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1. Introduetion

For k> 2 let V. denote the class of locally univalent functions

f(&) =24 ax® 4 ...

that map |z] <1 conformally onto a domain whose boundary rotation is
at most kn (see [9] for the definition and basic properties of the class V).

It was shown by Paatero [9] that for 2 <k <4 V), consists only of
univalent functions, whereas, for each &k > 4 V; contains non-univalent
functions. Reade [12] posed the problem of determining the radius of
univalence, w, of the class Vi (k> 4). In § 2 we give a solution to this
problem. We show that w, = tan (z/k). The proof of this fact consists of a
remarkably simple application of the theory of linearly invariant families
of functions as developed in [11].

In § 3 we recall the variational formula for 1 (2 <k < 4) developed
by Schiffer and Tammi [14] and apply it in § 4 in the solution of a general
extremal problem for V. Specifically, we prove that if ¢ isfixed, [{] < 1,
and F(u ,v) is a function analytic in a neighborhood of U (f(£), {) then

fevy

(L1) max Re F(f(0), 8) (2 <k < 4)
fevy

is attained only for a function of the form

1+ az\k2
A | : _ ol = ] =yl o =
(r—y) [(1 T !ﬁ) 1} (vi=1=lyl,z#y).

o

(1.2) fz) =

=

Each function of the form (1.2) belongs to ¥ and maps [z] <1 onto a

4 —k
domain that is the complement of an infinite wedge with opening ( 57

In order to show that functions of the form (1.2) give the solution to (1.1),
the Schiffer-Tammi variational formuia alone is not sufficient. Indeed
we employ this variational technique in order to show that the extremal
domain for the problem (1.1) is a pelygonal domain. However, using just
this variational method there seems to be no way to give a bound on the
number of sides in the extremal polvgon. The final form of the result is
achieved through an application of the Julia variational formula [6] and
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a method first introduced by Biernacki [3] and used subsequently in [1],
[2] and [8]. As an application of our general result we show in § 5 that if
fE€EVE, 2<k <4, and |2|] <1, then

1@ _ (’“gl)n

arg ==
kE—1
< D) 7.

Both of these inequalities are best possible.

and
#f(2)
e

2. The radius of univalence

The radius of univalence, u., of V) is by definition the radius of the
largest circle with center at the origin in which every f in Vi is univalent.
Our method for determining u; is based on results due to Pommerenke for
linearly invariant families of functions [11]. We recall that a family
of functions analytic in |2] << 1 is linearly invariant if for each f€ 7
and each bilinear map ¢ of |2] << 1 onto [z] << 1, the function

i Lope = fod0)
4 FT$(0)16(0) '

First we note that in [13] Robertson showed that for each £ > 2, V,
is a linearly invariant family. Secondly, Pommerenke [11] showed that for
any compact linearly invariant family 7, the radius of univalence
r,=1r(¥) of 7 and

7o = 1o(¥) = infsup {r:f(z) #0 for 0 < |z| <7}
feF r>o0
are related by

(2.1) rr=1o/(1L -V 1 —2d).

Hence in order to determine w; it suffices to find the value of 7, for
the family V;. This is the content of the following theorem.
Theorem 2.1. Let f€ V. with k > 4. Then f(z) # 0 for

0 < |z] < sin (2x/k) .
The function

2+ 2 , y
(2.2) Gi(z;2) = [Fk (1 ¥ z-oz) - Fk(zo)} P Fi(20)(1 — 2o])
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7 1 [[/1 + 2\F?
where zy =t tan — and F(z) = — 1| shows that this result
. k kEI\l —=z

18 Sharp.

Proof. Let ro = ro(Vi). If g € Vi is a function with g(r¢) = 0 then
by an argument given in the proof of [11, Satz 2.3] it follows that
arg g'(ro) = - 2m, where the branch of the argument is determined by
the condition arg ¢’(0) = 1.

