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1. Introiluction

For fr ) 2 let Zr. denote the class of locally univalent functions

f("):z{arzz+...
that map lzl < f conformally onto a domain whose boundary rotation is
at most kn (see [9] for the definition and basic properties of the class 7r).

It was shown by Paatero l9l that for 2 { k < 4 7,. consists only of
univalent functions, whereas, for each k > 4 7r contains non-univalent
functions. Reade [f2] posed the problem of determining the radius of
univalence, ,u1", of the class Y* (k>  ). In § 2 we give a solution to this
problem. trVe shorv that un: tan (nlk). The proof of this fact consists of a
remarkably simple application of the theory of linearly invariant families
of functions as developed in 1111.

In § 3 rve recall the r.ariational forrnula for Vt (2 < k ( .1) developed
b;, Schiffer and Tammi [14] and apply it in § 4 in the solution of a general
extremalproblemfor Y*. Specifically,weproyethatif f isfixed, lil < f,
and" F(u, z,) is a function analytic in a neighborhood of U (/(6) , f) then

ley*

max Re r'(/({) , :} (2 < k < 4)
fevn

is attained only for a function of tlit-. form

2 l/rr,'-\Ä: I
(r.2) I@): i t., - r)-L(, *;J - r] ( ,, : r: y1 ,» r y).

Each function of the form (1.2) belongs to Z6 and maps lzi < I onto a

domain that is the complement of an infinite weclge'r.vith openin f (=)"
In orcler to sholy that functions of the form (1.2) give the solution to (1.1),
the Schiffer-Tammi variational forrnula alone is not sufficient,, fndeed
we employ this variational technique in orcler to show that the extremal
domain for the problem (l.f ) is a polvgonal domain. Horvever, using just
this variational method there seems to be no lvay to give a bound on ihe
number of sides in the extremal polygon. The final forrn of the result is
achieved through an application of tlie Julia variational formula [6] and

(1.1)
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a method first introduced by Biernacki [3] and used subsequently in [t],
[2] and [8]. As an application of our general result, we show in § 5 that if
f eV*,2{\i<4, and lzl<1, then

ars'+i .(fln
and

| "f'(r)
lu's M

ltc 1\

Both of these inequalities are best possible.

2. The radius of univalence

The radius of univalenca, 1t1", of 7r, is by definition the radius of the
largest circle with center at the origin in which every / in 7r is univalent.
Our method for determining ut is based on results due to Pommerenke for
linearly invariant families of functions [l]. \Ye recall that a family 7
of functions analy'tic in lrl < I is linearly invariant if for each /€ 7
and each bilinear map d of lzl < I onto )zl < l, the function

f " ö(r) - f " d(o) e7
f 'lö(0)ld'(0)

X'irst we note that in [3] Robertson showed that for each k ] 2 , V*
is a linearly invariant, family. Secondly, Pommerenke [It] showed that for
any compact linearly invariant family V, the radius of univalence
11: rr(V) of 7 and

f e7 r>o

are related by

(2.1)

Hence in order to determine un iL suffices to find the value of ro for
the family Zr. This is the content of the follorving theorem.

Theorem 2.1. Let 7 e Vx wi,th k ) 4. Then f(z) l0 for

The function

(2.2) Gk@;20): 
F- (ffi) - ?*@o)
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'i,s sharp.
Proof.Let ro-ro(V*). If ge Yn is a function

by an argument given in the proof of [1], Satz
arg g' (ro) - + 2n, where the branch of the argume

It was shown in t4l that if f e Y n then

/ s r(z)\n/o 
+'r, 

I 

e)r,n 
-',,

shows that th'is result

with g(ro):0 then
2.3f it follows that
nt is determined by

s (z)
arg\JZ

, Iarg f '(r) [ < k arc sin lzl
F n. Since g'(rd - + 2n

we conclud.e that 2n l lcarc sin ro orc in2f < ro. On the other hand

we consider the value of the function (2.\ ar - t, *irz] . Since

maps s(z), Strohhäcker [ 16] has shown that

Using this estimate in (2.3) *" see that if / € V n

aa

?, sln

2n
I sin - -- tan

k

JT

2n 1r

ttk
TT

T

Tf,

k

and

I itan T
'---:-

7t
1 + 'i,tan T

1+ ,i,tan 
k

o-2h lk oLiz lk(/)-\r

1 -itan: k

it follows that G-(-a sin T, rr)
is complete

fn view of (2.L), Theorem 2.L

Theorem 2.2. The rad'ius ,f lln

and the proof

tan (rlk).

