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1. Introduction

Let S be the class of univalent functions F on the unit disc normalized
in such a way that

Fz) =2+ 2 aw",

and let for any number b € (0, 1], S(b) be the class of univalent functions
f on the unit disc

f)=0b{z+ izang"}

for which |[f(z)] < 1. The set V,,, € C, which is obtained by assigning
to each function F € § (respectively f € S(b)) the point (ay,a5,...,a,.1)
is called the n-th coefficient region. Schaeffer and Spencer [3] obtained V,
for the class S while Charzynski and Janowski [1] studied the case of
S(0). In [1] as well as in [3] the authors used variational methods.

The subclasses Sz € S and Sg(D) € S(b) consisting of functions with
real coefficients are easier to handle. Already in 1936, Peschl [2] obtained
by methods similar to Lowner’s parametric method the shape of V5 for
the case of Sj.

In this paper we want to determine the functions corresponding to the
boundary of V; Therefore we use an area integration method which
enables us to prove the uniqueness of the extremal functions. We also use
Loéwner methods, which, however, do not confirm the expected uniqueness
of the extremals. For Sgi(b) we determine V,; completely while for S(b)
we find only a part of V;. In the case of Si(b) we also determine a part
of the region V,.

2. The Power inequalities

The main tool in our investigations is the Py inequality derived in [4].
In order to make the notation clear we recall some definitions. Let f € S(b),

The first author is supported by the Netherlands Organization for the advance-
ment of Pure Research (Z.W.0.).
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let x, be a real parameter and let ., (n = +1,4+2,...) be complex
parameters. Define the coefficients c.. by

[f(z)": § ezt m€Z, n#0),

z o0
l log UG = > cat®,
2 k=—c0
and let
E
Yp = Z XnCrk (’C>—N)
n=—N

These numbers satisfy the inequality [4; page 5]
£ N
20, Reyy + > klyul2 < 2 klawf?.
k=N k=N
We shall use the weaker form

N

1\7
(2.1) 22 Reyo + 2 ke <
k=_N k

This is the Py inequality. Equality here is possible only if g, = 0(k > ).
This is equivalent to

o0

> oy =0,

k=N+1

and it is easy to see furthermore that this is equivalent to

& S po z‘\f
(22) xolog - - L’\‘.’Lnf(:«) = \.y,w .
n,ﬁO‘ =

In view of later purposes we shall study relation (2.2) for some special cases.
We shall show that for suitably chosen parameters (2.2) defines a bounded
univalent function.

Take N = 1, and impose the following restrictions on the parameters:

0§%x0§x1<y1; Tg=—%; Y= — Y1

By the implicit function theorem the relation
: / S 4
(2.2) ocolog; +a(f—f)=mk—2+Y

defines f locally as an analytic function of z for all values of z for which
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(2.3) @y f? 4 @ f + 2 # 0.

(To study f in a neighbourhood of z = 0 we investigate the function g¢
given by f = 2;z/y; + 2%9. This explains why we require that =, << ,).

i)

In order to find the points z for which (2.3) becomes zero, write z = ge'’,

f = re®, and split (2.2") into its real and imaginary part. We obtain

(2.4) {xo log 7 + @y (r — 77%) cos ¢ = o log 0 + (0 — ¢7%) cos & + Re gy ,
' Top + @y (r + ) sin g = 20 + yy(0 + o) sind -+ Im g, .

A necessary condition to obtain a circular slit domain is that all points f
with r = 1 satisfy (2.4). Therefore we require that Re y, = 0. The points
f for which (2.3) is zero are not real (because 0 < x, < 2z;), and have
modulus one. Denote them by €% and e~ . Substitution in (2.4) gives

{xolog e+ mle—eMeosd =0,
2g® + yi(0 4+ 071 sin d + Im y, = @gp, + 22, sin ¢ .