It was shown in [4] that if f€ V. then

k[4+1/, kA=,
(2.3 rer = (29 /(+9)

where s;(z) = z + ... is a univalent starlike map of |z|] < 1. For starlike

maps 8(z), Strohhacker [16] has shown that

s(z) | :
arg “z—‘ < 2 arc sin |z].

Using this estimate in (2.3) we see that if f€ Vi, Jarg f'(z)| < k arcsin |z|
and equality holds when z=7r> 0 and f= Fir Since ¢'(r)) = 4 2n

we conclude that 2z < karcsinr, or sin % <7, On the other hand
27
we consider the value of the function (2.2) at — ¢ sin % Since
o« . 276 . T
—zsmf—}—%tanz . -
T2 L = tan 7
1 — sin T tan A
and
. T . 7T
:iiaj — g~ 2ialk f_%fﬁ — plinlk
. 7T . T
1+ztanz l—ztanz

27 27
it follows that Gy <~ 7 sin ——; zo> = 0. Thus 7y <sin (—) and the proof

. k k
is complete.
In view of (2.1), Theorem 2.1 is equivalent to
Theorem 2.2. The radius of univalence of Vi s tan (n/k).

3. Variational formulae

In [14] Schiffer and Tammi employed the method of interior variations
to obtain the following variational formula for the class V., 2 <k < 4.
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1 d 1
F¥R) = f2) + ag¥f(2) Lﬁ T (Wﬂ

LN 7 R
dzy ([ (t — zo)f"(20) + zof ' (20)(2 — 2)

e () o) G
2 R 0?
e Llio U 0 — @) Gl —ze) %)

0

(3.1) + ag?

where, as usual, the estimate for o(o?) is uniform on compact subsets of
lz] <1, a is a free parameter and z, is an arbitrary but fixed point of
lz] < 1.

We will also require the Julia variational formula [6] in the form

e — s+ O

271

52 E4z duwl] )
. f 5:—:_—2 Im {— b (w) dw} % dw + o(e) .
r
Here f(z) =z 4+ ax® + ... denotes a conformal map of |z] <1 onto a
domain with boundary [I":w = f(§) (/& = 1), ¢(w) is continuous and
piecewise differentiable on 1", n(w) is the unit exterior normal to 1" at
w and f*(z) = afz 4+ afz + ... is a conformal map of 'z’ < 1 onto the

domain D* with boundary
I w* =w+ ed(w) (e > 0).

Vdags

The expression Im { — (w) K—;%—!} represents the component of the
boundary shift w ->w 4+ ed(w) in the direction of n(w). This form of
the Julia variational formula follows, using a standard argument, from
the version of the Hadamard variational formula for the Green’s function
of D derived in [17]. Our use of (3.2) is restricted to domains D for which
the general version of Hadamard’s formula proved in [17] is applicable.

The way in which we employ (3.2) is based on a method originated by
Biernacki [3] and subsequently refined in [1], [2] and [8]. We outline the
method as it will be used in the present context. Let 7, [Z] < 1, be fixed.
We want to characterize the extremal function for the problem (1.1).
Let f€ V. and let f* be defined by (3.2). Expanding F(f*(¢), ) in
powers of ¢ we obtain

(3.3)

- ofe)

[dw!| n(w)
- Im {— p(w) T :?)‘—'5(‘:5 d(w)

where Fi(u,v) = 0F(u, v)/ou.
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Suppose the boundary of f(|z] << 1) contains three disjoint analytic
arcs. These arcs correspond to three arcs I;, I, and I3 on |z] = 1. As 2

2+ .

varies on |z| =1, Cf'(O)FL(f(C), Q) R describes a circle. Con-
sequently, of the three arcs [;, I, and [l; there must be two, which we
denote by y, and v, that satisfy

¢ ¢
(3.4)  max Re {Cf'(C)Fl(f(C) »0) = } < min {Cf’(C)Fl(f(C) » 0) T }

z€y1 &= Z L€y & C

We choose ¢(w) to satisfy

ldw| <0 w € f(y,)
(3.5) Im {_ (w) W} =1>0  w€f(y)
dw 0 elsewhere on y
and
dwl] )
(8.6) [ m {~ e 7@;—} apac D0 = 0.

r
If we apply (3.2) to f with this choice of ¢(w), then by (3.6), f*'(0)
and by (3.4), (3.5) and (3.6)

I , ¢ dw|
e to {400 G e ZE
y

It then follows from (3.3) that
Re F(f*(£), &) > Re F(f({)., {)

and so if f*€ V., f is not an extremal function for the problem
maxgey, Re F(f(), (). We summarize the content of these remarks in

the following lemma.

