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1. Introiluction

Let § be the class of univalent functions -F' on the unit disc normalized
in such a way that

7 (r)

and let for arly number b € (0 ,

f on the unit disc

anZo ,

1], ,S(b) b" the class of univalent functions

COr\-r /_,
n:2

f(r): bt, onz"\

for rvhich lf@l < 1. The set 7o*1C C, which is obtained. by assigning
to eachfunction -E € B (respectively /e S(b)) thepoint (a2, as, . . ., ao+t)
is called lhe n-th coefficient, region. Schaeffer and Spencer [3] obtain"d %
for the class B while Charzy6ski and Janowski [1] studied the case of
§(ä). In [] as well as in [3] the authors used. variational methods.

The subclasses §u c § and Sft(ä) c S(b) consisting of functions rvith
real coefficients are easier to handle. Already in 1936, Peschl [2] obtained
by methods similar to Löwner's parametric method. the shape of trI, for
the case of §6.

fn this paper we want to determine the functions corresponding to the
boundary of V* Therefore we use an &rea integration method which
enables us to prove the uniqueness of the extremal functions. We also use
Löwner methods, which, however, do not confirm the expected" uniqueness
of the extremals. For §p(ö) rve determine 7, completely while for §(ö)
we find only a part of Vs. In the case of §a(b) rye also determine a part
of the region V4.

2. The Power inequalities

The main tool in our investigations is the P* inequality derived in [ ].
fn order to make the notation clear we recall some definitions. Lef f € /S(b),

Tho first author is supported by the Netherlands Organization for tho advance.
ment of Pure Research (Z.W.O.).
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1et fro be a real parameter and let frn (n _-

parameters. Define the coefficients cnk by

I f t'1": -å *'n*'* Qr' e z
I'l f(") *

+1,

, ?L*

ancl let

These numbers satisfy the inequatity la; page 5]

\Ye shall use the weaker form

(2.r) 2roRe uo *nZ klu*l' 3oZ ttlrS' .

This is the Pry inequality. Equality here is possible only if !* - 0(k > 'I')'
This is equivalent, to

) Yo"o:o'
,.:N+f

ancl it is easy to see furthermore that this is equivalent to

(z.z) 
^r"rl2 

*"i*'"/(')*:.L-,a*" '

n*o

In view of later purposes we shall study relation (2.2) fot some special cases.

we shall show that for suitably chosen parameters (2.2) defines a bounded.

univalent, function.
Take .I[ : l, and impose the following restrictions on the parameters:

0 1**o I q I hi fr-t: - frr', U-r: - At'

By the implicit function theorem the relation

f
(2.2'l xolog ; + nLff - f-') : Yt(z - z-L) * yo

defines / locally as an anal5rtic function of z for all values of z for which

* 2 ,. . .) be complex

o) ,



RoNar,p I(on'rnelr and Or,r,r Temur

(To study f in a neighbourhood
given by f - r&lh * z2g. This
fn order to find the points z for
f - reie, and split (2.2' ) into its

nrf'*rof*h+o
of z - 0 we investigate the function g

explains why we require that nL I yr).
u,hich (2.3) becomes zero, write z - Qe"',
real and imaginary part. lYe obtain

(2.3)

(2.4)
ro log g * Atk A-1) cos I + R* yo ,

* ytk + A-1) sin d + fm Uo.

A necessary condition to obtain a circular slit domain is that all points /
with r : I satisfy (2.4). Therefore rve require that Re Ao: 0. The points

f for rvhich (2.3) is zero are not real (because O I ro I 2rr), and have
modulns one. Denote them by siv, artd. e-iEo. Substitution in (2.4) gives

A *yr(q A-1) cosO- 0,
ytk l- A-1) sin O * Im Ao : nogo * Zrrsin go

The first equation represents a curve which has the shape indicatecl in
X'igure la. The position of z on this curve is determined by the seconcl

l*oV * r|r * r-') sin g : norg

( rolog

tro, +

Figure I.
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equation, In order to find a point s: pei'e with p : I for which (2.3)

becomes zero it is necessary and sufficient that the equation

(2.5) rorl * Zyrsin 0 * Im Ua : noqo * Zrrsin go

has a solution. Because of (2.3) Eo satisfies the equation

2rrcosfo*ro:0.