The first equation represents a curve which has the shape indicated in
Figure la. The position of z on this curve is determined by the second

Ciﬂo

o—ith

Figure 1.
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equation. In order to find a point z = g’ with ¢ = 1 for which (2.3)
becomes zero it is necessary and sufficient that the equation

(2.5) 2g? + 2y, sin & 4 Im y, = 24 + 27, sin @,
has a solution. Because of (2.3) ¢, satisfies the equation
2%, €08 ¢y + 9= 0.

This means that (2.5) has a solution if the projection of the graph of
2,9 - 2y, sin 9 + Im y, on the vertical axis covers the projection of the
graph of xyp + 22, sin @. This condition on Imy, is certainly satisfied
if 3, = 0. If this condition is fulfilled, then we see that f defined by (2.2')
is analytic at every point of the unit disc and by monodromy f is single-
valued for |z| < 1. In order to show that f is univalent and bounded
we study its boundary behaviour. From (2.4) we obtain for ¢ = 1 that
the image of the unit circle is contained in the locus of the curve

xglog r + 2;(r — 7 ) cosp = 0.

The shape of this curve is similar to that of Figure la. The branch points
have in this case a real part which is more negative. The position of f(2)
on the curve is given by the second equation of (2.4). Until the points
- ¢, are reached, f(z) moves along the unit circle. Then f(z) travels
along a slit until & has reached - @, (cf. Figure 2), whereafter f(z)
goes back to the circle and continues its path along the circle. This shows
that f is bounded and univalent. To show that f € S(x,’y,) it is sufficient
to substitute a power series in (2.2).

L sin @ ot — 2y sind = Ty,

Figure 2.
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If 2, = 0, then the locus of the first equation of (2.4) reduces to the
curve shown in Figure 1b. The image domain is in this case a circle with
two rectilinear slits. The length of the slits is determined by w, In all
cases (xy =0, x, # 0) the slits will have equal length if y,=0. In
Figure 1c a sketch of the image domain is given for the case y, > 0, z, #% 0.

3. Lowner’s parametric method

In order to derive bounds for a; as a function of a, we base our in-
vestigations in the case of Sgi(b) on Lowner’s theory for symmetric
functions [5]. We shall use the following results [5; page 9—10].

Consider schlicht two-slit domains B consisting of the unit dise with
two symmetric Jordan curves (omitting the origin) as slits. For every such
domain B there is a continuous function ¢(u) on an interval [b, 1] with
the property: when

(3.1) fe,u) =uf{z + > a @}, 2/ <1,
v=2
denotes the solution of the equation
. of(z , w) fz,u) —f(z,u)?
(3:2) “Tow T 1—2cos Sw)f(z, w) + f(z , u)?

and satisfies the initial condition f(z,1) =2, then f(z, %) contains the
mapping function giving B for % = b. Because of the symmetry of the
domain B the coefficients «,(u) are real. Conversely, for every function
u) continuous on an interval b <u <1, the solutions (3.1) of the
equation (3.2) are univalent and bounded: |f(z,u)] <1 (and obviously
they have real coefficients) provided the initial condition f(z, 1) ==z is
fulfilled.
For the coefficients a, and @; we have the following expressions

1

g = — 2 f cos Y(u)du ,
b
1 1

2
a; = 4 (/ cos ﬁ(u)du) — 2 f w cos 28 (u)du .
b b

If we use stepfunctions instead of continuous functions ¢(u), the set of
solutions of (3.2) also exhausts the class Sg(b).