Lemma 3.1. Let , |l| <1, be fized and let F(u,v) be analytic on
User, (f(£,0). Let f€ Vi and map |z| <1 onto a domain whose bound-
ary contains three disjoint analytic arcs. Then

a) there exists two arcs y; and y, on |z]| = 1 that satisfy (3.4).
Further if $(w) is chosen to satisfy (3.5) and (3.6) and if f* defined by
(3.2) belongs to Vi, then

) [ is not an extremal function for max Re F(f({), {).
fe Vi

4. A general extremal problem

We will use the variational formulae of the preceding section in order
to solve the following general extremal problem.
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Theorem 4.1. Let ¢, || <1, be fized and let F(u,v) be analytic in
a neighborhood of U (f(2), &) where 2 <k <4. Then

fevy

(4.1) max Re F(f(¢), {)

FeVE
1s attained only for a function of the form

2 1 4 az\M?
(4.2) Py = — @~y [(1 - ;Z) - 1] (@ # )

with |x] = 1= ly|.

As noted in the introduction, functions of the form (4.2) map [z] <1
onto the complement of a wedge with angular opening ((4 — k)/2)z. The
proof of Theorem 4.1 will require the following lemma.

Lemma 4.2. If f€ V. is an extremal function for (4.1) then

Im Fy(f(0), OLf(C) — &f' (O] = 0.
Proof. Let e be real with |¢| small. The function
[(2) = €fe72) = f(z) + ie[f(z) — 2f'(2)] + o(e

belongs to V,. Expanding F(f.({), () in powers of ¢ and using the
fact that f is an extremal function we obtain

Re F(f.(C), &) = Re {F(f(C) , &) + el f(5) — L (OIF(f(2) » £)} + ole)
<Re F(f(0), 0 -

Since ¢ can take either positive or negative values we conclude that

0 = Re (iFy(f(8), O(f(O) — If' (D)} = — Im Fy(f(0), O(f(5) — &F'(D)

Proof of Theorem. We assume initially that 2 <k < 4. Let f€ Vi
be an extremal function for (4.1). We first apply the Schiffer-Tammi
variation to f and show that f maps |z| <1 onto a polygonal domain.
To simplify our notation we set

and

SR —
TG0, 2) = g2 (of (1 — Z8)f () .

in (3.1). If we expand F(f*({), {) in powers of ¢* using (3.1), we obtain
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F(f*(2), O =F(f(©), )

1 d (1
+ ag?Fy(f(0), 0) {f LO ) | dz (é‘f'@)}

4.3 &f'(¢
(+3) +H(z°’5)+z:f’(z(;];T)—-z—o)}—[_dfFl(f(c)’C)

&)
: {J(zo, 0= e z'oo} + o(e?) .
Since f is an extremal function for (4.1),
Re F(f*(8), §) < Re F(f(0), 0)
which implies by (4.3) that

1 d 1
0 <Re [a {F1(f(5) s ) {f(C) [m + i (Zofl(zo))} + H(zy, )

&)
2of " (2)(& — %)

Using the fact that « is arbitrary we have
F ("(———1 J————d( ! ))—LH
l(f(c) > C) f(S) 2gf'(20) ! dZO Zof'(zo) ! (20> C)
() ]
ad C,’C[J ) === =0
)J + Fy(f(8), ) (7, 0) zof (o) (1 — 2o0)

A lengthy but straightforward calculation shows that (4.4) is equivalent
o (with F, = Fy(f() , )
}( )
[