This means that (2.5) has a solution if the projection of the graph of
rofl * Zyrsin I f Im Ao on the vertical axis covers the proiection of the
graph of roq ! 2rrsinE. This conclition on Imyo is certainl5r satisfied
if yo:0. If this condition is fulfillecl, then rr,e see t'hat / defined hy (2.2')
is analytic at every point of the lnit disc and b), rnolodrom,Y "f is silgle-
valued for lzl < 1. fn order to show that / is univalent ancl bouncled

rve study its boundary behaviour. From (2.4) we obtain for o : I that,

the image of the unit circle is contained in the locus of the curve

rologr * rt(r - r-L) cos g : 0.

The shape of this curve is similar to that of X'igure Ia. The branch points
have in this case a real part which is more negative. The positiou of /1"-)

on the curve is given by the second equation of p.\. Ilntil the points

* go are reached, /(z) molres along the unit circle. Then /1:) travels
along a slit until I has reached *! 8o (cf. tr'igure 2), rrhereafter /(:)
goes back to the circle ancl continues its path along the circle. 'Ihis shol-s

that / is bounded and univalent,. To shorv that / € §(.tr/yr) it is sufficient
to substitute a power series in (2.2).

.i'o8 2,,/1 s itr r') I.r r r ,'/,

I

I

Figure 2.
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If ro: 0, then the locus of the first equation of (2.4) red.uces to the
curve sho'wrr in X'igure fb. The image domain is in this case a circle with
two rectilinear slits. The length of the slits is determined by yo. In all
cases (ro : 0 , rr l0) the slits will have equal length if yo : g. In
X'igure lc a sketch of the image domain is given for the case Uo > 0 , ro S 0.

3. Löwner's parametric methoil

In order to derive bounds for a, as a function of a, we base our in-
vestigations in the case of §"(ä) on Löwner's theory for symmetric
functions l5l. We shall use the following results [5; page 9-10].

Consider schlicht two-slit domains B consisting of the unit disc with
two symmetric Jordan curves (omitting the origin) as slits. For every such
domain B there is a continuous funct'ion r9(z) on an interval [b , f] with
the property: rvhen

denotes the solution of the equation

f(z ,u) - f (z ,u)'Af@,xc)
'll, ^\

0xc I 2 cos 0(u)f (z , 'u) * f (z , %)z

and satisfies the initial condition f(* , L) : z, lhert f(z , u) contains the
mapping function giving B for u : b. Because of the symmetry of the
domain B the coefficients u"(u) are real. Conversely, for every function
0(u) continuous on &n interval b 4u 11, the solutions (3.1) of the
equatiorr (3.2) are univalent and boundecl: lf(z , u)l < | (and obviously
they ha're real coefficients) provided the initial condition f(z , L) : z is
fulfillecl.

X'or the coefficients a, and oB lve have the following expressions

(3. 1)

( 3.2)

(3.3)

frz: '

frB: 4(

z 
lcos 

o(u)du ,

I

f cos o(qd|'z {QL
J

If lre llse stepfunctions instead of
solutions of (3.2) also exhausts the

The problem of fincling a lower
From (3.3) we see that

c) cos 2B(tc)du,

continuous functions 8(u), the set of
class §^(b).
bound" for oB carl be solvecl directly.
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and this implies that

1

crl: al 2 
{ 

?, cos 20(u)d'u 
'

ns: aZ 2 I zc cos z'fi(u)d,u- a!+ (1 -'b') - 
-{ 

tt cosz fl{tficlzt ,

oz S nl+ (1 b') 4 rnin 
/ 

u cosz 0 (u)cltt

By Schr,l'arz' inequality \\re have

z 
/+cttr,: ictzt,

(3.4)

Equality is possible if cos 20(u): I for u, € lÖ,I1. By taking B(n):0
on suitably chosen intervals and '0(a) : z on the remaining part of [b , 1]

we c&n arrange that a, has a preassigned valtte, so (3.4) is sharp.

An upper bound can be obtained. similarly:

hence
tr«7

A, J zr cos2 B(ir)rltt ) - 
"* 

O-

Therefore

-/ r \ar L-b'-la3lt ' 
* 

I

t T logb/'

The equality sign in Schwarz' inequality can onlv hold if cose B(u) : ozitr.z

for a suitably chosen constant o (rvith iol < Ö). The conclition that a,

is prescribed. can be satisfied only if rve can fincl ',ol 4b such that
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Figure 3

we see that by prescribed value for /l .o*
minimal if cos2 r? is decreasing. Hence take

the presoribed value. This leads to

lt .-'-. e.-L

this function 0 (tc). Frorn the

/ 
d,t 

/ 
ctte cos, o(u)

$(u)du the left-hand sicle is

cosz 8(u) : I on an interval
to be chosen sc that a,z has

+

identity (obtainecl by partiai integration)
11

t rc cosz EQr,)du: b t cosz $(u)ctn
Jvvvvvv\vv|"""""J

0
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(3.5) as aatr + I - b2 - 2(o2 - br) + 4o2logo ,

where o is d.etermined by

(3.6) o-ologo:b**larl.
Trom (3.4), (3.5) and (3.6) we obtain the shape for V, indicated in Figure 3.

