on the imaginary axis being the negative of one another since
7a is rnapped onto itself under z --> 2. The radius rvould be fpr(h) - i.(h))t2
and so

lp(h) - ,,(h)lt2 > m§(c) .

Hence if 7n were a circular disk for arbitraril;- small /2, rre rroulcl have

t(c) 2 mB(c) .

From this contradiction u'e conclucle that T'r, is not a circular disk for
small positive h. The Grenzkreis phenomenon is seen not to persist for
zero order interpolation.

6. Positive results concerning the wertevorrat in the case of an annulus

A Pick-Nevanlinna interpolation problem for a Riemann surface mav
be referred with the aid of a conformal universal covering to the case of
the unit disk and be reduced to a problem concerning interpolation by
analytic functions on / which take values of modulus at most one and are
automorphic with respect to the Fuchsian group of conformal auto-
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morphisms of Å leaving the conformal universal covering invariant.
[For this reduction, cf. ft] where only the case of an annulus and of zero
order interpolation is considered. The discussion is, however, applicable
to the general situation and prepares the way for the developments of the
following paragraph.l With the aid of this reduction, in the situation where
the problem on the Riemann surface has more than one solution, the question
of the \Mertevorrat may be reformulated as follows thanks to uniqueness
considerations given by R. I{evanlinna in his memoir on Pick-Nevanlinna
interpolation [1f].

Given a Riemann surface B, a Pick-Nevanlinna interpolation problem
on B having more than one solution, and q, a conformal universal covering
of § having domain A, there exist functions .4. ,8,C, analytic on Å,
taking values of modulus less than one, such that

13

(6.1) w---> A,(,»): 4y): * !@)
O(z)w + I

maps Z into A for each ze A and A-BC isnottheconstant0,
having the property that the interpolation functions for the given Pick-
Nevanlinna problem on § composed with g are given exactly by the
functions,

(6.2)

where the g are
aL most one and

(6.3 )

for all r e f ,

invariant , a(r)
and satisfyirg

(6.4)

* ) \{,re need" to aIlorn, the
one. Ilence the d"istinct,ion

A,6y(u) - A,[o(r)(w)) ,

lzl < L , lwl < L. Thus, the Werteaorrat quest'ion is referred, to tlte question
of stud,ying the,image wi,th respect lo (6.I) of the set of SQ) at q, non inter-
polation point z , g being an alloued, solutiott of (6.3). In the case rvhere 1'
is not abelian, the precise nature of the \Yertevorrat appears to be elusive.
However, the situation for a non-clegenerate annulus is particularly
favorable, for here J" is generated b;. a h;,'perbolic conformal automorphism
of ,4.

,rose 'J;I'13];,,.T :,' taking \.ar,les or mod,rrus
satisfvirg the s\-stem of eqllations

the group of conformal automorphisms of Å, leaving V
being the }töbius transformation*) *upping Å onto itself

possibilit;r of constant g taking a vallle har.ing modulus
made relative to a(r).
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We shall see that in the case of a non-il,egenerate anmulus either for all,
non-'interpolat,ion poi,nts z the Werteaorrat i,s a cl,osed, circular d,isk D(z) c Å,
or for all, non-interpolation poi,nts z the Werteaorra,t ,i,s the ,i,ntersection I(z)
of two closed, circular d,islcs, each contai,ned, progterly ,i,n A, their ci,rcum-

ferences haa,i,ng exactly two yto,i,nts ,i,n common.
The problem may be referred to the nature of a(t) where r is a generator

of l-. Since xk) maps / onto itself, a(r) is non-loxodromic. Simple
interpolation situations yield examples where a(z) is the i,ilenti,ty or ellipti,c
(e.g. the problem on ?I with (l) /(- 1) : f'(- l) : 0, resp. (2)

/(- l) : 0). The examples of §§ 4, 5 will show that a hyperboli,c a(z) is
realizable. We have not decid.ed whether parabolic oc(z) are realizable.
The proofofthe assertion ofthe previous paragraph, to u'hich we now turn,
does not depend on the &nswer to the question.