3. Variational tormulae

In [a] Schiffer and Tammi employed the method of interior variations
to obtain the following variational formula for the class V* , 2 < k < 4.

(sin (T)

is equivalent to
'io-alence ,f Vn as
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f*(") - f(z) * ne'f@) l#^+ hffi)]
(3.1)

I d / r' ff'ft\dt \ zzf'(z\ l*apzLa\! iffi) - p*,1s-a,11 +o(a')

where, as usual, the estimate for o(g2) is uniform on compact subsets of
lzl < L, a is a free parameter and zo is an arbitrary but fixed point of
lzl < L-

We will also require the Julia variational formula [6] in the form

f*("):f(z) *'+#
(3'2) f F+, ( td.wrl n(w\

J ', :r- t- ö@'d;j *i*rdw ! o(t).
f

Here /(z) :z*ezzz*... denotesaconformalmapof lzl <l ontoa
domain rvith boundary -I w:f(€) (l§l : 1) , ö(w) is continuous and
piecewise differentiable on .I , n(w) is the unit exterior normal to J- at
w alad f*(") : a{z * atz *. . . is a conformal map of 'zl <I onto the
domain D* with boundary

l'F |w*: ut I e$(w) (, > 0) .

The expression ,- 
{- ö@) W} represents the component of the

bonndary shift u)--'>10 * eö(w) in the direction of n(w). This form of
the Julia variational formula follorvs, using a stanclarcl argument, from
the version of the Hadamard variational formula for the Green's function
of D derived in [17]. Our use of (3.2) is restricted to domains D for u-hich
the general version of Hailamard's formula pror-ecl in [17] is applicable.

Thelvay in which lve employ (3.2) is l:ased on a method originatecl b-v

Biernacki [3] and subsequently refined in fll, [2] aricl [8]. \Ye outline the
methocl as it u,ill be usecl in the present context. Let ;', ]il < 1, be fixecl.
We rnant to characterize the extremal functicn for the problem (1,1).
Ler f € 7r ancl let, f* be defined b;'(3.2). Expancling X(f*(q, q in
polYers of e rye obtain

x(f*(C) , C) : I$(e), a) +
(3.3) - ,,. -. P,(,f('\ '\ f - -L r I Idru ll n(w\\ ./ 

eef'G) -"";il', I ;_ir,u {- +t-*) ä*)} ir"r}(u,) - o(e)

f

where ?r(u , u) : 0?(u , a)10u.

+ cLQz lh(['ffi)+ zf '(z)

zof '@i@ - zo)



\M. E. I{rnwex

Suppose the boundary of /(lzl < l) contains three disjoint analytic
arcs. Thesearcscorrespondtothreearcs lr, l, and, l, on lzl: l. As z

varies on lzl: | , e!'G)Fr(fG) , e)-, describes a' circle. Con-

sequently, of the three arcs l,r, l, and l, there must be two, which we
denote by y, and y2, that satisfy

[ - r rt I z*Cl(8.4) ma,x Re{e/'trlr,t/tq, q=} . nl: lef'Glt,tfta, af- 6}.
We choose {(n) to satisfy

(3.5) rm{- ö@)#}:{:l
w ef?r)
w e f\r)
elser,vhere on y

and

f ( la*l) n(w\(8.6) J ,^ {- +t*l 
^l ffidw:o.I

If we apply (3.2) to / rvith this choice of $(w), then by (3.6), /*'(0) : r
and by (3.4), (3.5) and (3.6)

n" 
{c/'ro '*';:l',) I 

=,,- 
{- ö@)#} ffff,**}, ,.I

It then follows from (3.3) that

Re -r'(/x(f) , 6) > Re -F,(/({) , o
and so if f* e V* , f is not an extremal function for the problem
maxye roP"e ?ff61 , q'r. \\'e summarize the content of these remarks in
the following lemma.