4. The extremal functions

The functions corresponding to the lower bound for o, and those cor-
responding to the upper bound for values of o, with larl 1- 2blogb
shall be determined in Section 6. There we are able to show that they are
uniquely determined. fn order to obtain extremal functions for
l,arl> -2blog b we integrate Löwner's equation (3.2). Therefore we have
to substitute 8, and obtain

af@ , %)
7c -- ^ - -f(zdu

1*f(z,u)
''u) l-flr,n)' 1L

f(, , u) - f(, ,11)3: 2o'1 -f(r,u)*f(2,10)2,1.t,

€ [ö ,o);

(4.1) af@ , %)
LA

01.0
?Le lo,I]

Note that the second equation is linear u.ith respecb to tt,. fnhgratiou of
the equation with the initial condition f(z ,I) : z gives

f(z,u) u l@,o)(1.2) Oi l.@=q), 
: i g a Jp uy,, u, elb, of;

(4.3) ,4.!@,u) -f@,u)-'\:2,-z-.L* 2olog'3? , %e[o,1].

n'rom our considerations in Section 2 ib follows that (a.3) determines for
rr: g a function / with image domain as in Figure 4a. Applying f@ ,b)
defined by $.2) rve end up to the final image domain (X'igure 4b).

Figure 4.
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)n Y4.

meters

obtain

;

iio
:al

)(

12

')

e

\2

0g

A,t

ME

uz)t

2

-1

w

A,z

re
pa

w

bo,

a2

5. The region V4

tr'or functions f e §o(ö) we shall determine a part of the
We already knorv Ys. We use the Ps inequality with the

[6; page 4, 5]:

[ *, - - n--s _- + b't' ,

l*r--n-2:0,
)

I 
nL : - it-1 - u','{* r,, + ffi\,

and apply it to h(r) : { fel. After simple rearrangements

(5.r ) aa< å (r br) + zaru, - +Z a! - *oo? @'' - ZcLi +
2(L b)

Oondition (2.2) is in this case

(5.2) *b'r' @, - h-B) + bri's(h h-r) - + (r, - z-r) + u(z -
I aB-2"?+bo,
l" : ,$- b)-n, )

I
)

|'- tc+Z.
t

Differentiation gives

,aD h' zs + z-s * u(z * z-r) h, ("' + f)(e, - z!ir122 - z!1

" " h - h3+lr-tas(h+h-t)lb- zs (h2+r)(hr-ti)(tr-nz),

- -r fr-" -\/-"-L"r2-- 2 = 2 ,

htz:*{s-'lb *l-'l!-t22
X'rom this we read thal z, , z, antd. hL , hz are unit roots exactly if
(5.3) -l<u13,
(5.4) - I < slb <3.
The factorized differential equation suggests h(U) fo be a disc with six
slits or with two three-fork slits. This can be studied more exactly bv aid
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,/

\

lr.

\

Figure 5.

of the boundary correspondence h : vsiv , z : etB. IJnd.er this notation
split (5.2) into real and imaginary parts. This leads to conditions:

(5.5) *U(p - r-3) cos 39 f s(r - r-1) cos I : 0 ,

(5.6) $blt'1rt * r-3)sin39 :rblt2s(r * r-r)sin9: $sin30 f 2zsinO.

The locus of equation (5.5) is indicated in X'igure 5. I{ecessary, for existing
of a B(ä)-mapping defined by (5.2) is thus

./
./ TI

,;,)

./,/

'('. 
)

\_

\ \\ \
\

\
\ \--
\\

)

/., ,/./



RoNar,p I(ontnanvr and Or,r,r Tanrur 13

(5.7)

To find sufficient conditions we study (5.6) and. require that for r : I
each E e lO ,2n] gets an uniquely determined pre-image 0 e l0 ,2n).
Comparing the graphs of the left and the right side we end up with the
requirements

and

The first condition is equivalent to 2(L

satisfied. The second gives a restriction

-å+ u

b) ) a, and is thus always

(5.8)

which implies u <-3. Thus (5.8) and the first condition (5.7) are the
limitations rrhich in the coefficient bod5r define a domain where (5.1) is
sharp.

