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Introiluction

Let G be a discrete group or a compact Lie group, and let X and
I denote finite equivariant CW complexes. In Section I of Chapter II
we introduce the notion of an equivariant simple-homotopy equivalence
f : X-->Y. The main part for this definition is the definition of an
equivariant elementary expansion, see Definition Ll in Chapter ff.
Having defined equivariant elementary expansions (collapses) the notions,
equivariant formal deformation, equivariant expansion (collapse), and
equivariant simple-homotopy equivalence, follow in complete analogy
with the corresponding notions in the ordinary non-equivariant case as
defined by Whitehead [ts].

We then define an equivariant Whitehead group lyhc(X) of any
finite equivariant CW complex X. If G is the trivial group, and X
thus is an ordinary cw complex, this simply gives us the geometrically
defined 'W'hitehead group Wh(X) of X which, for connected X, is
known to be isomorphic to Wh(n (X)), the (algebraicly defined) Whitehead
group of the group nt(X), see Cohen [6], Eckmann-Maumary [l], and
Stöcker [5]. We prove that if G acts freely on X then Whs(X) -.få(C\X). Thus if G is a discrete group acting freely on X, and X is
simply corurected, we have TfhG6) - Wh(G). In Section I of Chapterlll
we determine Whc(X) in terms of Whitehead groups of quotient, groups
of subgroups of G, for the case rrhen G is a discrete abelian group and
X is such that for anv subgroup ä of G each component of XE is
simply connected.

Let now agarn G denote any discrete group or an arbitrary compact
Lie group. rn section 3 of Chapter rr we define the geometric equivariant
Whitehead torsion rcff) e Wh6) of any G-homotopy equivalence
f : X --+ I, and prove that / is an equivariant simple-homotopy equi-
valence if and only if rcff):0. If G acts freely on X and Y, then
any G-homeomorphism f : X --> Y is an equivariant simple-homotopy
equivalence. This follows from the recent affirmative answer by T.
chapman to the question of topological invariance of ordinary trvhitehead.
torsion, and the isomorphism Whc(X) ^z I4Iå(G\X) for free actions.
'We also give a sum theorem for zr(/). fn Section 4 we prove a technical
result which says that any element in Whc6) can be represented. by
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an element which is in »simplified form», see Corollary 4.4 in Chapter II
for the precise statement. This result is the key to the results proved in
Chapter III.

In Chapter III we first consider actions of discrete abelian groups

and prove the already mentioned theorem about Whc(X), see Theorem
1.4 and the discussion preceeding it. IJsing known results about Whitehead
groups of groups this gives us information about, WhG6). For example

it follows thatif G:Z^,ffi) 1, isafinitec;'clicgroup,and X issuch
that each component of any XH , H c G, is simply connected, then
Whc(X) is a free abelian group of finite rank. If G: Zz,Zs,Z4 ot 26,

then Wh"(X) : g, where X is as before, ancl hence in this sit'uation
any G-homotopy equivalence is an equivariant simple-homotopy
equivalence. We also say something about the case G:Z@...@2.
We conclude the first section by an example of an inclusion z 

" 
X --> W,

in fact X : {r}, of equivariant CII complexes x-hich is a G-homotopy
equivalence but not an equivariant simple-homotopy equivalence and the
induced inclusion on the orbit, spaces is an ordinary simple-homotopy
equivalence and moreover if we forget, about the G-action then the inclusion

i:X-->III is an ordinary simple-homotopy equivalence.
In the final section we consider actions by an z-dimensional torus

G: T" ,n ) l. In this casewehave Whr(X) : 0, forevery X satisfying
the condition that for any closed subgroup H of G : T" each component
of XE is simply connected, and hence in this situation any G-homotopy
equivalence is an equivariant simple-homotopy equivalence. This result
applies in particular to differentiable 7" act'ions on compact differentiable
manifolds.

Notations. By I" we denote the za-fold product of the unit interval with
itself and 1"-1 is id,entified with the fuont (n - l)-face I"-L x {0}c -f".

By .r"-r we denote the union of all other (n - l)-faces and 01" is the
boundary of I", i.e. OI": In-tl) Jtu-I. We shall use G-spaces of the
form GIH x -f", rvhere f1 is some closed subgroup of G. Here G acts

trivially on -f" and by the statrclarcl left action on {}lH. If .t/ is a closed

subgroup of G rve denote by (ä) the famill- of all subgroups conjugate

to H, and. for any G-space I, rve clenote b)- Io the set of point's fixed
under 11.



Chapter I. Review of equivariant CW complexes

In this chapter G denotes a topological group rvhich is either a compact
Lie group or a discrete group.

Definition l.l. Let X be a Hausdorff G-space and A a closed G-
subset of X, and n a non-negative integer. We say that X is obtainable
from A by adjoining equivariant z-cells if there exists a collection {ci}1e,r
of closed G-subsets of X such that

l) X:.1 U (U ci), and X hasthetopologycoherentwith {.4 ,ci}1et.

2) Denote öi

3) For each
a G-map

fi: (GIU, x I",GlH, x AI")-->1ci ,åi)
such that fiGlHi X I") : c|, and fr maps GlHt x (I - AI") G-home-
omorphicall)r onto 

"i - öi.

Such a G-pair (X , A) in fact determines the G-subsets crT uniquely,
that is, any two collections of closed G-subsets of X which satisfy condi-
tion f )-3) in the above definition are the same. Moreover X is not ob-
tainable from A by adjoining equivariant zrz-cells if m t' n. We call
the G-subsets crl for the equivariant z-cells of (X , A) and also say that
X is obtained from A by adjoining the equivariant z-cells ci. The G-
subsets bi : ti - ä1, u,hich are open subsets of X - A, are called open
equivariant z-cells of (X,A). Any G-rnap fi:Gl\ X l"->ci u-hich
satisfies the conditions in Definition I.I is called a characteristic G-map
for ai, and its restriction fi | : Glfi X OI" --> b|---> ,1, is called an attaching
G-map for ci. We call (H) for the type of ci.

Definition 1.2. An equivariant relative CW complex (X , -4) consists
of aHausdorff G-space X, a closed. G-subset A of X, andanincreasing
filtration of X by closed G-subsets (X, A)r,k : 0,1,. .., such that

jeJ

@i

jeJ

n A, theu

there exists a closed subgroup H j of G and



Ann. Aead. Sci. Fenniere A. r. 589

1) (X , A)o is obtainable

equivaria,nt k-cells.

2) X - U (X , A)o, and
,6> 0

from A by adjoining equivariant 0-cells,
obtainable from (X , A1x-t by adjoining

X has the topology coherent rvit'h

{(X, /)o}o=0.

TIre G-subset (X , A)o is called. the k-skeleton of (X , A). Observe

that it is part of the structure of an equivariant relative CW complex
(X , A). The (open) equivariant &-cells of ((X , A)o , (X , A)o-') are

called (open) equivariant ft-cells of (X , -4.). Observe that the orbit space

pair (G\X , C\.4 ) inherits the structure of an ordinary rel alive C W complex
with ft-skeleton equal to G\(X, /)e. We say that dim (X , A) : m if
X : (X , A)* but X + (X , A)^-'. If no such integer m exists we

say that dim (X , A) : q. We have dim (X , A) : dim (G\X, C\-4).
If (X , .4) is a G-pairwhich admits the structure of an equivariant relative
CW complex then dim (X , ,4) is rvell-clefined, that is, does not depend

on the skeleton filtration. This follos's since the corresponding statement
for ordinary relative CIl structures is a well-knor,n fact.

Let (X, A) be an equivariant, relative CW complex, and let Xo be

a closed G-subset of X. Then we say that (Xo , Xo O /) is a subcomplex of
(X,A) if the filtration Xo n (X, A)o,lc: 0,1,.. .,gives (Xo, Xo n,4.)
the structure of an equivariant relative Cllr complex. It is easy to show

that then (X , XoU A) is an equivariant relative CW complex rvith
skeletons (X , XoU A)o : XolJ (X , A)t". In facb XoU (X , A)h is

obtained from Xo U (X , r4;r-t by acljoining aII the equivariant ft-cells

of (X,,4) rvhich are not equir-ariant Ä:-cells of (Xo , Xon A).
If A : O we call X an equir.ariant Cly complex and denote its

k-skeleton by Xk. An equivariant Cll' pair (X , Xo) consist's of an

equivariant cw complex -lf and a subcomplex xo of x. An equivariant
CW complex X (pair (X , Xo)) is said to be finite if X has onl5r a finite
number of equivariant cells. Observe that in case G is a discrete group

and X thus also automatically has the structure of an ordinary CW
complex this does not mean that the ordinarl- CII'' complex X necessaril5r

is finite.
Let (X , A) be a G-equivariant relative CIY complex and (Y , B\

a G'-equivariant relative CW complex. Assume that either both X
and Y are locally compact or X is arbitrary and I is compact' Then

(X,A)x(Y,B) :(X xY,X xBU/. x Y) is a (GxG')-equivari-
ant relative CW complex with z-skeleton equal too U ,(X 

, A)h x (Y , B)n'

In this paper we shall only use this in the case G' : {e}, that, is, (y , B)
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is an ordinary relative CII complex and the product (X , A) x (Y , B)
is again a G-equivariant relative Cllr complex.