The problem of finding a lower bound for @; can be solved directly.
From (3.3) we see that

(3.3)
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1
ay = ay — 2 f u cos 20(uw)du ,
b
and this implies that
1
(3.4) as > ay — 2 f udu = a3 — (1 — b?)
b

Equality is possible if cos 29(u) =1 for » €[b, 1]. By taking d(u) =0
on suitably chosen intervals and d(u) = = on the remaining part of [b, 1]

we can arrange that a, has a preassigned value, so (3.4) is sharp.
An upper bound can be obtained similarly:

1 1
ag = a3 — 2 f u cos 20(u)du = a3 + (1 — b?) — 4 f u cos® J{u)du ,
b b

S0
1

ay < a3 - (1 — b?) — 4 min f u cos? §(u)du .
b

By Schwarz’ inequality we have
1 1 1
2 du
cos d(u)ydu | < — u cos? J(u)du ,
%
b b b

1

4 f w cos? Ju)du > —

b

hence

a

[SR%)

log b~

Therefore

9 1
log b
The equality sign in Schwarz’ inequality can only hold if cos? J(u) = ¢*u?
for a suitably chosen constant o (with ¢, < ). The condition that a,
is prescribed can be satisfied only if we can find |¢] <b such that

1

ol
2 W du = la,|,
b

ie. if |ay] = — 2blogd.
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T
N

- h et

2

Figure 3.

h

If |a,] > — 2blog b we cannot choose this function J(u). From the
identity (obtained by partial integration)

1 1 1 1
f u cos® J(u)du = b f cos? ¢ (u)du + f dt f du cos® 9(u)
b b b t

we see that by prescribed value for f 2 cos Y(u)dw the left-hand side is
minimal if cos? ¢ is decreasing. Hence take cos®?d(u) = 1 on an interval

[b,0] and cos? ¥ = o?/u® on (o, 1]. o has to be chosen so that a, has
the prescribed value. This leads to
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(3.5) a; < az 4+ 1 —0b — 2(c%— b?) 4 4o2log o,
where ¢ is determined by

1

lay! .

o=

(3.6) 6—oclogo="b+

From (3.4), (3.5) and (3.6) we obtain the shape for ¥V, indicated in Figure 3.

4. The extremal functions

The functions corresponding to the lower bound for a; and those cor-
responding to the upper bound for values of a, with |a,] < — 2blogb
shall be determined in Section 6. There we are able to show that they are
uniquely determined. In order to obtain extremal functions for
lag| > —2blog b we integrate Lowner’s equation (3.2). Therefore we have
to substitute J, and obtain

IO NP T G

U—— = , w€[b,o];

ou z’u)l—f(z,u)

> < — [z, w)?
(4.1) y of(z , w) _ f(~,20) Sz, w) Luw€lo,1].

o 20
1 — — flz,w) + fz, wp?

Note that the second equation is linear with respect to «. Integration of
the equation with the initial condition f(z,1) ==z gives
Jz,u) u  fz,0)

(+2) QT feof o Qtfeap b

_ _ Sz, w)
4.3)  w{flz,u) —flz,u) T =2—2"14 20log——, u€[o,1].

From our considerations in Section 2 it follows that (4.3) determines for
% = ¢ a function f with image domain as in Figure 4a. Applying f(z, b)
defined by (4.2) we end up to the final image domain (Figure 4b).

a. h.

Figure 4.
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5. The region V,

For functions f€ Sk(b) we shall determine a part of the region V,.
We already know V;. We use the P; inequality with the parameters
[6; page 4, 5]:

" 1 312
Xy = — 24 =%5b",
Ty=—2_,=20,

3 2
a3 — 3@ + ba,2}
b

lelz T bm{%“z* 2(1 — b) — a

and apply it to A(z) = vV f(z%). After simple rearrangements we obtain

(a3 — %“3 =+ bay)?®

201 8 133
(5.1)  ay <5 (1 — %) + 2a505 — 75 0 2(1 — b) — ay

[

2
bas —

Condition (2.2) is in this case
(5.2) LV B — 13 L b0Ps(h — hY) =1 (8 — 27 L u(z —27Y);

~“3—%“§+b“2
YT 0 —b) —a,

@y
8§ = 1u + 5 -
Differentiation gives

- B B4zl B (224 1)(2 — D) (2% — )
! 2 -

BB R s R b T 2 (52 1) — B — A
V3—u . \/—u— 1
'.) < ’

2

Z P

1
1

F12

h’lZ =

1

2 2

VI bV a1
—_ > .