If x(r) is the id,entity, the set of g(z) is j. If «(z) is elliptic,lhe
problem may be reduced to the case where the fixed points of a(z) are 0
and co. A direct examination then shorys that rvhen oc(z) is elliptic, the
set of g(z) is a closed circular disk of positive radius lying in A. If a(z)
is paraboli,c, the problem may be reduced with the aid of a suitable Möbius
transformation mapping / onto {Re z > 0} to the study of the set of
values at z e / of Lhe solutions ä of

(6.5) h"t:h+i,,

ä being either the constant oo or else analytic on A and taking values
with positive real part. The set of h(z) is of the form

{Rez}c(> 0)}U{.o}

and consequently the set of g(z) is a closed circular disk contained properly
in A, the circumference of which is tangent to the unit circumference at
the fixed point of a(z).

We now conclude that in the three cases considered thus far the Werte-
vorrat at a non-interpolation point is a closed circular clisk of positive
radius in /.

It now follows, thanks to the example of § +, that the case of hyperbolic
a(z) is indeed realized, the Wertevorrat, not being a circular disk.

The case where o'k) is hyperbolic may be reduced with the aid of
suitable Möbius transformations to the study of

(6.6) Ir,(12) - p,lt (z) ,

where l<l,fi1* oo, andsolutions h are consideredhavingdomain
{Re z } 0} which are the constant 0, the constant co, or else are analytic
maps of {Re z } 0} into itself. One concludes with the aid of the lemma of
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Julia-Wolff-Carath6odory that a necessa,ry condition for (6.6) to have

allowed solutions other than the constants 0 and co is that

15

(6.7)

That it is

( 6.8) exp(#rr"*,) ,

sufficient may be seen with the aid of

where »Log» denotes the principal logarithm' Further, in case F : )',

the only non-trivial solutions are of the form cz , c a, positive number,

as we see with the aid of the lemma of Julia-Wolff-Carath6odory. Cf. [5].
Given zo satisfying Re zo 2 0, the set of ä(zo) for given i and p , p { }',

is of the form

{§ Argz{y}U{0, m},(6.e)

where - nlz < P = | 
l nf 2, as we see by considering the maximum

and minimum of Argh(zo) for solutions å satisfying lh(zo)l : I and
using the fact that the family of allowed ft, is positive homogeneous and
closed with respect to addition. Here »Arg» denotes the principal argument.
'We remark that p: y exaclly rvhen pr : ).. Cl. (6.8) andthe observation
following (6.8).

Returning to the situation for the unit clisk, $'/e see that for the uni-
formized version of the interpolation problem only multipliers p, < ).

arise. This is so, because rvhen there is more than one interpolating function,
the Wertevorrat at a non-interpolating point, having the Study property,
has a non-empty interior. Cf. § I of this paper, [3], [8], and [9]. One may
also use the results of § 8 of this paper.

\Me are led to the conclusion that when or(z) is hyperbolic, the Werte-
vorrat at a non-interpolation point is a closed convex lune lying in /,
the frontier of which is the union of two circular arcs, or a circular arc and
a rectilinear segment, having common endpoints. The second alternative
is excluded by the Study property. Cf. [8], [13]. It is a direct consequence

of thetheoremof p. IT2andthelemmaof p. 173of [8]thatthearcsliein
closed disks bounded b;r oricycles to rvtrich they are tangent. trVe are re-
ferring to the representation of llinkowskian type given in [8] for proper

subsets of /, whrich are closed in the sense of the relative topology of /
and have the Stud.y property. We see that the circumferences containing
the circular arcs lie in the closed. disks in question. The Wertevorrat is the
intersection of the closed disks bounded by these circumferences. The
asserted property of the Wertevorrat, is seen to follow.
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7. Preeisions on W" of § 4, c small

We now see that W" i,s bound,ed, by the un'i,on of two c'i,rcular arcs haaing
conl,rno% end,po,i,nts. More precisely, they are the ci,rcular arcs with endpo'ints

i§(c), - i,§(c) tohichconta'i,mrespecti,uel,g a(c) and, - a.(c).Thisobservation
is a consequence of the fact lhat z -> ä and z --> - z map W" onto itself,
which, taken with the fact that the endpoints are characlerized by being
corners, implies that it is not the case that one endpoint has a non-zero
real part and the other has a non-zero imaginar5, part (for otherwise, there
would be four distinct points in the set of endpoints). There remains to
exclude the case where the endpoints are cr(c) and - «(c). It cannot occur
since the disk bounded by the circumference passing through a(c) , - a.(c),

iB(c) does not contain - i,§(c). The asserted property of lV" follows.