The following result is not explicitly stated in Chapter I of [10] although
jt is an immediate consequence of results given there. We shall have use of
it in this paper and hence rye state it here and give its proof.

Proposition 1.3. Let (X , A) be an equivariant relative CtrZ complex.
Then the inclusion ,i : A --> X is a G-homotopy equivalence if and only
if -4 is a strong G-deformation retract of X.

Proof. Assume that i : A-->X is a d-homotopy equivalence. Then it
follows that for each closed subgroup H of G the inclusion d | : AH -> Xfl
is a homotopy equivalence. Thus the pair (Xu , A'I) is z-connected for
all n. By Corollary t.ll in Chapter I of [10] this imples that (X,A)
is equivariantly z-conr:ected for all n (see Definition 1.9. in Chapter
I of [t0]). Thus, by Corollary 2.9 in Chapter I of [10], any G-map

f , (X , A) --> (X , A) is G-homotopic rel. A to a G-map from X into /..
Applying this to the identity map we see that, A is a strong G-deformation
retract of X. The »if» part of the claim is obvious.

Now let G' be another topological group which is either a compact
Lie gronp or a discrete group, and let, V I G -> G' be a continuous homo-
morphism. Let (X , A) be a G-equivariant relative CW complex
and (Y , B) a G'-equivariant relatir,'e C-tIr cornplex. A E-map
l:6 , A)-->(Y , B), i.e. f(gr) : V@)f(r) reX, geG, is called skeletal
if /((X,A)r)c(Y,B)o, for all k>0. Observethatif X and I in
fact are G-equi'r,ariant and G'-equivariant, respectively, CI,Y com-
plexes and .4 and B are subcomplexes then the above condition reads

l(Xo U A) c Yh l) B, for atl k > 0, and hence the absolute map

f : X --+ Y need not itself be skeletal. This »freedom» in the definition
of a skeletal map betryeen pairs is in some cases extremely convenient.
The follor,ving theorem is Theorem 2.14 in Chapter I of [I0].

Theorem 1.4. Let (X , A) and (Y , B) be a G-equivariant ancl a
G'-equivariant, respectively, relative CW complex. Assume that the

?-map f : (X , A) --> (Y , B) is skeletal on the subcomplex (Xo , Xo n A)
of (X , A). Then there exists a skeletal V-map i ,6 , A)--+(Y , B)
rvhich is g-homotopic rel. (Xo U ,4) to /.

(In fact the statement in lf 0] reacls »rel. Xo» but the proof gives the
»el. (Xo U.4)» version). Taking Xo: O (or Xo: A, it, amounts to
the same) 'we have the following.

Corollary 1.5. Any V-yup f : (X , A) --> (Y , B) is g-homotopic rel.
A to a skeletal p-map f :(X,A)-->(Y ,B).
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Applying Theorem 1.4toa p-ma,p n : (X,A) x I->(Y,B) which
assumed to be skeletal on the subcomplex (X x {o} U X x {l},
x {0} U,4 x {t}) we get

Collary1.6. Let I:(X,A)xI--+(Y,B) be a g-homotopy bet-
ween the skeletal q-mapl fo , fr i (X , A) - > (Y , B). Then there exists

a skeletal _E-homotopy F:(X,A) x I-->(Y,B) between /e anC /t
suchthat IIAxI:n lAx1.

The folowing facts will be used frequently in this paper without, further
reference. If (X , Xo) is an equivariant CtY pair and f : Xo--> Y is

a skeletal G-map then the adjuction space Y uf x is an equivariant
CW complex containing I as a subcomplex. The mapping cylinder rl47

of any skeletal G-map t : x --> I is an equivariant cw complex contain-

ing X and I assubcomplexes (X inthe {0} endand I inthe {t} end).

It follows from Proposition 1.3 that / is a G-homotopy equivalence if
and only if X is a strong G-deformation retract of. My. The subcomplex

I is always a strong G-deformation retract of My.

Let g:G-->G' be a continuous homorphism. We shall norv describe

the process of »changing a G-space X into a G'-space, denoted by p(X),
through the homomorphism g»». Let X be an arbitrary left G-space.

Consider the space G' x X and define a ri,ght G-action tD: (G' x X) X
G-->G' x X by @((g' ,r),g): @'E@),9-1n), where g'eG, gec and

reX. We define

c(X) : G' x, X

to be the orbit space of G' x X under this right G-action. Let
n: G' x X --+ q(X) be the natural projection and denote n(9' , r) : l9' , frf.

Thus we have lg'q@),tf :lg' ,g*f for every g€G. I(olv define a left
G'-action

y : G' x g(X) --+ y@)

by ,p(g',lgi,rl):lg'gL,*f. This completes the construction of the
G'-space g(X). We shall use the notation

rt: X-->q(X)

for the canonical g-map defined rt@) : le , r), 'where eeG' is the identity
element. Also observethat if. q:G-->{e\: G' then g(X) : G\X, and

in this case 4 : x -> g(x) is the natural projection onto the orbit space.

Any G-map f :X-> I induces a G'-map Eff):E6)-->9(Y) defined

by V(fl{g',r)):W',1@)7. It is immediately seen that gff) is a well-
d.efined continuous G'-map. Tf h: Y --> Z is anolher G-map we have
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E(hf): E(h)eff). ft follows that if / is a G-homeomorphism then gff)
is a G'-homeomorphism.

Observe that if K is a topological space with trivial G-action
then we have E(X x K) : g(X) x K, as G'-spaces, given by
lg',n,kl-->(lg',nf ,k). Thus a G-homotopy X : X x I-->Y between
two G-maps /, and fr induces a G'-homotopy p(.F') | g(X) x I -> E(Y)
between the G'-maps p(Å) and 9(/r). If / is a G-homotopy equivalence
then g(/) is a 4'-homotopy equivalence, and if A isa strong G-deforma-
tion retract, of X then E(A) is a strong G'-deformation retract of g(X).

Also observe that if Y' is a G'-space and f : X --> Y' is a g-map
thenfinducesaG'-map

vff): v6)--> Y'

defined by g(f)(lS' , r)) : g'J@). The fact that we use the same notation
p(/) in these two slightly different contexts should not cause any confusion"

Now let, H be any closed subgroup of G and consider the G-space
G/1/ (standard left G-action). We claim that the map

a: q(GlH)-->G'ly(H)

defined by *(lg' ,gH)): (g'q(g))q(H) is a G'-homeomorphism. Since
*(lS'V@o) , go'gH)) : @'q@o)C(So)-'V@»rf(H): (g'q(g))q(H) it follo'u,s that
d. is a 'rvell-defined continuous map. Clearly a is a G'-map. The map

B : G'lq(H)-->q(GlH) defined by p@'E(H)) : lg' , eH) is also immediately
seen to be a well-defined continuous G'-map. Since &§ : id and pa : id
this shows lhat, a is a G'-homeomorphism. We identify EGIH) rvith
G'|E(H) through a. ft follov,s that we have

v(GlH x /") : G'lp@) x I" .

Using this fact one easily proves the follorving

Proposition 7.7. If (X,A) is a G-equivariant relative Ctrl complex
then (8@) , E@)) is a G'-equivariant relative CW complex.

Tt f : (X , A) --> (Y , B) is skeletal then also p(f) : @(X) , V(A)) --+
(E(Y) ,9(B)) is skeletal.