In Figure 6 are given the types of the extremal domains /(I/) found.
X'igure 7 illustrates for b : * the part of the coefficient body, where
these extremum domains belong to. Horizontal lining and a. as well as the
dotted domain and b. belong together.

Figure 6.

r
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Figuge 7.

6. P1 in Sn(b)

A simple calculation gives for f e,S(b) the followirg results:

it-L
U-t: T ,

(6. 1)

fn accordance with
We have

[6;

Ua:nologb T&2,
L'.,_.t

ut:; @i as)*no&z*rtb.
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frtb '

The PL inequality is

r! (I br)ul < o .

ö:as,_&2,
and therefore we choose the parameters in such a way that the left-hand side

of the P1 inequality becomes maximal. There are two different cases,

*o:O and ro*0.
X'irst, case: tro : 0. X'or a, : I the inequality reads

(6.3) ö2 { 2öbrr*b,*7- rl- (1 - b'z) < 0.

The left-hand. side attains a maximum for rr:böl\ - b'), and (6.3)gives

for this value of r,

l'-': - %L'

lOr- -ur@|-es)*roa2+
fn the case of §"(b) we choose all parameters real.

in this notation

2*?olog b + Zrouraz* {(ou - a,Z)ur* no&z+ n,b}z -
We want, to find the range of

t0

e

giving us the important inequality

From (6.2) and (6.3) it can be seen that in the
a,nd. the parameters are equal to

[*r- b,

I no:0,
t t'-L: b ;

Conclition (2.2) is in this case

b(f +/-') - (z * z-'

In Figure 8 is indicated how the image dom

tr'rom (6.2) and (6.I) one sees that in tl
The parameter values equal to

I

t;]:-'- b;

rxtremal case ä -- (1 br)

tut - 1)

I uo- nz,

[*,: r '

e).
rin of f can be obtained.
Ie extremal case ä - I - b2.

Ivr:1,
I

1 ao : &2,

| ,-,,: t .

Lå,

hr
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.f (,:)

2 - ct,»* 
b--

Figure 8.

All conditions of Section 2 ate satisfied except Re yo:0 unless az: 0.
Only in that case the upper bound d : I - b2 ca:n be reached. The image
domain is the unit disc with two equal slits along the imaginary axis.

Second case: ,uo I 0. Now we take no: l. The P, inequality is in
this case

- (r - b\r\, - $ - b2 - a\u1 { 2bårru, | 2arbx, ! 2ar(å * l)ur

l2logbaa!<0.
By elementary calculations it can be shown that the quadratic function
in r, and nr or'L the left side of this inequality attains its maximum for

ll
i 

;: r(tu-atl

frL:

%L:

bo,

1 b2- ä )

a2

1-b2- ö )

ö + I br,
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a,ncl for these values the inequality takes the form

(ä + I - b'){ö log b al (1 b2) log b} > 0.

fn vier,v of (6.1) we derive from this that

(6.5)
o?

-r logb '

This is the result of (3.8) for the case that larl I - ZblogÖ. Again from

(6.2) and (6.1) it follows that in the extremal case å : I - bz a alllogb
the parameters are equal to

blogb
tuL_ (Lz ,

fro:1)
blogb

uL-t r 
a,,2

The condition of Section2, lro { rr, requires that l*rl < - 2blog ä' X'or

these values there exists an extremal function mapping the unit disc on a

circular domain ,with two symmetric slits. The extremal function is deter-

mined by the equation

f bloEb los b
t"s; ; $-f-'): - ; 

(z - z-tl'

This completes the results of Section 4 where the upper bound was derived

in a different way, but, where the discussion of the extremal functions

was postponed.

7. P, in S(b)

Again we consider tv'o cases, no: 0 and' ro * 0' In the first case

fro: 0 we can take ur: I and the inequalit5' reads

läf rrblz (-lxrl'+r-b2.

Denote frL: n I i,y and' ä : ör * iör. After simple rearra'ngements 'we

obtain

/ bö, \, I ua, \' lä12
t^^ ,-i)-\r-T--r,)+1r-r-61,-t<o'

The optimal choice is thus

2

log b

9t&z'

Uo:0,
log b

u-t': 
", 

'
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bö
MtuL- I -b2)

and

2(L - b) < Im are-i§t2 < 2$ - b) .