[Fl Ofct—
v onfe el

+F(

_27
J + Py (D), 0) {J(zo, 5) — ﬁ—)z—g} H
o/ \=o/\L T <0

1——zOC ))‘

Since z, denotes an arbitrary point of lz| <1, we replace z, by z in
(4.5) and rewrite (4.5) using the notation

(4.6) Q. 0) (1 + %) =Rz, ).
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It is clear from their definitions that @Q(z, () and R(z, {) are analytic
on |z|] =1 and are both not identically zero unless F; = 0. However
by a result in [7], F; = 0 is possible only if F is identically constant, a
case which is of no interest. Hence we see from the differential equation

(4.6) that f has an analytic extension to |z] = 1 with the finite number
of zeros of Q(z, () on [z| = 1 deleted. Moreover, from (4.5) we see that
on |z|=1

¢ R
C)=F1f t_zfl(t)dt—Flf ;. [0t

0

is pure imaginary and, using Lemma 3.1,

-2 _ Z-z
ImR@@ﬁ=M4ﬂ SO+ P FO)
- £ — %
+ F f 2f (tydt + F, / 2 f'@ }
Thus on [z] =1, Re{l 4 zf"(2)/f’(z)} = 0. Since Re {1 + zf"(2)/f'(z

denotes the rate of turn of the tangent vector of w = f(e®) (z = €™) at
e, it follows that f maps |z2] < 1 onto a polygonal domain. The vertices
of the boundary polygon are the zeros on [z| =1 of Q(z, {).

In [5] and [10] where extremal problems for ¥, were considered using
variational methods, it was possible to easily give an upper bound on the
number of zeros of the functions corresponding to @Q(z, £) and hence the
number of sides in the extremal polygon. Because of the rather more
complicated nature of the present @(z, {) this does not seem to be possible
and so we resort to use of Lemma 3.1 to obtain such a bound.

Our plan of attack is to first show that the extremal polygon can have
only one finite vertex and then to show that the (exterior) opening at this
vertex is ((4 — k)/2) =

Suppose that there are at least 2 finite vertices P and ¢ formed by
sides s; and s, and #; and ¢, respectively, of the extremal polygon and
that on the positively oriented boundary s, precedes s, and ¢, precedes
t,. At first we suppose that these four sides are distinct. These sides cor-
respond to arcs & and & and 7; and 7, respectively of |z| =1 with
& and &, adjacent and 7; and 7, adjacent. The image of these arcs
under

+
2 OB 0

are again arcs of a circle. An easy argument shows either the pair &, 7y
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or the pair &, 7, satisfy (3.4). Without loss of generality we assume
(3.4) holds with »; =& and y, = 7,

With (3.5) in mind we perform a variation on D that has the effect
of translating s, parallel to itself in the direction of the inner normal along
s, and translating t, parallel to itself in direction of the outer normal
along #,. In order to describe more precisely the variation of s, we
distinguish two cases according as the angular opening o« formed by s,
and s,, as measured through the exterior of D, is greater than = or less
than 7.

Case 1. o < . Extend s, ashortdistanceinto D. Let s; denote the
extended segment and R the endpoint of s; in D. Let s, be a line
segment parallel to s, and emanating from R. R is chosen so that Sy
is close to s,.

If s, extends to infinity, s, is extended to infinity. Let D’ denote the
domain whose boundary is the same as the boundary of D except that s;
is replaced by s; and s, by s;. It is clear that the boundary rotation of
D’ is not larger than D.