Lemma B.l, Let e , 16l < l, be fired, and, let I(u,u) be anal,yt'i,c on

Uy.r1"(/(6 , f)). Let f e Y* and, map lzl < L onto a d,omain whose bound,-

ary conta'i,ns three d,i,sjoint analyti,c arcs. Then
a) there eri,sts two arcs yt anil, y, on lzi :1 that satisfy (3.4).

Iurther if ö(*) is chosen to sati,sfy (3.5) ancl (3.6) and, if f* d,efined, by
(3.2) belongs to Vn, th,en

b) f i,s not an ertremal function for rnax Re-E(/(6) ,4).
leY*

4. A general extremal problem

We will use the variational formulae of the preceding section in order
to solve the following general extremal problem.



Ann. Acad. Sci. Fennicre A. r. 595

Theorem 4.7.
a ne'i,ghborhood, ,f

(4.1)

U (/(f) , C) uhere 2 < lt < 4. Then
fevn

max Re F (f(q , e)
f eYn

is attai,ned, only for a functi,on of the form
o llt L *,\kiz 1(4.2) E(z): 1<" - il- l\ifr) - ,l @ *y)

wi,th lrl: l: lyl.
As noted in the introduction, functions of the form (4.2) map lzl < I

onto the complement of a wedge with angular opening ((4 - k)12)rr. The
proof of Theorem 4.1 will require the following lemma.

Lemma 4.2. If 7 e Y* 'i,s an ertremal function for (4.1) then

rm lr(/(() , qj(q - 6/'(()l : o'

Proof. Leh e be real rvith lel small. The function

f "(") 
: ei"f(e-i"z) : l@) | i,elf(z) - zf'Q\ * o(e)

belongs to Vk. Expanding I(f 
"(q , 

q in powers of e and. using the
fact that / is an extremal function'we obtain

Re-P(/"(() ,C): Re{r(/(() ,4) + d'UG) - Cf'(il1Pr(/(6), f)} * o(e)

< Re 7(/(() , f) .

Since e can take either positive or negative values we conclude that

6 : Re {d?tff(ö, 6X/(f) - Cf'@)): - Im I,(l(Ö , e)ff(q - $'(q) .

Proof of Theorem. We assume initially that 2 < k < 4. Let f e V*
be an extremal function for (a.1). \Ye first apply the Schiffer-Tammi
variation to / and show that / maps lzl < f onto a polygonal domain.
To simplify our notation we set

and

l(2,,2):k([ _#_,,^d
in (3.1). If we expand .F'(/*(6) , 6) i, powers of p2 using (3.1), we obtain

8
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(4.3)

r(f*(c),e)-F(f(il,c)

*aQ,r,(r(e),r) {r,r, l#^+ h(#l

Since f is an extremal function for (4.1),

Re -F(/*(() , e) ( Re F(f(q , e)

r,vhich implies by (4.3) that

o (Re 
l"{u,,r,,, ,c) [,,, l*ro+ h(#)] * H@o,r)

+
ef'(O I 

-f_
ffiJ + r,ffG),e) 

Lr@o,q zof'(ro)(l - zoe)äl )lzof '@o)(C - zo)

Using the fact that a is arbitrary we have

x,ffG),,, 
1r,,, (#^ * hhh) t rr(zo, c)

'*n' * 
"#y';] 

* "*r,r" n lt,^, - --@-l :,
A lengthy but straightforward calculation shows that (a.a) is equivalent
to (with lr: Ir(fG) ,0)

[r, {' * f'(t)dt + F, fc I a f'$)dt] (' +'{#)

(45) - FL(r,r, + I'#*r'(t)dt+ *l'(r))
a ur(:-t'y ,rn + [' z^t' \

\ffi t'(c) + J 0:4q 7'1qat).