8. Some general facts concerning Pick-Nevanlinna interpolation

In this section we give an account of the results we have used concerning
Pick-Nevanlinna interpolation with a finite set of data in a setting of Rie-
mann surface theor5r. We are proceeding under the assumption that the
given Riemann surface has finite topological characteristics, is hyperbolic,
and that the boundary components are non-clegenerate. Consequently, we
suppose, as we may, that the given surface is a region Q of a compact
Riemann surface §, the frontier f of Q consisting of a finite number
of mutually disjoint closed Jordan currres which are regular and analytic,
that f : fr (§ - .O), and that there exists a univalent anticonformal
map o( of § onto itself keeping the points of J- fixed and mapping J?

onto B - O. Thus ,S is a Schottky double of Q. Our objectives are to
show that when there is more than one interpolating function, (1) the Werte-
vorrat, at a noninterpolation point b has a nonempty interior, and (2)

there is a unique interpolating function taking at b an assigned value
lying in the frontier of the Wertevorrat and it has the constant valence
property. We also show (3) the Garabeclian bouncl extencls in a natural
way.

We shall call a Pick-Nevanlinna problem determinate provided that it
has exactly one solution. In the case of the problem \1'e are considering on
O (with a finite set of data) determinac.v implies, as a consequence of the
erchange principle given on pp. 63, 6a of [7] that the solution is a uni,tary
function (Einheitsfunktion) in the sense of Carathdodory l2), i.e. is the
restriction b A of a meromorphic function on § which is analyticin Q
and takes values of modulus one on J-. It is classical that a non-constanb
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analy,tic function on J2 taking values of modulus less than one has constant

finite valence on Å if and onlv if it is unitary'
we continue under the assumption that the set Pick-Nevanlinna

problem has more than one solution. Let I/ denote the Wertevorrat of
the family of solutions at the non-interpolation point b. Let we TV.

we consider the augmented problem requiring that, in addition to the

conditions already put down, a solution / satisfy: f(b) : w. The following

theorem holds.
TheOrem 8.1. If the augmented, problem i,s not tJeterntinate,then w e int TY.

The statecl properties of the werteyorrat rvill be seen to follorv.

The proof to be given of Theorem 8.1 rvill be based on the exchange

principle and is related to the one \ye used for the zero order case. cf. [6,

p. 572). Holvever, the auxiliary polynomial introduced there is not adequate

for interpolation of higher order. To construct for the present purposes a

convenient auxiliaryfunction, we fix q€S- A,q being a non-Weier-

strass point of §, and note the existence of functions analytic on B - {q}
having an assigned. simple zero but no other zeros. The existence of such
,primar5.' functions is assured. by construction with the aid of harmonic

functions having singularities of an elementary kind at q, resp. at q and

the assigned. point,. \Tith the aicl of the reciprocals of such primary functions,
'we may construct a meromorphic function E on § - {q} having at a
finite number of assigned points of § - {q} assigned principal parts

(possibly 0) relative to fixed local uniformizers for these points. suppose

now that .4 is a finite subset of § - {q} and. B is a finite subset of
s - ({q} U .4). We introduce a function g, t]ne product of a finite number

of primary functions, having zeros of assigned positive orders at the points

of A, ancl zeros at the points of B. lYe now introduce g as above, rvhich

is analytic at, the points of s - \{q) u A) and has principal parts at the

points of -4 in te:..ms of the fixecl local uniformizers which are such that
the initial Taylor section of qV (taken in terms of the uniformizer) of order

equal to the multiplicitl- of ip at tire point less one has assigned coefficients.