Chapter II. Foundations of equivariant simple-homotopy theory

Recall lhat G denotes a topological group which is either a compact
Lie group or a discrete group. By »equivariant» we mean »G-equivariant»
if not otherwise is specified. Only when two groups G and G' are involved
in the discussion at the same time shall we be more specific and speak

I1



L2 Ann. Acad. Sci. Fennicre A. r. 588

about G-equi.rariant, and G'-equivariant. X'rom now on all equivariant

cI[ complexes are automatically assumed 1o be fdni,te equivariant cw
complexes. Thus we shall write »equivarianb cw complex (pair)» when

rve in fact mean »finite equivariant, CIY complex (pair)»'

§ 1. Equivariant formal deformations

Detinition 1.1. An inclusion i : x --> Iz of equivafiant cw complexes

is called an equivariant, elementary expansion if the equivariant CW pait
(Y , i(X)) satisfies the following conditions'

1) There is an integer n 2 I such that

Y-i(X)Ub"-1 Ubn,

ryhere b"-l ancl b" clenote an ollelt ecluivariant (iz - 1)-cell ancl an opel

equivariant ii-cell, respectir'elv, of I. - ,(f).
2) There exists a closecl subg16.,t, H of G ancl a G-map

o : GIH X I" -> 7'

such that

ctGlH x J"-') c (r(X))"-' 
"

(,t 1)-ce11 6"-'

6 is a characteristic G-rnap for the equivariant ??-ceil 6" .

By definition it follorvs that if i, : x --> I is an equivariant elernentary

expansion ancl /z : x'= x is an isomorphism of equivariant cw com-

pt&es tlren aiso ilt : X' --> 7' is an equivariant elementary expansion.

Sit "" *" also clefine the iclentitl' rnap id : X -> X to be an equivariant

elementary expansiol it fo]lor-s that au1- isomorphism lt, : X' ] X of
equivariant CI|r complexes is an ecprirtrliant elementary expansion.

It, is also immediately seen that if i : -I -+ I' is an ecluivalitrnt elementary

expansion and. 7t : Y iY' is an isomolphism of equirariaDt Ctr[ com-

plexes t1.en fi,i: X-+ I' is a1 eq*iraritt,t ele,re'tar'1' expa,sion.

we shall in the follorving iclentifl- ,Y \I-itli i(-x) and consider x itself
as a subcomplex of Y. Hence §'e also use the terrninol:gy »]z _is an

equivariant elementary expansion of -lf» ancl clenote Y : X l) b-r l) b.
observe that the open equivariant cells b"-I ancl b" have the same type

and we call this for the type of the equivariant, elementary expansion

and the integer n for its dimension' Any G-map o : GIH x I^ "> IZ which

(")

(1, )

(*)
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satisfies the conditions in Definition 1.1 will be called a characteristic
simple G-map for (ä" ,b-').

The conditions (a) - (c) in Definition l.l are equivalent to the four
conditions that, o(GlH x J"-') c X-L , o(GlH x AI"-t) c X-2, o maps
GIH x (1"-t - AI"-1) G-homeomorphically onto b'-', and o maps
GIH x (1" - AI") G-homeomorphically onto b". Thus Y is an equiv*
ariant elementarv expansion of X if and only if I is the adjunction
space of GIH x I", for some closed subgroup H of G, and X by a
G-map ry : GIH xtrn-7, yn-l whichalso satisfies q;(GlH x al"-r) c X-2.

We use the terminology »X is an equivariant elementary collapse of I'»
to mean exactly the same thing as »>Y is an equivariant, elementary
expansion of Xt». Observe that, a strong G-deformation retraction
n:(GIH x .f") x I-->GIH x I" of GIH x I" to GIH x J"-r and-
a characteristic simple G-map o:GlH X 1"--> Y for (b",b-1) together
giverisetoastrong G-deformationretraction X:Y X 1-+ Y of Y to X.
Let r : Y ---> X denote the corresponding G-retraction. Thus the inclusion
i, : X --> I is a G-homotopv equivalence and r is a G-homotopy inverse
to i. In fact anv G-retraction from f onto I is a G-homotopv inverse
to the inclusion i : X --+ )' and any ts-o such G-retractions are G-hornotopic
rel. X. Thus regardless of the clifferent choices of F ancl o the
G-retraction r : Y -->X is uniquely determined up to G-homotopy rel. X.
We call r : Y --> X for an equivariant, elementary collapse. A G-map
which is either an equivariant elementary expansion or collapse is callecl
an equivariant elementary deformation.

Let (V , X) and (trIr, X) be two equivariant CW pairs. \1'e clefine
an equivariant formal cleformation from V to W rel. X to be a finite
composite lt : kp . . . \ of equivariant elementan- clefonnations l;i,

Tl - Xo
A1

x1

u'h.ereeach -lf; contains X as asubcomplexand frilX : id, j - I,. ..,,?.
(Here ftilX: id means that; if ii: X-+X; is the inclusionrepresenting

{ as a subcomplex of X1 then k/,1_t:,ii,for j:1,... ,p.) Let
fu,: X,--> X;-, be the equivariant elementarJr deformation inverse to Ä;.
Then ic : iq. . . [, is a G-]romotopy inverse, rel X, to k, and fo is
an equivariant, formal deformation from lY to V rel. X. We say that
7 and W have the same equivariant simple-homotopy type rel. X if
and only if there exists an equivariant formal deformation from Y to
W rel. X. We denote this bv

VsWrel.X,

adding the rvord »equivarianl,Iy» r,r'hen we want to be very specific. If each

13

Ä., kp

--> .. '--)
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lcr: Xi-t--+Xt i* an equivariant elementary collapse (expansion) we say

tlrat lr : lcp . . .lq is an equivariant collapse (expansion) and we also

express this by saying that 7 collapses (expands) equivariantly to W.

Observe that in these special cases we in particular have V s W rcL. W
(and rel. 7, respectively).

We define a G-map f : V --> I[, where flX : id, to be an equivariant
,simple-homotopy equivalence rel. X if and only if / is 4-homotopic
rel. X to an equivariant formal deformation k : V -+ W, which thus
also is rel. X.

Tf G - {e}, the trivial group, these definitions reduce to the correspond-

ing definitions in the ordinary »non-equivariant» case, §ee Section 13 in
Whitehead [18].

An equivariant simple-homotopy equivalence f : X --> I induces a,n or-

dinary simple-homotopy equivalence /' : G\X + G\ I on the orbit spaces.

But / need not be an equivariant simple-homotopy equivalence even if
the induced map on the orbit spaces is an ordinary simple-homotopy
,equivalence. consider the following simple example. Let I be the two-
sphere §2 with G : B1 acting by the standard »free» rotation leaving
the south pole {§} and the north pole {-l[] fixed. The orbit space is a unit
interval which collapses to {0}. But the inclusion i: {§}+ Y is not
an equivariant simple-homotopy equivalence. Of course in this example

the G-map tl is not eYen & G-homotop5r equivalence' We shall give a bet'ter
,example later on.

Lemma 1.2. Let (V , X) be an equivariant CTY pair such that
7sX rel. X. Then both the inclusion i,:X-->V andany G-retraction
r : V --> X are equivariant simple-homotopy equivalences.

Proof. Since Xs 7 rel. X theinclusion i,:X-+ 7 is an equivariant
formal deformation and hence an equivariant simple-homotopy equivalence.

Since X is a strong G-deformation retract of Y it follows that any G-

retraction r : V --> X is a G-homotopy inverse to i and hence also an

'equivariant simple-homotopy equivalence.

Lemma 1.3. Let f t X --+ I be an equivariant simple-homotopy equiv-

a,lence, and let K be an), closecl subgroup of G. Then |1:GXK->GYK
is an equivariant simple-homotopy equivalence.

Proof. Let B: Al)b-t l) b" be an equiYariant elementary expansion

of A, of say type (11). Then GBK : GAK U b"-t U Ö" if (K) < (fI) and

GBK : GAK if (r) # (f1), that is, GBK is in either case an equivariant
,elementry expansion of GAK. It follows thatif lc:X-> 7 isanequiv-
ariant formal d.eformation then so is also VI:GXK->GYK. Since any

G-homotopy from f fo k restricts to a G-homotopy from /l to kl this
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shows that /l : GXK --> GYK is an equivariant simple-homotopy equiv-
alence.

Lemma 7.4. Let Y be a G-equivariant elementary expansion of X,
and let g:G--+G' be a continuous homomorphism. Then g(I) is a G,-
equivariant elementary expansion of g(X).

Proof . Denote Y : X l) b-L lJ b, and assume that the type
of the equivariant elementary expansion is (I1). Let o:GlH X I"-->Y
be a characteristic simple G-map for (b,b-r). lVe have E(Y):
g(X) U q(b-') lJ g(b), and since qGlH X .f") : G'lq(H) x I" it is
easily seen that g@) : G'lg(H) x I" --> g(Y) is a characteristic simple
G'-map for (q(b) , g(b-')). Thus p(Y) is a G'-equivariant elementary
expansion, of type E(H), of g(X).

Corollary 1.5. Let (V , X) and (TY, X) be G-equivariant CIl pairs
such that V s W rel. X G-equivariantly. Then we have gff) s q(W)
1el. 9(X) G'-equivariantly.

