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1. Introduetion

L-systems have been introduced for biological purposes (see [3]). How-
ever, these have been studied intensively during the last few years from
the formal language point of view (see [1] and [6]). A particularly interesting
aspect within L-systems is the theory of growth functions. These have
been studied for instance in [7] and [8].

The purpose of this note is to show that the family of PDOL growth-
sets is properly included in the family of DOL growth-sets. As a corollary
of this result we also solve a problem introduced in [5], namely that

%CPDOL E %CDOL'

2. Notations

We assume that the reader is familiar with the standard formal language
notations. For the definitions of DOL-systems, -languages, and -sequences
we refer to [1]. We say that a DOL-system @ is A-free, or a PDOL-system,
iff there are no A-productions in @.

If G is a DOL-system, then L(G) (resp. E(G)) means the language
(resp. the sequence) generated by @. The growth-set generated by & is

L@ ={P |PELG)},
where |P| means the length of the word P. Let
E@)=0vy,0,,...
Then the growth-sequence generated by G is
(@) = lwol » len], . ..

We say that a homomorphism % : Vi — V¥ is a coding iff it maps each
a letter to another letter. So all codings are length preserving.

A language L is called a CDOL-language (resp. a CPDOL-language)
iff there exists a DOL-system G (resp. a PDOL-system &) and a coding
h such that

L = WL(Q)) .
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The family of CDOL-languages (resp. CPDOL-languages) is denoted by
“Lepor (resp. “Leppor) -

3. Lemmas

We need the following three lemmas.

Lemma 1. Let
(1) B(G)| = |ogl, log], ...
be a DOL growth-sequence. Then (1) is ultimately periodic modulo 2.

Proof. It is well known (see [7]), that, for n > n,, (1) satisfies a recursion
formula with integer coefficients, say

N

o, =D xo,_;1, for n>n,.

i=1

Il

Let g be the canonical homomorphism of Z onto Z, By applying g¢
to the above equation we obtain in the finite set Z, the recursion formula

k
g(lw,) = Zlg(fxi)g(lwn_i!) , for m =m,.

Thus, the sequence determined by this recursion formula must be ultimately
periodic in Z,. So we have proved Lemma 1.

Let H be the following DOL-system. The axiom is «, the alphabet
is
V={a,b,c,a;,b,¢1,a5,by,C},
and the productions are as follows:
@ —> 0y, O—>abc?, ay— 1,
b—bb,, by—>0bc?, b,— 1,
C—>CCy, € —>C, Co—> 7.
Let
L, ={P €V*ja="P, for some n >0}
and
L, = {P € V¥|a =™+ P, for some n > 0}.
Then the corresponding sequences are

E, = a, abc®, abc®ct , abc?bctbet , . . .
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and
B, = a,ay , aya,D1b5(c165)? ,  aq015b1b5(c165)2b1D5(c10)% . . .
So the language generated by H is
L(H) = L; U L, = {a,abc®ct . . . bc*|n > 1} U {I(P)|P € L},

where % is the homomorphism of {a,b,c} into V defined by h(y) =
Y1Y,. Because

l+n+24+4+... +2n=mn+1)2
the growth-set determined by H is
L(H)| = (w2, 2020 > 1}

We now put the elements of |L(H)| in increasing order and let X be
this sequence. Denote

(2) X=uw,2,...

Lemma 2. X s not a DOL growth-sequence.

Proof. Assume the contrary: that a DOL-system I, generates the
sequence X. Then, by Lemma 1, (2) is ultimately periodic modulo 2. So
there exist natural numbers r and s such that

x, is an odd square
and for each ¢ and j, ¢ >0, 0<ji<s—1,
Tpyjris = ¥ryjppns (mod 2) .

Let x, = k. Note that in (2) all odd integers are squares. So if m is the
number of odd integers in the period, then for each i > 0

Trpi = (k4 i2m)?.

But this implies that in each period there must also be a fixed number
of integers of the form 2r2. This however leads to a contradiction, as we
shall now show.

Forall ¢ > 0, consider the natural numbers z; satisfying the condition

(k 4 i2m)? < 227 < (k + (4 4+ 1)2m)?,

or equivalently,
3 LI L iVEm+ 3
(3) \/E+%\/§m<dz<\/—2+z m + m .