We 1oy, tur1 to the proof of Theorern 8.L L'sing the exchange principle

we see that there are ts-o clistinct unittlrv functions, sa)' ,f1 ancl /,. satis-

fving the conclitious of the augrnentecl ploblem. Let i : (f , i /,) z. \Ye

let A denote the union of {b} ancl the set of points at \\hich the set Pick-

Nevanlinna problem specifies iuterpolation conclitious, attcl 'n-e let B
clenote the finite set, on J' at the points of s-hich / takes values of rnoduius

one. \4re specialize rp to have zeros at the points of ,{ hzrr-ing orclers equal

to the order of the interpolation condition of the augmentecl problern plus

one and zeros at, B. we thereupon choose E so that gr2 satisfies the

interpolation conditions of the augmentecl problem.

For f sufficiently small and positive

L7
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s:(r-t)f*tw
satisfies the interpolation conditions of the augmented problem and also

maxu lgl ( I.

We fix such ,. Now let, 0 be a product of primary functions having zeros

at the points of interpolation of the originally given Pick-Nevanlinna
problem, the order being the order of interpolation plus one, but no other
zeros. On considering

(8.r) s + t0

for small complex l, we conclude that w e i*, trfl. Theorem 8.1 is thereby
established.

It is now easy to conclude the stated properties (1) and (2) of the Werte-
vorrat,.

(l) Suppose that int W : Ö. Let fr,/, satisfy the set Pick-Nevanlinna
problem and let f ,: (f, + fr)12. The augmented problem lvith the supple-

mentary condition f(b) : $(Ö) rvhere fu takes one of the values L, 2, 3

is determinate since int Ttr': {. The three functions /r,fr,f, must be

unitary functions. Consequentl,u, f, taking boundary values of modulus
one on T , fr: fr. It follox's that there is only one solution to the set

Pick-Nevanlinna problem. Contrac'liction. \Ve conclude that int lV * ö.
(2) This is immecliate bv Theorem 8.1, since, rvhen u e ft Ur, triviall;'

w € int, W - By the observations made above the solution is unitary.
(3) The Garbed,'i,an bouncl,. \Ye consider a deterrninate Pick-Nevanlinna

problem relative to 0 rvith a finite set of data and denote the solution
by /. We seek to obtain a Garabedian upper bound for the number of zeros

of /, which is the constant value of the valence of / on the open unit disk
when / is not constant. (We put, aside the trivial case where / is constant.)
Nou, / is the unique analytic function on 12 satisfying the stated inter-
polation conditions and having the least sup norm of those which do.

Indeed, the minimum of the sup norms of the functions in question cannot'

be less than one, for otherlrise the stated Pick-Nevanlinna problem u'ould
not be determinate. For an interpolation point b rre let r,(b) clenote the
order of interpolation at ö augmentecl br- one. \Ye let l clenote the sum

of the rr(ö) taken over the interpolation points ö. The Eu1er characteristic
of O will be denoted by t. \Ye shall shorv

Theorem 8.2. f has at most v + X zeros cotutted, by multipli,city.

We note that, thanks to (2), Theorem 8.2 subsumes the upper estimate
of Garabedian, for in the situation rvhich he studied X : n - 2 and

v : k+ l. Cf. the result quoted inthe third paragraph of § I ofthispaper.
The lower estimate of the valence in the non-const'ant case as the number
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of boundary contours does not call for special comment. [In the situation
where some boundary components may be pointlike but not all, it suffices
to consider the surface obtained by the adjunction of points corresponding
to the pointlike boundary components and to obserye that determinacy
relative to the stated problem holds or fails simultaneously for the surface
and its extension. The upper bound for the valence of a determinate relative
to the extended surface yields for the valence of a determinate relative to
the given surface an ameliorated upper bound which takes into account
the number of pointlike boundary components. One must, of course, reckon
on the valence being smaller at the points of / corresponding to the point-
like bounda,ry components. Correspondingly, one also obtains a lower
bound subject to suitable qualification.l