Both Lemma 1.6 and Corollary 1.7 below witl be used frequently in
the following. trYe shall call both of them for the »relativitv principle».

I5

Lemma 1.6. Assume that (V ,

C\Y pairs such that V s Wr rel. X.
Then (Y Ur Z) s (Y Uf W) rel. Y.

Proof. Let, V: Xo-+Xl --+...--+ Xp: W be an equivariant formal
deformation rel. X. Denote Yi:YUlXt,i,:0,...,p. It isthen
immediately seen that Y UyV : Io-+ Yr+. . .+ Yp : Y UtW is
an equivariant formal deformation rel. y.

Observe in particular the special case of Lemma I.6. when / is an
inclusion. By Corollary 1.5 and Lemma 1.6 we have

Corollary 1.7. Let (V , X) and (W , X) be as in Corollary 1.5. and
let f : X->Y' be a skeletal g-map. Then we have (Y,tJr61V(W))s(I,
U61E(V)) rel. Y' G' -equivariantly.

The follorving lemma and its two corollaries will be used frequently.
The »same» lemma in the ordinary non-equivariant case is Lemma Ir
in Whitehead 1181.

Lemma 1.8. Let f : X -+ Y be a skeletal G-map and let Xo be
a subcomplex of X. Then My collapses equivariantly to My1x,.

Proof. Let A be a subcomplex of X such that X: Al)b, rvhere
b is an open equivariant, say, z-cell of X. We claim that Myln is an
equivariant elementary collapse of M1. Assume that the type of ä is (ä)

X) and (tY , X) are equivariant
Let f :X+Y beaskeletal G-map.
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and let oc:GlH x I"->X be a characteristic G-map for 6. We have
Mr: MIAU (å x{o}) U (b x (0,I)) and n(a X id):Glil x1"x
I --> M1, where n : X x I --> M" denotes the restriction of the natural
projection, isclearlyacharacteristicsimple G-mapfor (Ö x (0, l), b x {O}).
This proves the above claim. Nowlet XocXrc... c X*: X besub-
complexes of X such that X, - Xr--,. consists of exactly one open equiv-
ariant cell, for i:1,...,r/1. By 'what we just showed Mylxr-, is an

equivariant elementary collapse of Myixr,'i : 1, . . .,ffi. This completes
the proof of the lemma.

Corollary 7.9. Let f : X --+ I- be a skeletal G-map. Then -44y collapses

equivariantly to Y.

Corollary 1.10. Let (X,Xo) beanequivariant CW pair.Then X x I
collapses equivariantly to Xo X ,f U X x i1), and hence of course also

to XoxlUXx{0}.

§ 2. The equivariant Whitehead group Wh"(X)

Lef (V , X) be arr equivariant CII- pair such that -l( is a strong G-

deformation retract of T'. (B1' Proposition 1.3 in Chapter I this is
equivalent to the fact that the inclusion i : X --> Y is a G-homotopy
equivalence.) Let (UZ,X) be another such pair. Define a relation - by

(V,X)-(W,X) oVsW rel. X equivariantly.

This is an equivalence relation. Since (V , X) - (W , X) if (V , X) =(W , X), rvhere -u stands for an isomorphism of equivariant CW com'
plexes x'hich is t'he iclentity on X, it is easy to see that the eqttir.alence
classes rvith respect to the relation - form a set. \Ye clerrote this set by
Whc6). Let s(tr' , X) clenote the equir-alence class cletermiued by (V , X).
Now define an aclcliticn in TI-16(-I) bv

s(I", if) - s(I-2, f) : s(I'r Ur I'., f) .

Since X is a strong G-cleforrnation letract of both l', ancl Vz it
follows that X is a strong G-cleformation retract of l-tuxYz. Thus
s(VrUrVr,X)eWhc6) is clefinecl. This addition is l-ell-defined. If
(Vr, X) - (W1, X) and (I; , -I) - (TI2 . I) t,iren it follolvs from the
relativity principle, Proposition 1.6, that rre ha'i-e (VrU*Vr,X) -
(VtU*W, , X) - (WrUx 14'z , X). Cleal1v tliis acldition is associative
and commutative and the element s(X , -f,) e IYhc-X) is a zero element.
We shall shortly show that every element in lVh,"(X) has an invetse, i.e.,
Whe(X) is an abelian group. But first 'ive establish some other results.
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Lei f :X--> Y' be askeletal g-map, where g:G->G' isacontinuous
homomorphism and y' is a G'-equivariant CW complex. We define

f * : Whr(X) --+ Wh",(Y')

as follows. If s(I/, X) e Whc(X) then we set

f*s(V , X) : s(Y' Urqyrq(Y) , Y') ,

where Vff):q(X)-->Y' denotes the G'-map induced by the ?-map
f : X -+ Y' . It is easily seen that this definition makes sense and it follows
from the relativity principle, corollary 1.7, that it is rvell-defined. clearly
/* is additive and takes the zero element into the zero element, i.e., /* is
a homomorphism between abelian semi-groups with zero element. ff
h : Y' --> Z" is a g'-map, where q' : G' --> G" is a continuous hom.omor-
phisrn, then rve have (hf)* : h*f,r: Tlrhc(X)--> Whr"(Z"). In particular
the canonical g-map q : X --+ g(X) induces a homomorphism which we
shall denote Ly g* instead of rlro. Thus we have

y* : Wh6(X)--> Wh5,@(X)) ,

for any continuous homomorphism g : G --> G', and V:r is defined by
e*s(V, X) : s(V(V), q(X)).

Lemma 2.1. Let ,fo,,hi -I--> l'' be skeletal g-maps rvhich are V-
homotopic. Then (Å)* : (fr)* : ITh"(X) -- ll,hG,(y'),

Proof.Let X:XxI-->Y be a g-homotopy from /, bo fr. By
the equivariant skeletal approximation theorem (Corollary 1.6 in Chapter r)
\4'e can assume that .n, is skeletal. Thus .P induces

I*: Wh6(X x 1)-+ l+hc,(Y') .

Now consider the inclusions ,io, i,: X --> X x I, clefinecl by i*:
(r,lc),lc:0,1. Let s(V , X) € Tl?r(it). LTsing Corollarv t.t0 lve then
have (io)*§(V, X): §(X X.f U tr'x {0},f x 1) : s(I'x 1,X X.f) :
s(X X IUV X {1},X x /) : (fr)*s(L',X). Thus (io)*: (ir)x:,fi,h"(X)
-->Wh"(X x I). Hence we have (å)* : I*(fo)* :/*(ir)x : (,fr)*.

Lemma 2.2. Let X c V c IIl, such that X is a strong G_deformation
retract of Z and z is a strong G-deformation retract of w. Then lye have

s(W, X) : r*s(W, V) + s(V, X),
where r : V -->X is a skeletal G-retraction.

Proof . First we observe that it follorrs that x is a strong G-deformation
retract of 'lV and hence s(!Y , X) e firhc(X) is defined. Let i : X --> V
be the inclusion and r : V --+X a skeletal G-retraction. Then ir : V -> V
,
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is G-homotopic (in fact rel. X) to i,dy. Thus by Lemma 2.I we have

(ir)*s(W , V) : s(W , Vl. This means that V UrW sW rel' V and

hence in particular rel. X. Thus s(7 UtW ,X): s(W, X) and since

s(V Ui,W , X): s(7 , X) + s(X U, W , X): s(V , X) + r*s(W , Y)

the lemma follows.

We are now ready to prove that every element in Whc(X) has an

inverse. Let s(V,X)eTfhc(X) and. let r:V-->X be a skeletal G-

retraction. By Lemma 1.8. the mapping cylinder .L1" collapses equivariantly
to X x -f, andthus -M,sX x.I rel. Xx1. Let n:X x I-->X denote

the projection and define X7,: Xl)-M,. By the relativity principle,

Lemma 1.6, we have lt, s X rel. X, and hence s(2, , X) : 0 e Whc(X).

Now XcVcill., and since XxlUf x{0} is a strong G-deform-

ation retracl of M" it follows lhat V is a strong G-deformation retract,

of lt,. Thus Lemma 2.2 applies and gives us

0:r*s(M,,Y)+s(Y,X),
that is, r*s(l1i,,V) e il'Ic(X) is all inverse to s(I/, -f,). \Ye have proved

Theorem 2.3. For ever5' G-equivariant CII- complex X ll'hc(X)
is an abelian group. A g-map f : X --+ \'' induces a homomorphism

fa:Wh6(X)-->Whr,(Y') and any two g-homotopic A-maps induce the

same homomorphism.