If s, is finite and has 7 as its other endpoint (P is one endpoint of
s,), let sy denote the side of 9D that together with s, forms the vertex 7'
There are two possibilities: either the angle formed by s, and s; (measured
through D) is smaller than z or greater than z. If this angle is smaller
than m, we choose R sufficiently close to P that s, intersects s,. The
part of s, from this point of intersection to the other endpoint (not 7'
of s; we denote by s; (see Fig. 1). If D’ is the domain whose boundary
is the same as the boundary of D except that s,, s, and s; are replaced
by sy, s, and s; respectively, then again it is clear that D’ has the same
boundary rotation as D. Finally if the angle formed by s, and s; is
greater than =z, extend s; through 7 into D wuntil it intersects Sy

Sy

/ D

Fig. 1
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D

Fig. 2

Denote by s; this extended segment (see Fig. 2). Let D’ be the domain
whose boundary is the same as D except that s,, s, and s, are replaced
by s1, s, and s; respectively. Once again it is clear that the boundary
rotation of D’ is the same as the boundary rotation of D.

Case 2. o > m. Choose a point 7” on s; near P and denote by s;
the part of s; from 7" to the endpoint # P of s,. Let s, emmanate from
T" and be parallel to s,. If s, extends to infinity, s, is extended to infinity
and D’ is the domain with the same boundary as D except that s, and
sy are replaced by s; and s,. The boundary rotation of D’ is the same
as the boundary rotation of D. If s, is finite we introduce s; and R just
as in Case 1. As before we consider the two possibilities that the angle formed
by s, and s; is smaller or larger than z. Except for the fact that s,
now emmanates from 7", the construction of D’ proceeds exactly as
before (see Figs. 3 and 4) and D’ has the same boundary rotation as D.

We now define a variation of D’ by translating ¢, parallel to itself
in the direction of the outer normal along #,. Let 8 be the angular opening
in the exterior of D’ formed by ¢; and f,. Again we have to consider
the cases f <z and f > mx. The construction of D” from D’ for these
two cases proceeds exactly as the construction of D’ from D except that
if f <= we use the construction from the case « > z andif > 7 we
use the construction from the case « < z.

D" is then a domain with boundary rotation not larger than D. Let
é(w) be a piecewise smooth function such that w —w + (w) maps 9D
onto dD". We may choose D" and ¢(w) so that (3.5) and (3.6) are satisfied
with s, = f(y;) and ¢, = f(y,). Lemma 3.1 applies and we conclude that
D cannot be an extremal polygon for the extremal problem (4.1).

We now must consider the case that s, ,s,,#, and , are not distinct.
Since we are assuming that 0D has at least two finite vertices we may
assume without loss of generality that s, = ¢, and that 9D consists of
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Fig. 4

1 5
Fig. 5

the sides s;, s, and t, and possibly a line disjoint from s;, s, and t,.
If s, and t, correspond to y; and y, in (3.4) then we may use the type
of variation that was used before to construct D" (see Fig. 5) and apply
Lemma 3.1 to conclude that such a domain could not be extremal for
(4.1). If s, and s, (or equivalently s, and #,) correspond to y; and y,,
we consider the cases & = f(y;), S =f(ys) and s; = f(y2), s = f(y1)
First suppose s; = f(y;) and s, = f(y,). Let sy be parallel to s;, close
to s, and on the side of s, determined by the inner normal along s, and
let s, be parallel to s,, close to s, and on the side of s, determined by
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S ! S
’ !
Sy Il
————————— © R
82 P
D

Fig. 6

the outer normal along s,. s; and s, intersect at a point R. There are
two possibilities: either s, intersects ¢, (this happens if the angle formed
by s, and {, measured through D is larger than x) or not. If sy inter-
sects f,, say at the point 7', and ¢, denotes the segment of #, from T
to infinity then D" is the domain whose boundary is the same as the
boundary of D except that s,, s, and t, are replaced by s;, s; and f,.
If s, does not intersect #, then extend t, through @ until the extension
intersects s, (see Fig. 6). D" is the domain whose boundary is the same
as D except that s;, s, and f, are replaced by s;, s, and t,.

It is clear that in all of the preceding cases D” has the same boundary
rotation as D and applying Lemma 3.1 as before we conclude that D is
not an extremal domain for (4.1).

If it happens that s, = f(y,) and s, = f(y,) the construction of D"
is similar to the preceding case and will not be repeated.