By what we have shown, the number of such z/s is the same for all i > 0.
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Trivially this number is either [\/ 2 m] or [\/ 2 m]+ 1. Let §, and 6,
be positive real numbers defined by

Oy = vVam— [\/Em]
and

S,=[V2ml+1—V2m.

First, assume that for all ¢ >0 the number of zs is [\/ —2—m]. Choose
i, such that 4,0, > 1. Then the length of the interval

\/E > '\/E + %V 2m
is
to V2m = fio[\/'_Zm] 4 190y > ‘2'0[\/72 m]+ 1.
So the number of z;s in this interval is at least '50[\/ 2m] 4 1. On the other
hand, by our assumption, their number is 1'0[\/ 2m].
Secondly, assume that the number of zs is 7'0[\/ 2m]-+ 1, for all
; > 0. Now choose i, such that i;6; > 2. Thus, the length of the interval
e
5 \/—2 =+ 1 2m
ig
iV 2m =i [V 2m] + iy — 8, <[V 2m] 4 i — 2.
Thus, in this interval there are at most 1'1[\/ Em] + 7, — 1 numbers z;-

But by our assumption, in this interval there must be il[\/TZ m] -+ 1y
numbers of this kind.
Because both the cases lead to a contradiction, we have proved Lemma, 2.

We also need the following lemma, which is Lemma 5.4. of [4].

Lemma 3. Let G be a PDOL-system generating an infinite language.
Then there exists a PDOL-system G such that

() L@ = LG,

(i) the sequence |E(G,) is strictly increasing.

4. Results

Now we are ready to establish our results.

Theorem 1. The family of PDOL growth-sets is a proper subset of the
family of DOL growth-sets.
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Proof. The inclusion is trivial. It is proper because |L(H)| is a DOL
growth-set, but is not, by Lemmas 2 and 3, a PDOL growth-set.

As an immediate corollary of Theorem 1 we can solve a problem proposed
in [5].

Theorem 2. The family Leppor s properly included in the family
%CDOL'

Examples of languages which lie in the difference “cpor \ Leppor
are the languages L(H) and L = {a",d*™|n > 1}

We can generalize Theorem 1 to cover all growing DOL-systems, i.e.,
systems with an increasing growth-sequence. Of course any PDOL-system
is a growing DOL-system.

Theorem 3. The family of growth-sets generated by growing DOL-systems
is properly included in the family of DOL growth-sets.

Proof. It suffices to show that Lemma 3 can be generalized for growing
DOL-systems. Assume that G is a growing DOL-system with E(G) =
®y, 1, ... In the following we use the notations of [4].

Let M be the growth-matrix of G, # the Parikh-vector associated with
the axiom of @, and # the column vector with all elements equal to 1.
Then the sequence

(4) d,=aM" — M"Yy =aM —1)M""y, n=1,2,...

tells us how much the length of the word grows during the nth step of
the derivation. By (4), the d.s satisfy a recursion formula with integer
coefficients. Thus, by the Theorem proved in [2], zeros occur in (4) ultimately
periodically.

For all ¢ > 0, let Min(w;) denote the set of symbols occurring in ;.
It is well known that the sequence

(5) JI'in(wo) ) J_[i)l((-')l) LA

is ultimately periodiec.
Consider now the sequence consisting of ordered pairs

(6) (s(do) , Min(oy)) , (s(dy) , Min(ey)) , . . .,

where s(0) =0 and s(r) =1, for = > 1. Because the component
sequences of (6) are ultimately periodic, so is the whole sequence (6).

From this point on the proof is a straightforward modification of the
proof of Lemma 5.4. in [4] (it uses only the periodicity of (5)). We omit
the details.
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Remark 1. The proof of Lemma 3 in [4] is constructive. However, our
analogous proof for growing DOL-systems is not constructive, because
we need the Theorem of [2].

Remark 2. In [4] M. Nielsen solves the growth-set equivalence problem
for PDOL-systems by changing the considered PDOL-sequences effectively
to strictly increasing PDOL-sequences (with the same growth-set). Lemma 2
shows that we cannot solve the growth-set equivalence problem for DOL-
systems by this method. In fact, it is not known if this problem is decidable
at all.
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