We call WLG(X) for the equivariant Whitehead group of X. If
G : {e}, the triyial group, and x hence denotes an ordinary cIIr complex

it is clear from the \\:a)' \1'e have clefined our Whs(X) that TIrh14(X) :
Wh(X). Here IITr(X) is the \Yhiteheacl gloup of the Cltrr complex X
as definecl in cohen [6], Eclimarur-Jia,-unrrrl- [7], ancl stöcker [15]. It is

also.rvell-knorvn that this orclinarl'\fhitelieacl gloup IITz(I), for comrectecl

x, is isomorphic to TI-lz(zr(I)), tlie (algebraiclv clefinecl) \Yhitehead

group of the group 7r(x). For the proof of this see Stöclier [15] or cohen i6l.
The following t1-pe of »sum theolem» iras plavecl an im1:ortant role in

the ordinary simple-homotopy theolr-. The proof of our equir-ariant version

of the sum theorem is exactlr- the »strme» as the one giren b1- Stöcker [15]
for the ordinary case.

Proposition 2.4. Let (TI' , r) be an ecluirariant cTI'. pair such that
W : WtU Wz and II'o : 11-r 1'1 T1'". Deuote Xu: X fi W* and

assume that Xr is a strong G-clefolmation retract of Wx,k : 0,I,2'
Then we have

s(W , X): (ir)*s(Ill1 ,Xr) * (ir)*s(W2, Xr) - (io)*(Wo, Xo) ,

'where 'i*: Xt"-->X,k:0,L,2, denote the inclusions'
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Proof . We have X : XtU Xz and Xo : X, n Xr. Denote V*:
XUW*, k:0,1,2. Clearly X is a strong G-deformationretraction
of Vn, for lt:0,1,2. Since XcYocVi, j:l,2,it followsthat
also the inclusions Vs --> V1, j : | , 2 , are G-homotopy equivalences and
hence by Proposition 1.3 in Chapter I Vo is a strong G-deformation
retract of Vi , j : l, 2. Since W : VrU V, and yln Vz: Zo we have

by the definition of the sum in Whc(Vo). Lei r: Vo+X be a retraction.
Then we have by Lemma 2.2

s(IV , X): rxs(Tlt ,Yr) * s(Yo, X)

s(Y1 ,X): rxs(Vi,Yd * s(Zo,X), j:1,2.
From the above four formulas we get

s(W,X) -§(I/1 ,X)-s(Vr,X) - -s(Vo,X)
and this is the claimed formula since (i*)a,s(Wn, Xr) : s(l'r", X) , k :
0,L,2.

\Ye shall norr study the case rrhen G acts freelv on -f, ancl prove that
g* : Wh"(X)-+ IIrä(G\X) is an isomorphism. Recall that if E : G --> {e}
then E(X) : G\X and hence this g gives us g*: Wh"(X)-+ LIIå(G\X).
We first give two lemmas.

Lemma 2.5. Let (I' , X) he
acts freely on Y. Assurne that
orclinary serlse) of G\ f . Then
of Y.

eI1 equiva,riant OT,TI pa,ir snctrl that G
C\X is an elementary collapse (iir the
X is an eqllivariant elementarrr collapse

Proof . Let us denote (Y' , X'): (G\f , G\X) and let p : Y --> Y'
denote the projection onto the orbit space. By the assumption x,e have
7" : X' l) e"-r U €o, lvher.e e"-I ancl e" clenote an open (z-l)-cell ancl
n-cell, respectively, of 7'' - X'. Jloreol'er there is a map o' : I" -> 1"
such that 6'(J"-') c (X')"-t and o'(OP-r) c (X')"-', and furthermore
o' maps I"-t - ä/"-I homeomorphically onto e"-1 and. I" - Af horneo-
morphically onto en. Since p:Y-> I' is a principal G-bundle and -I"
is contractible it follo'w,s that o' can be lifted, that is, there exists a map
6:I"--> I suchlhat p6:o'. Nowdefine o:G x I"-->Y by o(g,o) :
gd(r).Then o isa G-mapsuchthat o(G x J"-')CX"-rand o(G x AI"-',|
c X"-', and moreover o maps G x (I"-r - 2./"-t) G-homeomorphically
onto p-'(e"-') and G x (1" - AI") G-homeomorphically onlo p-l(e"),
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Since Y : X U p-r(e"-r) l) grl(e") this shows that X is an equivariant
elementary collapse of I.

Lemma 2.6. Let X be an equivariant Clt' complex such t'hat G

acts freely on X. Let Y' be an elementary expansion in the ordinary
sense of G\X. Then there exists an equivariant elementary expansion

Y of X suchthat G\f : Y'.

Proof . Denote X' : G\X. By the assumption I'' is the adjunction
space of X' and I" by some map V'1 i J"-r --> (X')"-' which also satisfies

E'*(OI"-r) c (X')"-', that is, Y' : X' U*'* I". Since p : X --> X' is a
principal G-bundle and. "I"-r is contractible thereexistsalifting 6*:1"
-)-Xn-t cX of o'*. Let' o*:G X /"->X"-r be defined by o*(g,a):
go*(a).Thenwealsohave o*(G x al"-t)c X-2. Thus I : XU*t(G x I")
satisfies the couclusion of the lemma.

TheOrem 2.7. Let, X be an equirariant C II- courplex such that G

acts freely on X. Then g*:11-Lt"(X)-+ fl'l,(G\-Y) is an isomorphism.

Proof . Let s(V , X) e Whc(X) and a§sume that 7xs(V , X) :
(c\I/, G\X) : 0 e Wä(G\x). This means that G\ZsG\X rel. G\X.
By Lemma 2.5 and. 2.6 it follows that 7 s X rel. X equivariantly, that
is, s(2, X) : 0. Thus g* is a monomorphism' Now let s(7' , G\x) €

I4llr(G\X). Let, r*(pt) : V ---> V' be the principal G-bundle inducecl from

1t : X --> G\X bv a retraction r : V' --> G\X. Then I' is an equi'rariant
CII complex on $hich G acts freel;'ancl I/ co[tains f as a subcomplex.

Since the inclusion ,rl : lf -> I- incluces isomorphisms on all homotopy
groups it follorvs b}' corollar5- 5.5 in Breclon [4] in case G is a discrete

group and b). Proposition 2.5 in [9] in case G is a compact Lie group,

that 7, is a G-homotop,'ecflrivalence. Thns, b,' Proposition 1.3 in Chapter

I , X isa strong G-cleformation retract of I'. a[cltheequi'rariant CW pair
(V,X) determines an element s(I-,it) € Il7z6(-f,). Since g*s(Z,X) :
(I/', G\X) this shos's that g* is an epirnorphisrn.

Let, GlGo be the group of cornponents of G, i.e. Go denotes the iclentity
component of G. We ttorr have

COrOllary 2.8. Let X be as in Theorem 2.T and. a§stlllle moreover

that X is simply connected. Then ll'rhc(X) -- 11'lt({.lll}).

Proof . It follows from the exact homotopl- sequence of the fibration

1t: X -+G\X that zr(G\X) : GlGo. Hence the corollary follows from

Theorem 2.7 and.the well-known isomorphisni trT"ä(G\X) = trfä(rr1(G\X)),
see Section 3 in Stöcker l15l or § 2f in Cohen [6]'
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§ 3. Geometric equivariant \[Ihiteheail torsion of
a G-homotopy equivalence

In this section we first give a characterization of an equivariant simple-
homotopy equivalence in terms of its mapping cylinder, see Theorem 3.G

below. The proofs of this result and of those preceeding it are completely
analogous to the ones in the ordinary »non-equivariant» case, see (5.4)-
(5.S) in Cohen [6] or § 3 in Eckmann-Maumary [7]. Then we define the
(geometric) equivariant Whitehead torsion of a G-homotopy equivalence
f : X --> Y. It is an element of T{h"(X), (see the remarks below concerning
this choice). We denote it, by q(f), and we have rr(J): 0 if and only if
/ is an equivariant simple-homotopy equivalence. Recently Chapman [5]
has given an affirmative answer to the outstanding problem concerning the
topological invariance of ordinary lVhitehead torsion for finite CW com-
plexes. X'rom this result it follows immediately, by Theorem 2.1, that if X
and Y are equivariant CW complexes such that G-acts freely then
any G-homeomorphism / : -Y -> I' is an equivariant simple-hornotopy
equivalence.