We have now shown that the boundary of the extremal domain D
has at most one finite vertex and hence consists of one of the followi ing:
a) two line segments emanating from a vertex
b) two line segments emanating from a vertex and a line, disjoint from

the two segments,
¢) two lines (ie. D is a strip),
or
d) a line (i.e. D is a half plane).

We will rule out the possibilities b), ¢) and d). First we show that b)
is impossible. Suppose that D has boundary consisting of the line segments
s; and s, emanating from a vertex and a line I. These arcs correspond
to arcs on [z| = 1. By Lemma 3.1 two of these arcs (on |z| = 1) will
satisty (3.4) with either I = f(y1) and s; = f(y,), s = f(y1) and 1 = f(y,)
(1=1or2), or s =f(y1) and sy = f(ys) (i, =1,2).

In either of the first two possibilities we construct D" by translating [
parallel to itself either in the direction of the inner normal or outer normal
along | and s in the direction of the outer normal or inner normal re-
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spectively along s;. In the third possibility we construct s; parallel to
s, on the side of s, determined by the inner normal along s, and s,
parallel to s, on the side of s, determined by the outer normal along s,.
s; and s, intersect and form a wedge which together with I forms the
boundary of a domain D”. D” has the same boundary rotation as D and
we proceed by applying Lemma 3.1 as before. This shows that b) is not
possible for an extremal domain.

Now consider case ¢) or d). Choose three segments s;, s, and s; on
a line ! of the boundary. Without loss of generality we suppose s; = f(y;)
and s, = f(y,) in (3.4). Erect a triangle with s; as a base that lies, except
for the side s,, in D and erect a triangle with s, as a base that lies in the
complement of D. Let D" be the domain whose boundary is the same
as D except that s; and s, are replaced by the other two sides of the
respective triangles. The boundary rotation of D is 2z and since 2 <k
the altitudes of these two triangles may be chosen sufficiently small that
D" will have boundary rotation no larger than kz. Applying Lemma 3.1
we see that neither ¢) nor d) is possible for an extremal domain.

Thus we have shown that the boundary of the extremal domain consists
of two segments emanating from a vertex. If the angle at this vertex
(measured through the complement of D) is less than ((4 — k)/2)x, the
boundary rotation of D isless than kmx. We can then apply the variations
used in ¢) and d) along a segment of the boundary to show that such a
domain cannot be extremal for (4.1). Thus the extremal domain must be
the complement of a wedge with cpening ({4 — £)/2)x.

This completes the proof of the theorem when 2 <& < 4. Let k=4

1
and let f €7V, beextremal for (4.1). If 0 <s <1 then fi(z) = ;f(sz) € Vi)
with 7(s) < 4. By the theorem there is a function g, of the form (4.2)
(with Lk = k(s)) such that
(4£.7) Re F(f(8), &) < Re F(gs(l), C).
For a suitable sequence {s,} increasing to 1, {g } converges and the
limit function belongs to T But the limit of a sequence of functions of
the form (4.2) is again of this form. If ¢ denotes this limit function, then
by (4.7)
(4.8) Re F(f(), &) < Re F{g(:

0)
Since f is extremal, equality must hold in (4. 8)

Finally ¢ is of the form (4.2) with 2 =4 forifnot g€ Vi, & < 4,
and by the theorem could not be extremal for (4. 1) in Vi, E<i <4
The case k = 2 is treated in a similar way and so the proof of the theorem
is complete.
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5. Applications

In this section we prove the following result.
Theorem 5.1. If f€V, (2 <k <4) then

b —
(5.1) Iarg]i(zi) < ( 5 1) 7
and
| 2f'(2) (k — 1)
(5.2) ‘arb @) < 2 .