From this we read that z;,2z, and &, h, are unit roots exactly if
(5.4) —1<sb<3.

The factorized differential equation suggests h(U) to be a disc with six
slits or with two three-fork slits. This can be studied more exactly by aid
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a. —b=s 3D

Figure 5.

of the boundary correspondence & = r¢¥, z = ¢”. Under this notation

split (5.2) into real and imaginary parts. This leads to conditions:

(5.5) b3 — r3) cos 3¢ + s(r — r ) cosp =0,
(5.6) L0234 r3) sin 3¢ + b2s(r + r V) sin g = £ sin 39 + 2usin I .

The locus of equation (5.5) is indicated in Figure 5. Necessary, for existing
of a S(b)-mapping defined by (5.2) is thus
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(5.7) —1<s/b and u <3.

To find sufficient conditions we study (5.6) and require that for r =1
each ¢ €[0,27] gets an uniquely determined pre-image ¢ € [0, 2x].
Comparing the graphs of the left and the right side we end up with the
requirements

3/2

T+ )%= o (5o + 1)

and

/ 12
— 3P 4P s> —F+u.

The first condition is equivalent to 2(1 — b) > @, and is thus always
satisfied. The second gives a restriction

3 — 5p'72
(5.8) ag < % W ag — %(1 _ bl/2)2 as + % (1 + b1/2)(1 _ b3/2) ,

which implies # < 3. Thus (5.8) and the first condition (5.7) are the
limitations which in the coefficient body define a domain where (5.1) is
sharp.

In Figure 6 are given the types of the extremal domains f(U) found.
Figure 7 illustrates for b = % the part of the coefficient body, where
these extremum domains belong to. Horizontal lining and a. as well as the
dotted domain and b. belong together.

o,

Figure 6.
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Figuge 7.
6. P, in Si(b)
A simple calculation gives for f € S(b) the following results:
!
Y = _b_ >
Ty

(6.1) Yo = 29 log b — LT

x—l 9

h=Ty (@ — ag) + 2oty + ;b .

In accordance with [6; page 5] choose #; = — y_; as a new parameter.

We have
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Ya= — U,
(6.2) Yo = Xologb + wya,,
Yo = — wy(ay — @) + Tety + 21D .

In the case of Sk(b) we choose all parameters real. The P; inequality is
in this notation

222 1og b + 2wguay + {(ag — aduy + xeay + 2,bP — af — (1 — bPuj < 0.
We want to find the range of
d=a; — a3,

and therefore we choose the parameters in such a way that the left-hand side
of the P; inequality becomes maximal. There are two different cases,
%y =0 and z, # 0.

First case: x, = 0. For u, =1 the inequality reads

(6.3) 0% 4 20ba; + b2 —af — (1 —0?) <O0.

The left-hand side attains a maximum for z; = bd/(1 — 0?), and (6.3) gives
for this value of x,

2—(1—»2<o,

giving us the important inequality

(6.4) 18] <1 — 2.
From (6.2) and (6.3) it can be seen that in the extremal case 6 = — (1 — b?)
and the parameters are equal to

¥ =—20b, Yy, =—1,

z =0, Yo = G2,

X, =—2"0; Yy, =—1.

Condition (2.2) is in this case

Wf+fM=@E+z1—a).

In Figure 8 is indicated how the image domain of f can be obtained.
From (6.2) and (6.1) one sees that in the extremal case 6 =1 — b2
The parameter values equal to

2 =b, ¥y =1,
%y =0, l?/o = ly,

vy =—"b; Y= —1.
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—2 2
J(z) 1
= —(w—a,)
b
)
- = [t
2L a 2 — a,
e 5
Figure 8.

All conditions of Section 2 are satisfied except Re y, = 0 unless a, = 0.
Only in that case the upper bound 6 = 1 — # can be reached. The image
domain is the unit disc with two equal slits along the imaginary axis.