Lemma 3.1. Assume that T/

f :Y->Y be a skeletal G-map.
T/ U Mft*, where flx : X -+ Y.

collapses equivariantly to X. Let
Then JVIT collapses eqrlivariantly to

Proof.Let Y:X^->X^_t)...-->Xo:X be a sequence of
equivariant elementary collapses. Denote TY,: y U ll1ix,. We claim
that lVi_r is an equivariant eleurentary collapse of lY1 , L 4j < m.
This is seen as follou,s. Assume that the equivariant elementary collapse
from X; to X;-r is of type (H), and denote Xi: Xial)b'-rl)b,
and let o : Gl\ )1 I" --> X., b" a characteristic simple G-map for (b ,b-.').
Then we have W,: Wi_, U 16"-t X (0, 1)) U (ö" x (0, l)) and n(o x id,) :

GlH, x I" x I --> Wi, where n : Xi X I --> Wi denotes the restriction
of the natural projection, is clearly a characteristic simple G-map for
(å" x (0 ,l),b-'X (0, 1)). (The G-map n(o x id,) restricterl to
GlHj x (/"-' x {O} x 1) gives a characteristic G-map for b'-7 X (0, t)).

Lemma 3.2. Leh Y be an equivariant elementary expansion of -K.
a) Let i : X --> I be the inclusion. Then Mi collapses equivariantly to X.
b) Let r: Y --+ X be a skeletal G-retraction. Then ,44, collapses equiv-

ariantly to Y.

Proof. a) We have Mt,:X XIUf x{t} which collapses equi-
variantly to X x I which again collapses equivariantly to X x {0}.
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b) By Lemma 3.1 Jll, collapses equivariantly to f x {O}UM,tx:
I x i0) U X x .I which in turn collapses equivariantly to f x {0}.

Lemma3.3.Let f:X-->Y and" h:Y->Z be skeletal G-maps'

Then MyU, M^s llny rcL. X U Z.

Proof. Define I : hp: M1-+ Z, tt'ltere 'p : My--> Y is the natural
projection. Then I is skeletal. Consicler the mapping cylinder M F.

X'irst observe that by Lemma L.8 lI F collapses equivariantly t'o llelv:
1[V Secondly observe that since -4ly collapses equivariantly to Y (by

Corollary 1.9) and since -E restricted to I equals h: Y --> Z, il follows
by Lemma 3.I that Jlfp collapses equivariantly to MtU, Mn. The claim

rrow follows from these two facts.

By repeated use of Lemma 3.3 and the relativity principle we get.

corollary 8.4. Let xo L xt+ L & b" & sequence of skeletal

G-maps, andclenote I:fo ..f, Then -14sJ1/,Ux, )If,U...Uvo-,ll7o.

Proposition 3.5. Let lo,frr l--+ l' be G-homotopic skeletal G-maps.

Then Mr"s ltr, rel. X U I'. Thus, if /o ancl /, furthermore are G-

homotopy equivalences, we have s(lly", X): s(My,, X) € lryhc(X).

Proof . Let I: X x I --> Y be a G-homotopy from /, to fr. By the
equivariant, skeletal approximation theorem, Corollary 1.6 in Chapter I,
we can assume that I is skeletal. Since X X -I collapses equivariantly
to x x {0} and to x x {1} it follo$-s b5r Proposition 3.1 that 'rve in
particular have

X x IU14.-11osX x 1 U -i)11 rel. X x -I U I.

Let q:f x IUY->XUI be the map defined by Q(r,t):s
and q(y): y, ancl clenote [Iu: (X U ]') UrMr. By the relativity
principle, Lemma 1.6, rve then have Mr,s lll , s n[1, rcL. X U Y.

Theorem 3.6. Let f : X --+ I' be a G-map. Then the follorving three

statements are equivalent:
(a)/ is an equivariant simple-homotopy ecltliYalellce. 

^
(b) There exists an equivariant skeletal approxirnation / to / such that

MisX rel. X.
(c) n'or any equivariant skeletal approximation / to / rre bave M7 s X

rel. X.

Proof. By Proposition 3.5 (and the fact, that ecluivariant, skeletal

approximations exist) statements (b) and (c) are equivalent. we shall

show that (a) and (b) are equivalent. Assume that f : X -> l' is an equiv-
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ariant simple-homotopy equivalence. This means, by definition, that /
is G-homotopic to an equivariant formal deformation k : kp . . . kr: X :
Xo+Xr+...--> Xr: Y. Then k is an equivariant skeletal approxi-
mation to /, and by Corollary 3.4 and repeated use of Lemma 3.2 a) and
b) rve have M*sX rel. X.

It remains to prove that (b) implies (a). Let i: X-- I be an equiv-
ariant skeletal approximation to / such that M7 s X rel. X. We have

i: pi, : X --+ Mi + Y, where i denotes the inclusion and p is the natural
projection. By Lemma 1.2 i, is an equivariant simple-homotopy equivalence.
By Corollary 1.9 and Lemma 1.2 gt is an equivariant simple-homotopy

equivalence. Since / is G-homotopic to /: 1oi it follows that / is an
equivariant simple-homotopy equivalence.

Norv let f : X --> )' be a skeletal G-homotopy equivalence. \Ie define

rrff) : r(J+, I) € Tl'åc(-f,) .

(Here the »g» in z, stands for »geometric».) We call zr(/) for the
(geometric) equivariant trVhitehead torsion of /. If Å, fr: X-->Y are
G-homotopic skeletal G-homotopy equivalences then, by Proposition 3.5,

we lrave rrtfi : rlfr).
Thus we can extend the above definition to any G-homotopy equivalence

f :X-> I bydefining

'r(f) 
: 

'r(?)
rvhere f ir urry equivariant skeletal approximation to /. \\ie can irot,
reformulate Theorem 3.6. in the following form.

Theorem 3.6'. A G-homotopy equivalence f : X --> l' is an equivariant,
simple-homotopy equivalence if ancl onl.v if rlf) : O.

Iir the »classical» ordinarv case the cpestion u-hether a homeomorphism
between two CW complexes is a simple-homotopy equivalence has until
very recently been an open problem ever since Whitehead posed the question
(see the Introduction in Whitehead [18]). An affirmative ansrver to this
»classical» question has now been given by Chapman [5]. He has proved
the following theorem.

Theorem. (Chapman). Let K , L be finite connected CIY complexes
and let f , lKl--+ lll be a map. Then / is a simple-homotopy equivalence
if and only if the map

/xid:lrl xQ--+lLlxQ
is lromotopic to a homeomorphism of lKl x Q onto lLl x Q.
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(We have used Chapmans notation.) Here Q denotes the Hilbert cube.
The »only if» part is due to West [16].

fn the case when G is assumed to act freel,y we have

Theorem 3.7. Let X and Y be equivariant CW complexes such
that G actsfreelyon X and I. Thenany G-homeomorphism f :X-->Y
is an equivariant simple-homotopy equivalence.

Proof. Let f : X-> I be a G-homeomorphism. Denote the induced
map orl the orbit spaces by f ' , G\X -+ G\ I. Then /' is a homeomorphism
and hence by Chapmans result a simple-homotopy equivalence. (Observe
that we have not assumed that G\X and G\y are connected, but of
course the conclusion still holds.) Thus zg(/') : 0 eWh(G\X). By Theorem
2.7 p*: Whs(X)+ I4zä(G\X) is an isomorphism. Since Mt, : G\il[l
it follows that we have g*(tr(/)) : rr(f') :0. Thus re(f) - 0 and hence

/ is an equivariant simple-homotopy equivalence by Theorem 3.6'.

PropositionS.S. Let f :X-->Y and h:Y-->Z be G-homotopy
equivalences. Then we have

rr(hf) : tu(f) * f;'rr(h) .

Proof. By Lemma 3.3. rve have rr(hf) : s(Mtt, X): s(MyUy Mn, X).
Consider the inclusions X c My C .MyUy lI1, and let r : My--> X be
a G-rettaction. B5, Lemma 2.2 rve have

s(MrU, Mo, X) : rxs(Mruy ll,Ih, Mr) + s(M.r, X)
: r*i*s(llln, F) + s(M1, X) ,

where j : Y --> My denotes the inclusion. But since ri:. Y --> My--> X
is a G-homotopy inverse to / we have r*jx: /;r. This completes the proof.

Corollary 3.9. Let f :Y-->X be a G-homotopyinverseto f :X-->Y.
Then zr(/) : -f*rsff).

Proof . We have O : ,/ff): rr(f) a 11'rr(f), and hence r(i):
- f."(f)'

Corollary3.10. Let f :X->

simple-homotopy equivaleuce o

)', and h : X -+ 7', be G-homotop.\,
if and oulv if there exists an equivariant
: )', -> l', such that the diagram

r/{'\- l,-r.\

,\r*-,
is G-homotopy commutative.
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Proof. Assume that such a o exists. Then rr(o) : 0, and hence
rr(h) : 4@f): %(f) * f;'rr(o): kff).