The last one is always satisfied. The upper bound (T. t) is sharp if ancl only
if arg ö : 2 arg (i,ar). The image domain of / is a disc with two (unequal)
rectilinear slits along the imaginary axis. The image domain of / is obtained
from this by rotation over - plz.

fn the second case where xo t' 0 the computations are more com-
plicated. We take no: 1 and split the parameters r, and u, and the
quantities a, and ä in their real and imaginary parts, to write the left-
hand side of the Pr inequality in the form of a quadratic function of
four variables R,e rr, Imtr1, Re u, and Imur. The parameters are again
chosen in such a way that this function reaches an extremum. This is the
case if

az(L -b2) + drö

b

A

dr(L br) +
A

a,nd this leads to

l*r :bei7, (ut:ei§,
l,- n l^,

[r-r- b; [y-r: I.
Condition (2.2) reads

bet7f(z) - bf1z1-r - ei§z - z-L * &2.

bG 7-l ....- ?.t) - w-t * are-'r't' .

The results of Section 2 can be applied to 7. The conditions are

Pueare-i1lz:0,

LIL:

Å-

fr16{7 .2)
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The optimized PL inequality is then

(7.3) Ålogb - Re @|il (1 - bz)larl'> o

This is equivrr,lent to

{7 .4)
larl'<R-1 -b2+ ffi.

Remarlc. -E is positive; this is a consequence of the inequality

larl 1 2(L - b) and the elementary fact, that 2y < tog [(l * g): (L - g)] for
0 4y 11. Therefore (7.4) improves (7.1). This is shown in X'igure 9.

In the extremal case we deduce from (7.3) that

From (7.2), (6.2) and (6.1) r,ve infer that the parameters are

(7.5 )

fro:1,

l1röo.u_L c*'t )

ubstitution of (7.5) irr Uo

otation

. Re(a!ö) + (1- br)lerlz
/l1) 

log b

I

I
t
)

I

I

S

11

nL: bez}'-bzryidA)
frL

Uo __logb larl'(L-bz)+"78

U-t:
gives R" yo - 0. It convenient to rlse the

A

Ut

is

I'igure 9.

l
a2

21ogö
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(1 b')lorlL * ctl6 - ?dei"' (x 7 0) ,

nz : larle'o .

1&'e see

(7. 6)

Because
(2.2) rea

(7 .7)

Denote
becomes

(7.e)

fro

I

I
of

ds

m this that

I

(7.1) this shou.s that cos (,)

I
- llogb,

%(

1." 12 \r b2+ #,b)
this notation the conclition

b')lerl')

F:

h(t\ ö loc- bl toE ä

g &zlCos(,) 
('\'/ '"\:/ t - ,ur,cos(, 

f '

- ,' !'"i1 log ö .
cos a)

The condition lro (ru, of Section 2 prescribes that

ZblloE b\(78) toil;;; > r,

and this is satisfied if
(7.8') 'ictzt, I - 2ttlogb .

To study the condition on Im yo u,e substitute

la" I cos r,.r,:iwi,
and calculate the maximum and the minimum values of the functions
rog * 2rrsin g resp. ro8 I 2yrsin I I Im yo. The condition is

X(t):b(tarccosr - l/ t _ t1+\/ I -brt, -btarccosbt

trz>o for tel-W^,o]
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clecreasing on llarl:2b log ö , 01, i.e. E' < 0. An easy

F" > 0. \Ye compute that

prove that F is

calculation gives
is increasing, i.e.

b{
I I ilogbl

--? 'r- dI=)3\/t P)\/L-W

suffices to show that
Irr this estimate
that F"> 0 it

(7.10)
b

V I bztz

1 t2+logb

1{ 1 - 1z1s

This is clearlv the case if tz > I f log å, so we can restrict ourselves to
the case bhab r : P e. [0 , I + log b] and we have to consider only values

of b with b > e-r. Since both sides of (7.10) are non-negative we can

square. Rearrangements lead to the inequality

G{r) : n2(b2 - t - 2bzlogb)

* r(2 - 2bz + 2logb { bzlogzb + zbzlog b) f b' - (r * Iog Ö)' > 0 .