Since zo denotes an arbitrary point of lzl < I, we replace zo by z in
(4.5) and rewrite (4.5) using the notation

(46) e@,c)(r.T3):R@,e).
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ft is clear from their definitions Lhat Q@ , () and, R(z , l) are analytic
on lzl: I and are both not identically zero unless 1r : 0. However
by a result in [7], Ir : 0 is possible only if .F is identically constant, a
case which is of no interest. Hence we see from the differential equation
(a.6) that / has an analytic extension to lzl : I with the finite number
of zeros of Q@, 6) on lzl: t deleted. Moreover, from (4.5) we see that
on lzl:l

Q@, c) - tL I' * f'$)dt - FL I' * f'$)dt

is pure imaginary and, l.rrr* Lemma B.l, 
0

(t,72

lag

*I, I{'

nl
funltl' 

-er

0: rrYf'(t)dt + FL
C+ Pob -l

Thus on lzl: t, Re{1 { zJ"@)lf'@)} : O. Since Re {L { zf"(z)lf'(z))
denotes the rate of turn of the tangent vector of w : flstö1 (z : eiö) at

"iö, 
it follows thaf f maps lzl < I onto a polygonal domain. The vertices

of the boundary polygon are the zeros on lzl: I of Q@, ().
In [5] and [I0] where extremal problems for Vn were considered using

variational methods, it was possible to easily give an upper bound on the
number of zeros of the functions corresponding to Q@, {) and hence the
number of sides in the extremal polygon. Because of the rather more
complicated nature of the present Q@ , e) this does not seem to be possible
and so we resort to use of Lemma 3.1 to obtain such a bound.

Our plan of attack is to first show that the extremal polygon can have
only one finite vertex ancl then to show that, the (exterior) opening at this
vertex is ((+ - k)lz) n.

Suppose that there are at least 2 finite vertices P and Q formed by
sides s, and s, and f, and t2, respectively, of the extremal polygon and
that on the positively oriented boundary s, precedes s, and f, precedes
tz. At first we suppose that these four sides are distinct. These sides cor-
respond to arcs §1 and f2 and z, and z, respectively of lzl : f rvith
61 and 62 adjacent and z, and- z, adjacent. The image of these arcs
under

z1-t
z --> lf'(l)Fr(IG), q 

" - C

are again arcs of a circle. An easy argument shov.s either the pair §, , z,
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or the pair €2, rz satisfy (3.4). Without loss of generality we a§§ume

(3.a) holds with 71 : f, and lz: rz.

With (3.5) in mind we perform a variation on D that has the effect

of translating s, parallel to itself in the direction of the inner normal along

s, and translating f, parallel to itself in direction of the outer normal
along tz. In order to describe more precisely the variation of s, we

distinguish two cases according as the angular opening a formed by ,t
and s2, as measured through the exterior of D, is greater tharr n or less

than n.
Casel. u <n. Extend s, ashortdistanceinto D. Let si denotethe

extended segment and -R the endpoint of si in D. Let si be a line
segment parallel to s, and emanating from -8. .E is chosen so that si

is close to s2.

If s, extends to infinity, sj is extended to infinity. Let D' denote the
domain whose boundary is the same as the boundary of D except that st

is replaced by si and s, by sj. It is clear that the boundary rotation of
D' is not larger than D.

If s, is finite and has 7 as its other endpoint (P is one endpoint of
sr), let s, denote the side of 0D that together with s, forms the vertex 7.
There are two possibilities: either the angle formed by s, and s, (measured

through D) is smaller than n or greaher than z. If this angle is smaller
than n, we choose .E sufficiently close to P lhat si intersects sr. The
part of s, from this point of intersection to the other endpoint (not 7)
of s, we denote by ,l (see Fig. t).If D' is the domain whose boundary
is the same as the boundary of D except that 8r , §z and- s, are replaced

by ,i , si and si respectively, then again it is clear thal D' has the same

boundary rotation as D. Finall5.- if the angle formed b5r s, and s, is

greater than xr, extend. s3 through T irrto D until it intersects s'r.