Now assume on the other hand that %(f): %(h). Define 6 :
hi: Yr--> Yr, where f : Yr--> X is a G-homotopy inverse to 1f. Then

rr(o) : q(hi1 : q(h * (i);'rr(h) : - f*re(f) 1-fa4(h) :0

and hence o is an equivariant simple-homotopy equivalence.

Lemma 3.11. Let (V , X) be an equivariant CI\' pair such that the
inclusion i : X --> 7 is a G-homotopy equivalence. Then rve have q(i,) -
s(V,X)eWhc(X).

Proof. By definition we have

ru(d) -s(M,,X) -s(XX IU

It follows from Corollary- I . 10 that (X X
rel. X X{0}, and hence s(XX IUV

Vx{1},Xx{0}) .

I U V x {t}) * Tr x .I s V x {0}

It should be observed that rr,e could as rvell have clef ined the geometric
equivariant \Yhitehead torsion of a G-homotopy equivalence f : X --> Y
tobe 7r(/) : f*s(My, X) € WhcV). Since /* is an isomorphism ir(f): O

if and only if rr(f) :0. In fact, we have by Corollary 3.9 that ir(f) :
- rr(f), where f : Y --+X is a G-homotopy inverse to /. Taking ie$\
as the definition would be in complete analogy with the definition given
in Cohen [6] in the standard non-equivariant case. Our choice is by Pro-
position 3.8 in agreement, with the point of view taken in Eckmann-Ifaumary
f7l, see 2.2 in l7).

'We conclude this section by observing that a restatement of the »sum

theorem», i.e. Proposition 2.4., gives us the follorving important result
(compare again rvith Stöcker p5l anct Cohen 16l).

Theorem 3.12. Assume that X: X1U Xr,Xo: -Ifl nX, and )':
yLU yz, Yo: Yln yz. Let f : X-> Y be a G-map rvhich restricts
bo G-homotopy equivalences 

"fr, 
: X*--> Y* for k : 0 , | ,2. Then f

is a G-homotopy equivalence and

re(f): $t)*rsff) 1 $rVsffz) - (io)*tr("fo) ,

where i*: Xx--> X , k : 0 ,l , 2, denote the inclusions. In particular if
each f*,h:0,1,2, is an equivariant simple-homotopy equivalence so
i. 

"f.
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§ 4. Simplifieil form

We shall in this section show that every element in Whr(X) can be
represented by a pair (W , X) which is in simplified from. This means
that the equivariant, cells of W - X are concentrated in two consecutive
,dimensions n - I and n, where n, - | ) 2, plus some further purely
t'echnical conditions on the attaching G-maps for these equivariant, cells.

As the case is in the ordinary non-equivariant theory the »simplified form»
result is the clue to the transition from the geometric side of the theory
to the algebraic side. We shall study this transition for our equivariant
Whitehead theory in Chapter III in the two cases that G is either a discrete
.abelian group or G is a torus group T" ,'tL ) l. For trlrhiteheads original
treatment of »simplified form» in the orclinarv non-equivariant case see

f,emmas l3-I5 in l\-hitehead [18], See also (7.a) in Cohen [6].

Lemma 4.1. Let X be an equivariant Cll: complex and let

fo,friGlH x 01"-->X

be G-homotopic G-maps such thaf ft(GlH x AI") cX"-r ,'i:0,I. Let
Yi: XUlt(GlH x I"), the equivariant CW complex obtained by
adjoining GIH x I" to X by ft,i,:0,1. Then Ios I, rel. X.

Proof. Let F:(GlH x AI" x I,GIH x AI" x {0,1})-*(X,X"-r) be
a, G-homotopy from /, to fr. It follows from the equivariant skeletal
approximation theorem, Corollary 1.5 in Chapter I, that \ve c&n assume
that F is skeletal, i.e. that' I(G|H X a"f" X I)cX UX"-r: X".
Define Y : X UF @lH x I" x I), the equivariant CW complex
obtainedbyadjoining GIH x I" x I to X by I:GlH x 01" x I-->X"
--> Y . Since the obvious inclusions 'ir: Yo---> Y and 'ir---> Y both are
equivariant, elementary expansions the lemma follows.

Let (V , Yi be an equivariant CW pair. By a"(H)(V - Vr) \ye
denote the number of equivariant z-cells of type (ä) in V - Yo.

Lemma 4.2. LeL (70,I) ancl (TI'0, -lf) be equirariant CIY pairs
and iet h : Yo--> trI'o be an equivariant fortnal cleformation rel. X. Let V
be an equivariant CIIr complex containing I'o as a subcomplex. Then
there exists an equivariant CIY cornplex II' coutaining II'o as a subcom-
plex, such that u^(H)(W - Wo) : e"(H)(T - Yi for every n and (H),
and an equivariant formal deformation fr : V --> TI' rel. X.

Proof . By induction on the number of equivariant cells in V - Vo and
on the number of equivariant elementary deformations in fu it follows that
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it is enough to prove the lemma in the case when V - Vo consists of one

equivariant cell and k: Vo--> I4lo is an equivariant elementary deformation.
Tf k : Vo--> trYo is an equivariant elementary expansion then its natural

extension ft : V -->WoUoV : WoUn 7 is also anequivariantelementary
expansion and, W - WoUy.7 isof therequiredform.

Now let k:Yo+Wo be an equivariant elementary collapse. Assume

that the type of the open equivariant cell eP : V - Vo is (ä) and let

f :GlH X OIP-->Vi-'--. Zo be an attaching G-map for Ap. Thus V -
VoUf {GlH x Io). The G-map kf :GlH x AIP-->lYfi-L+Yo is G-

homotopic to / and hence by Lemma 4.1 there exists an equivariant
formal deformation h: V -> VoUof (GlH x Ip) rel. Vo. The natural
extension fr : Vouhf (GlH X 1P) -+ W6Uny @lH x Ip) of k : Vo--> Wo

is an equivariant elementary collapse. Thus fr : ftn : V --> WoUr"1

(GlH x.IP) is an equivariant formal deformationrel. X and. W : WoUrf
(GlH x.IP) is of the required form.

Recall from l10l (see Definition 1.8 in Chapter I of [10]) that rve say
that a G-pair (Y , B) satisfies corrdition n^ ,ntL > 0, if for any closed

subgroup H of G every G-map f :(GIH X I*,GlH x 1I*)-->(y,B)
is G-homotopic rel. GIII x 0I^ lo a G-map from GIH x 1- into B.

Lemma 4.3. Let (V , X) be an equivariant CW pair which satisfies
condition ?x,,", for some nI, ) 0, and assume that

v-xuubruubr+'u U Ub;

Tlren there exists an equivariant CW complex W of the form

llr : x u U.i*t u l)ni*' u . . . u Uemaxt'n-2)

such that V s lV rel. X. fn fact the nurnber of open equivariant cells bi
and ej is such that

, k{m,

xk(H)(V - X)

(H).

, klm +3,
for every orbit, type

Proof. Let, fi: (GlHt x I*, GlHt x OI^)--> (V*, X**')--> (Y, X) be

a charachteristic G-map for bi. Using the fact that (V , X) satisfies
condition n* and the equivariant skeletal approximation theorem, Co-
rollary 1.5 in Chapter I, it follows that there exists a d-homotopy rel.
(GlHt x 0I*)
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Xi: $lH, x I^ , GlH, x AI^) x I --+ (V , X^-')

such that (I'r)o: f, and (I:)lGlHt x I* x {t}) c X-. It now follou's
by applying the equivariant skeletal approximation theorem once more,
this time Corollary 1.6 in Chapter f, that we can assume thaf Xi is
skeletal, i.e. that X|GlHt x I* x I) c y^+r. Observe that

It(GlHt * u1*+r1c V*

and E:(G|H, X J*) c X^. I{ow define

I;: GIH; X J^+r --> V^+r --+ V

by Pr(a,l): l"(o), for (o, 1) € GlH, x /-+r x {t}, and F,(b,t1 :
Ii(b), for (b ,il e GlHt x AI*+r x I ,t e L X'or each Ii adjoin
GlH, x I^+2 to V by I;, thus forming

it : v U" (U GlH, x r""+') .

Since .P; also satisfies l/GlH;, 61^+11c Y^ it follows that 7 i. un
equivariant expansion of Y. Let

ht: Gf H1 X I^+2 -'-> V

be the restriction of the natural projection. Denoting hlGlIIt X i-*t) :
B?*' and hlGlH; x.f-+') - B?*' we can write

ir: v u [,;Br+t ul)Br+2.