Since b2 - I - 2bzlogb < 0, it is sufficient, to prove this inequality for
r : 0 and for r : I + log å. It is easy to see that

G(0) :b'-(r*logb)'>0,
G(I + logö) : - b2log3b > 0.

The function ä satisfies the conditions of Section 2,henceitsimage domain

is a disc with trvo (unequal) slits. The image clomain of / can be obtainecl

from this by a simple rotation. In X'igure I0 u-e have indicatecl the shape

of this image domain for some special cases.

Condition (7.8) allows greater freedom for a2 than condition (7.8').

However, we &re not, able to take full advantage of this fact. From (7.6)

we deduce that in the extremal case

t llttogu
cos'"o : lol Y 2R '

Substitution in (7.8) gives

l.e.

I b I \ 2bzlogzbl

\
lbz Losz br - 

-+2r'zL-
lazl
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t"
la"
[0,

(l e-2)

-l (1 -t- a-2) -r- j illj tr 3e-2)

1 - 
-.)T-JE

Figure 10.

(7. r 1)

Comparison with (7.a) shows that for larl> - 2blogb an arc of the
bounding circle of (7.a) is always exciuded.

The conditions of Section 2 are satisfied if the function (7.9) is non-
negative for f € [- 1 , 0]. By numerical comput'ations one can show that
this is not alwavs the case if lazl> - Zblogb. Brom those numerical
computations it follows that for certain combinations a2 , o) we obtain
additional information about the coefficient region. The extremal domains
corresponding to the additional part are two-slit domains.

\..
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It is easy

for ä. tr'rom

8.

to derive estimates
(7.1) we see that

cLB_(,+#)

Corollaries

concerning as

cos lies in the
from the results we have
disc

la"\2
7-q I t lr
,t- t''' ' ztogb )a!(8. 1)

and if larl < - 2blogå, then o,s calr lie on the boundary of this disc-

By elementary calculations one ca,n show that the points of this circle

for which the distance to the origin is extremal are

,:{, - bz+(, r #J o,*l*,
and.

a?
B : {- (I - ö,) + l"rl') lorp.

These points are connectecl with the axial-symmetric extremum cases'

The estimate due to this is

lorl S max (1,4.1, lBl) ,

under the condition iorl < - 2blog b. We rev'rite this to obtain: If a,
has a preassigned value for rvhich ',arl I - 2blog b then

I / t\
(8.2) ta.tl I I - u' + (\t = r*) la''z' o <b I e-t'2'

" -1. -r2[, -a, - ',azlz, a-''' <b < l.

This inequality is sharp. The corresponding extremal domains are two-slit
clomains of the type indicate din X'igure l0 (cases ä, and är).

The second estimate is for Re ar. From (8.f ) we obtain

"" {(, 
*- rfu) "4 -,8 < Re a, ( Re {(, * +r*) .tl + u.

If we write a, : u, * iu, the inequality reads

(8.3)
I t \ / t\

"r- (I * a*u/ a2-(L-bz)<Rea, (|,, *,-*r/ 'tLZ-?)2 +(I-b').

This inequality is sharp if uz * a2 lLbzlogzb.
In order to get an id.ea of the shape of the coefficient region Vs we
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l,-

I

Figure 11.

determine two cross-sections. Take first ar€R. we investigate the range
of (ar, Re ar, Im ar). X'or all values of a, rvith lorl I - 2blogb, tlrle
disc (8.r) gives part, of this range. rf larl becomes greater, the function
(7.9) is not always positive. However, -F is non-negative in a neighbourhood.
of the origin, so we obtain at least a part from the coefficient region. (rn
Section 3, using Löwner methods, rve obtained the complete intersection
with the plane (a, , Re ar)). fn those parts where .t' < 0, the employed
method fails to give sharp information about %. rn n'igures ll and 12
we have indicated the different kind of extremal domains corresponding
with different parts of the boundary of vs. some parts of ys are
unknown.

ft is also possible to make the restriction a, € J?, and to investigate

l rr r r,t.,

Ilc e.l

/
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fnr a,

fm o,

Figure L2,

&z:2b logL
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the range of (o, , Rear, Imar). Substitution of ar: u { i,a in (S.l)
gives for the bounding surface the equation

/ t \ / I \z
a? - z|., + r.*rl (uz - az)a,* (, * T;rr) @z * u,)

I uz + a2\z

- \r - bz + 2tosb) <0,

and this is sharp if uz I az I 4bzlogzb.
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Nijmegen, the Netherlands

University of Helsinki
Ilelsinki, X'inland
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