11

trig. I
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".1 '\ /b-- -;--ö x

.§.-t

Fig. 2

Denote by si this extended. segment (see n'ig. Z).Let D' be the domain
rvhose boundary is the same as D except that sr , §z and s, are replaced
by ,i , sj and. si respectively. Once again it is clear that the bound.ary
rotation of D' is the same as the boundary rotation of D.

Case 2. d.> xt. Choose a point T' on §r near P and. denote by ui
the part of s, from T' tolhe endpoint t' P of sr. Let sj emmanate from
T' and'be parallel to sr. rf s, extends to infinity, sj is extended to infinity
and D' is the domain with the same boundary as D except that s, and
a2 are replaced. by ,i and sj. The boundary rotation of D, is the same
as the boundary rotation of D. If s, is finite we introduce si and A just
as in Case l As before we consider the trvo possibilities that the angle formed
by ,, and s, is smaller or larger than n. Except for the fact lhat s',
now emm&nates from T', the construction of D' proceeds exactly as
before (see X'igs. 3 and 4) and D' has the same boundary rotation as D.

We now define a variation of D' by translating f, parallel to itself
in the direction of the outer normal along tr. Let p be the angular opening
in the exterior of D' formed by l, and fr. Again we have to consider
the cases B < n and B > n. The construction of D" from D' for these
two cases proceeds exactly as the construction of D' from D except that
it P < xr we use the construction from the case d. > ?t and if § > n we
use the construction from the case d. < fi.

D" is then a domain with boundary rotation not larger than D. Let
$(w) be a pieceu,ise smooth function such that lD --> 1,t) -t ö?p) maps äD
onto 0D". We may choose D" and. {(rz) so that (3.5) and (3.6) are satisfied
with s, : f(yr) and d, : f(yr). Lemma B.I applies and we conclude that
D cannot be an extremal polygon for the extremal problem (4.I).

We now must consider the case that §1 2 d2 , ä, and t, are not, distinct.
since we are assuming that 0D has at least two finite vertices we may
assume without loss of generality that, s, : fr and hhaL 0D consists of

I)
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Fig. 3

Fig. 4

Fig. 5

the sides s1 , sz and i, and possibly a line disjoint from s, , s, and fr.
If s, and f, correspond to y, and' y, in (3.a) then u'e ma,y use the type

of variation that was used before to construct D" (see X'ig. 5) and apply
Lemma 3.1 to conclud.e that such a domain could not be extremal for
(4.1). If s, and s, (or equivalently s, and fr) correspond to 7, and' yr,

we consider the cases \: f(yt) , sz: f(yz) and s, : f(yr) , sz: f(yt).
First supposo §1 : /(71) and sz: f (yz). Let si be parallel to sr, close

to s, and on the side of s, d"etermined. by the inner normal along sr and'

let sj be parallel to sr, close to s, and on the side of s, determined by

X.J

\'''
\

I
at I
[+ |

I
I

I
I



L4 Ann. Acad. Sci. Fennicre A. r. 595

I
§1

Fig. 6

the outer normal along sr. si and sj intersect at a point .8. There are
two possibilities: either sj intersects r, (this happens if the angle formed
by s, and f, measured through D is larger than z) or not. If sj inter-
sects fr, say at the point T, and li denotes the segment of t, from T
to infinity then D" is the domain whose boundary is the same as the
boundary of D except that §,, sz and l, are replaced by ui, si and tr.
rf sj does not intersect t, then extend. r, through 0 untit the extension
intersects sj lsee Fig. 6). D" is the domain whose bound.ary is the same
as D except that §r, §z and f, are replaced by ,i , si and. ti.

rt is clear that in all of the prececling cases D" has the same boundary
rotation as D and applving Lemma B.r as before rye conclucle that D is
not an extremal domain for (a.l).