Second case: x, # 0. Now we take 2y = 1. The P, inequality is in
this case

— (L —b)at — (1 — 1> — 0%} + 2b0wyu, - 2amba; + 2a5(0 + 1)u,
+2logb +a; <O0.

By elementary calculations it can be shown that the quadratic function
in x; and u; on the left side of this inequality attains its maximum for

. ba, 51—

1 1—082—6"° ! ’
Ay

Uy

12—
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and for these values the inequality takes the form
(6 +1—v3){0logh —a; — (1 — b logh} >0.

In view of (6.4) we derive from this that

a

k2
(6.5) P =B

This is the result of (3.8) for the case that |a,] < — 2blogb. Again from
(6.2) and (6.1) it follows that in the extremal case 6 =1 — b2 4+ azflog b
the parameters are equal to

blogb log b
WS T T, o=
zy =1, ¥ =0,

. _blogé. y 'mlogb
x4 o 1 w

The condition of Section 2, %z, < ,;, requires that |a,| < — 2blogb. For
these values there exists an extremal function mapping the unit disc on a
circular domain with two symmetric slits. The extremal function is deter-
mined by the equation

f blog b log b
log = — (f—fH=-—

@y tty

(z—2z71).

This completes the results of Section 4 where the upper bound was derived
in a different way, but where the discussion of the extremal functions
was postponed.

7. P; in S(b)

Again we consider two cases, z, =0 and z, # 0. In the first case
2, =0 we can take u; =1 and the inequality reads

16 L ap < |2+ 1 —02.

Denote 2, =« 4 iy and 8 = 6; + id,. After simple rearrangements we

obtain
( bo, )2 ( bo, \2 |52
e Gl ) Bl Ul peny ) B i rpe SRR

The optimal choice is thus

2



18 Ann. Acad. Sci. Fennicze A I. 592

bo
TEIT e

and this leads to
(7.1) 0] <1 —02.
In the extremal case, d = (1 — b?)e®, the parameters are

@, = be?, [yl =¥,

g =0, Yo =g,

x4 =—20b; ,y_lz—l.

Condition (2.2) reads
bef(2) — bf(z) ™t = €¥z — 271 |- a,.
Denote w = €'#?2 and let F(z) = e'?2f(¢"#z). Then we have
bB(f —F ) =w— w4 gy
The results of Section 2 can be applied to f. The conditions are
Re aye ™% =0,
and

— 2(1 — b) <Imae * <21 —0).

The last one is always satisfied. The upper bound (7.1) is sharp if and only
if arg 0 = 2 arg (ia,). The image domain of F is a dise with two (unequal)
rectilinear slits along the imaginary axis. The image domain of f is obtained
from this by rotation over — g/2.

In the second case where w, # 0 the computations are more com-
plicated. We take 2z, =1 and split the parameters ; and u, and the
quantities @, and ¢ in their real and imaginary parts, to write the left-
hand side of the P; inequality in the form of a quadratic function of
four variables Re z;, Im #;, Reu, and Im u,. The parameters are again
chosen in such a way that this function reaches an extremum. This is the
case if

ay(1 — b2) - @0
x=—"0 -
(7.2) dy(1 — b2) + a,d
U = —2= Y ,
A =162 — (1 — b22.
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The optimized P; inequality is then

(7.3) Alogb — Re (a38) — (1 — b%)]a,2 > 0.
This is equivalent to

7.4 8 & !<R~1 b2 L 192"
(7-4) _210gb|" - 2logd *

Remark. R is positive; this is a consequence of the inequality
la,] < 2(1 — b) and the elementary fact that 2y <log[(1 +y):(1 —y)] for
0 <y < 1. Therefore (7.4) improves (7.1). This is shown in Figure 9.