Proof of Theorem 8.2. We shall reduce the question to that of obtaining
an upper bound on the number of zeros, counted according to multiplicity,
of Hp minimizers satisfying the stated interpolation requirements,
I ! p < f oo. The latter question ri'ill be treated with the aid of a
variational formula of F. Riesz [15] and the theorem of Cauchy-Read p4l.
For the basic facts concelning Hardv classes on Riemann surfaces, cf. [7].
Given .E' analytic on (J , -F is saicl to belong to the Hard-v class flr(O)
provided that l?)n, rrhich is subharmonic, has a harmonic majorant
(resp. to H-(Q) when -P is boundecl). \\.e fix a € 0 and define the Ho
norm of I e He(9) as the pth root of the value at a of the least harmonic
majorant of 1Z'[. It is a standard fact that the Eo norm of l' is given by

(8.2)

19

(* ! lr* t'ös')'' '

rvhere .F'* is the Fatou boundary function of I , g, is Green's function
for Q with pole a, anr). dg, is the abelian differential giveu in t'erms of
a local nniformizer 0 Tty 2(9" " 0)dz. Cf. [7]. \\re consicler for a given p
the member(s) of Hr(9) satisfl-ing the interpolation conclitions of the
set Pick-Nevanlinna problem l-ith rvhich \1-e are conceLnecl ancl having
minimum norm. f\Yhen I 1p I i a, there is uniclueness. \I-]ren p : L,

the question of uniqueness is not settlecl, as far as I am arl'are. Horrel,er,
rve shall have no need to concern ourseh.es rvith uniqueness questions.]
These minimizers tend to f , llne unique solution of the determinate problem,
when p --> co, as we see with the aiil of the qualitative Harnack inequa-
lity for O. We thus see that the proof of Theorem 8.2 reduces to sho-
u,ing that for a giuen p the number of zeros, countecl, by ruu,lti,pli,city, of
a ru,ember of Ho@) sati,sfyi,ng the stated, i,nterpolation conditions uhi,ch
has m'i,n'i,mum Ho norm d,oes not exceeil, 1'+X.

Let I denote the »interpolation» divisor defined on O by I(b) : y(b)
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at points of interpolation ä and by 1(c) : 0 at the remaining points
c of Q. The cited. variational formula of F. Riesz, which 'w-as given by him
for the ca,se p : I and Q : / but is available suitably modified when
I { p < f oo and A is not specialized, yields the result that for all
E e Eo@) such that dr, the divisor of E, satisfies

( 8.3)

we have

( 8.1)

(8.6)

we see that

(8.7)

{

2,. pllr{c) + 1r(c")l < o

LeL 0 denote - (00r" f 1), wher" )uro is the divisor of ö9" (on O).

Let q denote pl@- t) when l<p (tm, and f oo when p:1.
Let Hn,(Q) denote the class ofmeromorphic functions ? on J? satisfying:
(l) 0r,> 0, and (2) the function

(8.5) l,rpl exp [2".o 0(c)g"7

is bounded, g" being Gteen's function for Q with pole c, u,hen Q : * q,
and its qth polrer, which is subharmonic, has a harmonic majorant, when
1 < 1t < f co. lFor the class är,e(O), cf.17, p. 791.1 It follows from the
theorem of Cauchy-Read that 17,*[-trr,-) is the Fa,tou boundary func-
tion of a function GeHq3(O).

Now -FG e H\o(9) and further has real (non-negative) Fatou boundary
values. IIence .F'G is the restriction of a function l[ meromorphic on §
which takes finite non-negative real values on l-. X'urther ,41 is not the
constant zero since not all interpolatecl values are zero. Since G e H*o6)),
u.e conclucle that I ancl G eacli har-e onlr a finite number of zeros. OIr
appeal to the reflexion propertv of -V unclel the anti-conformal map &

introduced in the first paragraph of this section, namely

Thus rve see that the number of zeros of -[' in f), counted by multiplicity,
does not exceed - Z"rol"(t). Since G e Hq,o(Q\ we have

(s.8) Z".n?r(") ) Z"..oä(c) : - (y + )() .

Thus the number of zeros of -F', countecl by rnultiplicitv, cloes not exceed
y + X as we rvished to show. Theorern 8.2 folio'rvs.

University of Maryland
Department of }lathematics
College Park, Maryland 20742, USA
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