If it happens that \: f (yz) and s, : f(yr) the construction of D,,
is similar to the preceding case and rvill not be repeated.

we have norv shown that the boundary of the extremal domain D
has at most, one finite 'sertex and hence consists of one of the following:
a) two line segments emanating from a vertex
b) two line segments emanating from a vertex and. a line, clisjoint from

the trvo segments,
c) trvo lines (i.e. D is a strip),
ox

d) a line (i.e. D is a half plane).
we will rule out the possibilities b), c) and tl). n'irst rye show that b)

is impossible. suppose that D has boundary consisting of the line segments
s, and s, emanating from a vertex and a line /. These arcs correspond.
to arcs on lzl: l. By Lemma 3.1 two of these arcs (on lzl : l) will
satisfy(3.a)witheither l:f(yi and si:f(yr), si: f(yi and, l,:f(yz)
(i,:Lor2), or §;:f(yi and s;,:f(yz) (i,i,:t,2).

rn either of the first two possibilities we construct D" by translating I
parallel to itself either in the direction of the inner normal or outer normal
along I and s; in the direction of the outer nor:mal or inner normal re-
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spectively along s;. In the third possibility we construct si parallel to
sr on the side of s, determined by the inner normal along s, and si
parallel to s, on the side of s, determined by the outer normal along sr.

si and sj intersect and form a wedge which together with I forms the
boundary of a domain D'. D' has the same boundary rotation as D and
we proceed. by applying Lemma 3.1 as before. This shows that b) is not,

possible for an extremal domain.
I{ow consider case c) or d). Choose three segments s, , s, and sa on

a line / of the boundary. Without loss of generality we suppose q: l(yt)
and s, : f(yr) in (3.a). Erect a triangle with s, as a base that lies, except
for the side sr, in D and erect, a triangle with s, as a base that lies in the
complement of D. Let D" be the domain whose boundary is the same

as D except that s, and s2 are replaced by the other tu-o sides of the
respective triangles. The boundary rotation of D is 2z and since 2 < I:

the altitudes of these tr,vo triangles maJ,r be chosen sufficiently small that
D" will have boundary rotation no larger lhan lm. Applying Lemma 3.1

we see that neither c) nor d) is possible for an extremal domain.
Thus we have showu that the boundary of the extremal domain consists

of trn'o segments emanating from a vertex. If the angle at this vertex
(nreasured throngh the complement of D) is less than ($ - k)l\n, fhe
boundary rotation of D is less t'han kn. We can then apply the variations
used in c) and d) along a segment of the boundary to show that such a
domain cannot be extremal for (4.1). Thus the extremal domain must be

tlre complement of a lr-eclge l'ith cpening ((1 - k)lZ)t.
This completes the proof of the theorem l-hen 2 < Ä' < 4. Let l; : 1

and let f €T'n be extrernal for (4.1). If 0 ( s
I

function fir of the fortn (4.2)

(lvitir l; :__ k(r))

(4.7)

15

B;' the t}:eorern there is a
su{th tn'rat

I)"e F(Å(å) , (..) { F,e -F(9,(i) , (}

l'or tr suitable sequence {s"} increasing to 1, {g,,} con\:erges a.ticl the

limit functiou belongs to I'r. But the limit of a sequence of frincticris of
the forrn (a.2) is again of this foim. ff g clenotr's this linrit functiotr, tlien
bi. (+.2)

(4.8) Re 1'(/(e) , e) < Re -E(s(i) , l) .

Since / is extremal, equality must, holcl in (a.8).

Finally g isof theform(4.2) ivith k:a forif not ge tr;x, k{1,
and b.1. the theorem could not be extremal for (4.f ) in Y,,, , k < h' < 4.

The case k : 2 is treated in a simiiar lr'ay ancl so the proof of t'he theorem
is complete.
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fn this section we prove the

f (r)
argt)z

5. Applieations

followirg result.