Both of these tnequalities are best possible.
Proof. By definition if a function f belongs to a linearly invariant
family of functions and |z,] < 1, then

also belongs to the family and

Sf(— 205 2) 1 . f(z0)

— % (1 — 120  20f"(z0)

z
Hence any bound in the class for |arg = | is also a bound for l arg

and conversely. It follows therefore that we need only prove (5.1).

f)
2
is analytic in |z| < 1. Consequently we can apply Theorem 4.1 and con-

clude that if || < 1 then

2
If f€Vir, 2 <k <4, then f(T);éO for |z] <1 and hence log

« | i
max Re (:t i log j%) = max t arg f(f) [

fen / fery > |

is attained only by a function of the form (4.2). To complete the proof we

2 k—1
must show that for functions of the form (4.2), sup arg& < ( )n
|2 <1 2 2
2
Since sup |arg —(ij is invariant if f(z) is replaced by e *f(ez) it suffices
o] <1

to show that
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! 2 1 Kl - ei¢z>k/2 17
TET 0 —dhe (\ 1T 2 o J

for each ¢ € (— =, x).
The function

. 2 1 1 -+ e¥%z\F2 }
iy . —
f(z’e)—kl—ei¢[<l~z) 1

maps |z] <1 onto the complement of a wedge whose vertex is the point
1 e k—2 kx

E—1
2

sup
lsj<1

< T

-7 m and whose sides have the asymptotic directions 1 ¢+ 1
k— 2 kn . .
and a1 b — 1 4 27, Thus as e traverses |z| =1, argf(e”,e?)
kE— 2 kx k—2 kn
varies continuously from 4 ¢+ e to 1 ¢ — vy + 2x. Let

s; denote the »upper» side of the boundary wedge, s, the lower side and
let »; and 9, on [z|] =1 correspond to s; and s, respectively under
the mapping f. We will show that

| feney k-
(5.3) gt £

on y; and on y, Because of the relatively simple nature of f(z;e*) it
would seem that (5.3) should be easy to verify by direct computation. This
does not appear to be the case and we need to invoke the following version
of Loewner’s lemma contained in a more general theorem of W. Schneider
[15].

Theorem 5.2. Let f and g be conformal mappings of |z| < 1 with g sub-
ordinate to f. Further suppose that f and g are continuous on |z| =1 except
at a finite number of points and locally of bounded variation on the arcs of
continuity. If f maps the arc o of |z| =1 continuously onto an arc y
and g maps the arc f of |z] = 1 continuously onto 7y then the length of
o 18 greater than or equal to the length of f.

k
8; = f(y;) lies on the ray from the origin through ¢ ~92 and if
4 —k o

r <¢ <m, argf(e”,e?) is decreasing on y;. Hence for this

In order to prove (5.3) we first consider ¢ € y;. If ¢ = 7 then

range of ¢

( eis. eiq{»)

A0, ) = arg ——
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is decreasing on y; so that

k—2 kn 4 —k
(5.4) A(0,¢)_<_limA(0,¢)=T¢—]—“4~ ( i n§¢<n).

o—>0T

Now consider the range — 7 < ¢ < —;— . It is here that we need to

invoke Loewner’s lemma.
Extend s; to aline /; and let D; be the half-plane determined by [,
) k—2 kr 7
1 — with 2 = T—qﬁ—l—z— 3
and @ > 0 maps |z| <1 onto D, and is subordinate to f(e; ¢). Let
wy €8, with f(e" ; ¢) = w, = g(e*). By the version of Loewner’s lemma
cited above, 60; < 0,. Hence

that contains the origin. %(z) = ae*

. (e 5 ¢ (™)
A, ) = arg N 2T g M
e e
. 1 E— 2 kn
= arge l—e"""< 1 qéf—hl.
. . . . k—2 kx
This inequality together with (5.4) shows that A(e”; e*) < 1 + 1
E—2 kx

for ¢” €y, and — 7 < ¢ <z Toshowthat A(e”;c¥) < — ¢ -+ v

for ¢” €y, we argue in a similar way except that we extend the side s,

to infinity and invoke Loewner’s lemma as before. The proof that
T fh—2 k) |

A ; €) > — \1— é -+ 7)) B analogous and so the proof of the

theorem is complete. Formula (5.4) shows that the inequality is best

possible. It is interesting to note, however. that the extreme value is

not attained in iz’ <1 by any function in the class.
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