In the extremal case we deduce from (7.3) that

Re (a30) + (1 —?)|ay 2
log b '

(7.5) A=

From (7.2), (6.2) and (6.1) we infer that the parameters are

ay(1 — b%) + d,0 [ z;
&€y = —b A s Y1 :—1—7—’
la,2(1 — b2) -+~ a2
im(’:l’ |ft/0 :10gb——-12|( A) 2
|w~1:~fl; l?/—lz_gl'

Substitution of (7.5) in y, gives Rey, = 0. It is convenient to use the
notation

Figure 9.
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(1 — B?)ay® + a30 = %€ (x> 0),
Ay = |ay ™

We see from this that

1 _ 1
cos @ = — {Re (a30) - (1 — b?)|a,2} = s Alogh,
(7.6) ) )

|
|

- a., |2
% = |a,| V/ 2RA log b (R_l—bm_?‘lz'b)-

Because of (7.1) this shows that cos w > 0. In this notation the condition
(2.2) reads

f blogh { . . |
7.7 log — — 2 1 gilame) e 0) f1
(7.7) £ |aty| cos @ f+ f I
log b ) ) sin o
= 7 {_ 6:(0(—0))2 + e—z(cx—m)z—l} — 3 IOg b.
lay] cos cos @

i(x—w)
H

Denote ¢ = ze and let  A(z) = @9 fze~@=)). Then (7.7)

becomes
h(Z) blog b! log b
log - ~ (R — R = ———— (=)
0og = L ‘\s L } > 5 S
¢ {tly| COS (ty| COS
_sinow .
— g — og
cosm  °

The condition %z, <a; of Section 2 prescribes that

2blog b|

(78) — =1,
la,! cosm

and this is satisfied if

(7.8") ! << — 2hlog b .

To study the condition on Im y, we substitute

Ty 1 ,
lay! cos

~ 2blogh ’

and calculate the maximum and the minimum values of the functions
2@ + 2@ sin @ resp. x9 + 2y; sin 9 + Im y,. The condition is

F()—bta,rccost—\/l——t2 4/ 1 — %2 — bt arc cos bt

(7.9) . V 452 logzb X ; [ || 0]
— 3 las] ‘212 2 >0 for f€ 2| log b’ .
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Because F(0) =1 —b — 1la,| >0, it is sufficient to prove that F is
decreasing on [|a,|:2blogb, 0], ie. F' < 0. An easy calculation gives
F’(0) = 0. It is therefore sufficient to prove that F’ is increasing, i.e.
F" > 0. We compute that

b 1 202 log2 b 1 3
Ft) = b | e — —e ,
Vi—we Vi-—¢g || / 4b2 log? b
[ et

a2

; { b 1 } | log b|
Vi—ee Vi_el Wi—pp
In this estimate we have used the inequality 'a,) < — 2blogb. To show
that F” > 0 it suffices to show that
b 1 — ¢+ logb
— > e

V11— e V1 —ep

This is clearly the case if 2> 1 -4 logb, so we can restrict ourselves to
the case that @ = 2 € [0, 1 -~ log b] and we have to consider only values

of b with b > e 1. Since both sides of (7.10) are non-negative we can
square. Rearrangements lead to the inequality

G(x) = 2% — 1 — 2b?log b)
+ @(2 — 202 4 2log b + b2log2 b + 2b6%log b) + b* — (1 +-logb)* = 0.

(7.10)

Since 52 — 1 — 2b?log b < 0, it is sufficient to prove this inequality for
x =0 and for x =1 + logb. It is easy to see that

G(0) = b2 — (1 + log b =0,
G(1 -+ logb) = — b*log*b > 0.

The function % satisfies the conditions of Section 2, henceitsimage domain
is a disc with two (unequal) slits. The image domain of f can be obtained
from this by a simple rotation. In Figure 10 we have indicated the shape
of this image domain for some special cases.