(5.1)

and,

(5.2) I ,f'(")
I 
*'g 

f@)

Both ,f these ,inequaliti,es are
Proof. By definition if a

family of functions and lzol

best poss,ible.

function f belongs

/" I ry \rl;*) -reo)
(1 lzotz)f '@o)

to a linearly invariant

f (z; ,o)

also belongs to the family and

- zo (1 lzol')

f (rr)
*;' 1ro1

Irence any bound in the class fi I t@ |

rr 
I "t* 

"; 
i t= also a bound for i otg "f'9

f (r)
and conversely. It follows therefore that we need only prove (5.1).

f(z\ l@)If /€ V*, 2<lc< 4, then | + 0 for lzl < I andhence ,"U'i
is analytic in lzl <1. Consequently we can upply Theorem 4.I and con-
clude that if 16l < I then

/
max n. (+ i, lo
fent" \*

is attained only by * function of

must show that for functions of t

since sup l** '*l t- invariant
l,l <1

to show that

/(e)\ | t(å) i

the form (42) ro 
i"_?i:l: 

,n",r:of\*"
lre form (4.2), 

r:p, lu'*:l . ( , )n.

it f(z) is replaced by e-iuf1e'uz1 it suffices
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sup
l,l <1

k-1

for each d € (- n,n).
The function

2 I llt + ei6z\kl2 'l

f(r,u,ö): 76 

-1 
_ 

"o lt ,;i - rJ

ma,ps lzl < L onto the complemenl of a wedge whose vertex is the point
L e-i6lz k-2 kn

- k *, (ölq and whose sides have the asymptotic directions n ö * 7
k-2 lcnand 4 ö-i*2n.Thusas ei'traverses lzl:1, argf(ei',etöl

varies continuously from - ö +T to ry ö -+ * 2n. Let,

s, denote the »upper» side of the boundary wedge, s, the lower side and
let y, and 7, on lzl: I correspond to s, and s, respectively under
the mapping /. We rvill shorv that

(5.3)
f (r'n; e'ö)

arg ,-
k1

<-1278

on Tr and on yr. Because of the relatively simple nature of f(z; eiö) it
would. seem that (5.3) should be easy to verify by direct computation. This
does not appear to be the case and we need. to invoke the following version
of Loewner's lemma contained in a more general theorem of W. Schneider

tl5].
Theorem 5.2. Let f and, g be conformal mappi,ngs of lzl < I with g sub-

ord,,inate to f . lurther s%ppose that f anil, g are cont'inuous on lzl : I ercept
at a fi,nite number of poi,nts and, locally of bound,ed, aariati,oru om the arcs of
continu'i,ty. If f maps the arc a of lzl : I cont'inuously onto an a,rc y
arud, g maps the arc B of lzl: L cont'inuously onto y then, the length of
a ,is greater than or equal, to the length of B.

In order to prove (5.3) rve first consid er ei' e Tt. If + : + n ihen

q: f(yt) lies on the ray from the origin through ,i(t - $lz) and if
4-k

f n1ö<n, argf(et",etö) is decreasing on Tt Hence for this

range of {

A(0,ö)- ars {YP
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is decreasing on Tt so that

s*

Now consider the range - n 1ö an+. It is here that we need to

invoke Loewner's lemma.
Extend s, to a line l, and let D, be the half-plane determined. by l.

that contains theorigin. h(z): o",^ *with i :- + *T - Z
and a > 0 maps lzl <L onto D, and is subordinate to f(ei';eiö). Let
wo e s, wilh f(ein" ; eiö1 : wo : g(eie,). By the version of Loewner's lemma
cited above, 0, 1 0o. Hence

ATei'",e'ö):*gry <urgry
I k-2 kn

-argeir-r_"o-,< I ö+7.

k-2 lcn
This inequalitv together rvith (5.4) shows that A(r'u ; e'ö) I + + Z

b-2 kn
for ei"€7, and -n1$<n. Toshou'thatA(eiu;eiö)< 4 ö+Z
for ei" € y, tve argue in a similar way except that 'ive extend the side s,
to infinity ancl invoke Loewner's lemma as before. The proof that

ltt - z kz\
A("'u;e'ö)> - ( - ö- i) is analogous and so ttrre ploof of the

theorem is complete. I'ormula, (5.4) sirot-s that the inequalitv is best,

possible. It is interesting to note, iros-ever. that the extleme r-alue is

not attainecl in :l { I b1' an;- function in t}re class.
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