Condition (7.8) allows greater freedom for @, than condition (7.8").
However, we are not able to take full advantage of this fact. From (7.6)
we deduce that in the extremal case

1 /A log b
|t 2R

COS m =

Substitution in (7.8) gives
— A < —8bRlogh,
ie.
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2 g
o, 03
0, 0

[oN
’()1: —(1——6_)
= — e = /3 (1 — 3¢2)
l6; = — 1 — 5e-

Figure 10
(7.11) [0]2 > (1 — D% 4 4% log b)? + 4b(ju,|? — 4b%log D) .

Comparison with (7.4) shows that for |a,| > — 2blogb an arc of the
bounding circle of (7.4) is always excluded.

The conditions of Section 2 are satisfied if the function (7.9) is non-
negative for ¢ € [— 1, 0]. By numerical computations one can show that
this is not always the case if |a,] > — 2blogd. From those numerical
computations it follows that for certain combinations a,,w we obtain
additional information about the coefficient region. The extremal domains
corresponding to the additional part are two-slit domains.



RoxarLp KorTram and Onri Tammr 23

8. Corollaries

It is easy to derive estimates concerning a; from the results we have
for 6. From (7.4) we see that a; lies in the disc

(8.1) {a3— 1+210gb b| = =1- T 2logh’

and if |a,| < — 2blog b, then a; can lie on the boundary of this disc.
By elementary calculations one can show that the points of this circle
for which the distance to the origin is extremal are

A { 624(1 - ! ) ‘2} %
ol " log b 2] la, "’

2

9 H a2
B={—(1—10)+ |22} wE

and

These points are connected with the axial-symmetric extremum cases.
The estimate due to this is

4y < max (4], |Bl),

under the condition a,] < — 2blogb. We rewrite this to obtain: If a,
has a preassigned value for which |a, < — 2blogb then

1
— b2 = g2 —1/2
L= (1 " log b) Gl 0<b= e,

D

(8.2) lag] <
1— 02— a2, e <b<l.

This inequality is sharp. The corresponding extremal domains are two-slit
domains of the type indicate din Figure 10 (cases d; and ds).
The second estimate is for Re a;. From (8.1) we obtain

1 1
Re{(l -+ 21006) ag} — R =< Rea; <Re {(1 - 21001)) a§}+R.

If we write a, = u -+ v, the inequality reads

(8.3)

1 1
u2—(1—[——-—-> 02—(1—62)§Rea3§<1—}—@)> ut — v+ (1 —0?%).

log b

This inequality is sharp if «* - v* < 4b%log? b.
In order to get an idea of the shape of the coefficient region V; we
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Im a,

Figure 11.

determine two cross-sections. Take first @, € R. We investigate the range
of (a,, Rea;, Imag). For all values of a, with la;| < — 2blog b, the
disc (8.1) gives part of this range. If |a,| becomes greater, the function
(7.9) is not always positive. However, F' is non-negative in a neighbourhood
of the origin, so we obtain at least a part from the coefficient region. (In
Section 3, using Lowner methods, we obtained the complete intersection
with the plane (a;, Re as)). In those parts where F < 0, the employed
method fails to give sharp information about V,. In Figures 11 and 12
we have indicated the different kind of extremal domains corresponding
with different parts of the boundary of V,. Some parts of V, are
unknown.

It is also possible to make the restriction a3 € R, and to investigate
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T [m a, T\ Tm o,

—_— —_—
Re ay Re o,
6.

. —_—

e ay Re a,

4 a, = 2b log b

T Iy T Im ay
—_—

—_—
Re ay e a,
1. ay =0 2. 0<ay, <20 logt

Figure 12.
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the range of (a;, Rea,, Ima,). Substitution of ay = w -4 iv in (8.1)
gives for the bounding surface the equation

1 1 \2
2 _ 2 g2 1 2 2
Oy 2(1+210gb) (u w)a3+(1 ] 210gb) (u? + v?)

and this is sharp if «® 4 ¢ < 482 1og? b.
University of Nijmegen
Nijmegen, the Netherlands

University of Helsinki
Helsinki, Finland
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