Since åi+r c l/* c X U Uåi it follows that

Vr:xuUåfuUBf*'
is a subcomplex of V. Let fi,t:GlHt x I^+r*to d.enote the G-map
obtained by restricti\g h, to G!H; x I*=r x {0}. Then E; is a charac-
teristic G-map for BT*' ancl its restliction -ht l: GIH; x I'" --> Vo is
a characteristic G-map for 67, ancl rlloreoyer fi1e 1n , x J-) :
It(GlEt x J* x {0}) : I:(GlHt x J^) c -tr-. Th,s it follo*s directly
from the definitions that 7o collapses equivariantl5' to X. By Lemma
4.2 t}r'erc exists an equivariant Cfir complex_ II7 containing X as a
subcomplex, with a"(H)(W - X) : d"(H)(V - Vr) for every n and (H),
such that VsW rel. X. Since,asrvealreadynoted, 7 isanequivariant
expansion of I/ it follows that V s lY rel. X. Clearly the number of
equivariant cells in W - X with a specific dimension and type is as

required.
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Corollary 4.4, Let (T/ , X) be an
is a strong G-deformation retract of
CW complex W of the form

equivariant CW pair such that X
I/. Then there exists an equivariant

W : Xu UAI-' U UäI, where n - t) 2,

such that Y s W rel. X and such that there are characteristic G-maps
t1,:GlH, x 1"-r -*6i-' satisfying h,({eHr) x 01"-11 : {yr),Ai.€ X, and

{,: GlH, x I"-+ 6i satisfyin1 f,«"H,) x "r"-') : {*,) , r, e X.
Moreover, for any closed subgroup H of G and any G-component

GWf of GW*, we have x^-r(H)(GlY{ - GXil : a.^(H)(GWi - eX{l
where GX{ denotes G-component corresponding to GWY.

Proof. Since X isastrong G-deformationretract of V it follorvsthat
(V , X) satisfies condition w^ for all m > 0. Thus, by repeated use of
Lemma 4.3., there exists IZ' such that W' : X U UrI-'UUe?, rvith
n - l ) 2, ancl V sW' rel. X. Lef h! :GlHr x I"-r-->Ai-' be charac-
teristic G-maps. Since rh'r : GlH, x I"-t * X, u-here r : TY' -> X is
a G-retraclion, is an extensiott of ltl,.: G,i H, x OI"'r ->X it folloirs that
hi1 is G-homotopic the G-map l-hich maps {eä,} x OI"-r to some point
Are X. Adjoining GlHrx I^-1 lo X by these »equivariantly constant»
maps we obtain an equivarianl CW complex X U Ubi-l, and it follorvs
from Lemma 4.1 that (X U Uel-')s (X U Uö|-1) rel. X. By Lemrlrra4.2
there exists W: XU Ub7-'U [,tdi such tltat, W'sW rel. X. Let f t:
GlH, x OI" --> ä; --+ X U U öl:t be attaching G-maps. Since J"-r is

contractible it follows that /; is G-homotopic to some f;:GlH; >< AI'
-+X U Ub?-' satisfying f;({eH} x "r"-') : {r} € X. Adjoitting C}IH; x
I" to XUUbI-l by the ,f,'* we obtain W:XUUbl-tUUbl,
and by Lemma 4.1 it follows that W s W rel. X. (Now denote the corres-
ponding characteristic G-maps for bi also by /,).

To prove the claim about the number of the equivariant cells bi-1 ancl
öi observe tliat the G-homotopy equivalence 'i, : X --> I7 induces a one-
to-one correspondence between the G-components of GXE and Glylr,
ancl the restriction il : GX{ -> GW{ is again a G-homotopy equivalence.
Let, for convenience, i :A-+B denote the inclusion inducecl by at on
the orbit spa,ces. Since B - -4 consists of (n - l)-cells and rz-cells and
since i, : A --> B is a homotopy equivalence it follows that the number
of (n - l)-cells and z-cells in B - A are the same. This being true for
eny G-component GWY, the claim follo'ws by induction starting from
H : G, i.e. from the components of the fixed point set.
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Chapter III. Actions of abelian groups

§ 1. Actions of iliscrete abelian groups

fn this section the transformation group G is assumed to be a d,iscrete

abel,ian grou,p. First we recall the definition of the Whitehead group Wh(n)
of a group z and some facts about torsion of acyclic chain complexes

of basecl modules, see Whitehead ll8l, Milnor [I4], Maumary [13] and
Cohen 16l.

Let n be a group and -E : Zln) the group ring of ix oYer the integers.
Denote the group of all non-singular n x n matrices over -B by GL(n , R).
\Ve have the natural inclusion of GL(n + I, A) into GL(n , E) given by

Wh(n): cL(R)lI(R).

Tliis is the Whitehead group of z. Sinco .P(-B) contains the commutator
subgroup of GL(R) it follorvs Lhat Wh(n) is in fact a grotlp and moreover
that it is abelian. \\re u'rite llth(n) aclciitivelv. Denote the natural projection
bv r:GL(R)-->lVlt(n), ancl iclentifS-ing a non-singular n x n matrix
,4 rvitlr its image in GL(R) rr-e l-rite z(,4) e ll'h(t) ancl call 'r(A) for
the torsion of the matrix ,4. Thus x-e have r(AB) : r(A) * r(B).

Let A be an m X z matrix over Ä : Zl:t7. Tlien z(,4) : 0 € lYh(n)
if and only if ,4 can be transformecl into an identity matrix .f"+P by
a finite sequence of operations of the foilol-ing type.

/Å o\**\, L)'

The direct limit GL(E) : tjg GL(n ,,8) is cailed the infinite general
linear group of -8. A matrix is called elementary if it agrees with the
identity matrix except for one off-diagonal entry. Lef E@) denote the
subgroup of GL(R) generated by all elementary matrices. \\.hitehead
proved that E(R) is the commutator subgroup of GL(R). Let .F'(,8) be

the subgroup of GL(R) generated br- ä(A) and all matrices obtained by
replacing one diagonal entrv in an iclentitv matrix by + or, lvhete or e n.
Define

(1)

(2)
(*) (3)

(4)

Observe that a perrnlltation of
operatiorrs of tSrpe (I) and. (3). Also

of ?a.

ro\trr.

the ro\YS can he performed by using
observe that the cperation of changing

Ulu1tiply o row by 1.

i\'tultipl), o row on the left by an element,

Change a row by acicling to it some other

Expanct to (f :) e GL@ 4- I , ..ts).
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a row by adding to it a left group ring mulbiple of some other row is the
composite of operations of type (I), (2) and (3). In fact this operation is the
result of multiplying the matrix A on the left by an elementary matrix,
but it is convenient to have the above four operations as the basic ones,

Let, M be a free Zln)-rnodule. (Here and in the following we always
mean by »free module» a »finite dimensional free module» if not otherwise
is explicitly stated.) LeL {er,...,€*} be a basis for M. The family of
preferred bases generated by {e, , . . . , e^} is the family of all bases

{"'r, . . . , r!^) such that the change of bases matrix A : (a;i), where
e::>aiiai,criie Zln), satisfies r(A):0eWh(n). (Ary group ring

Zlnl has the property that any two bases of a free Zln)-modtile contain
the same number of elements, i.e. the dimension is well-defined.) A free
Zln)-modale together with a family of preferred bases is called a based
Zlnl-modu[e.

Now let M and -l[ be based Zlnf-mo*iles and

It --> I{

an isomorphism of Zl;tf-ttocldes. Let, B clenote the matrix of / rrith
respect to some bases for JI ancl rY from the respective families of preferred
bases. The elemenb r(B) e TVh(n) is independeut of which bases from the
families of preferred bases one chooses and is called the torsion of the
isomorphism f :M--->N and denoted by

t$) e Wh@) .

X'inally let us recall the definition of the torsion of an acyclic chain complex
of based Zfnl-moclules. Let

c : o--> c*3 c*-r3 . . 3 cr--ro

be an acyclic chain complex ovel Z[z] v]rere each C; is a basecl Z[z]-
module. Since C is acyclic ancl each Ci is a free rnoclule tirere exists a chain
homotopy å : C --> C from the identity homomorphism to tire zelo homo-
morphism (such a ö is also called a chain contraction), that' is, homo-
morphisms ö : Cr--> C,*, such that dä + ad : icl. (The homomorphisms
d can be chosen such that 62 : 0, which is a convenient but uot uecessary
choice.) Denote

Codd :

C"o'"o :

and consider Codd and C 
"u"o 

as

Now the homomorphisms A and

3I

f:

CL@CB@

co@c2@

based Zl"1-mod.ules in the obvious way,
ä define an isomorphism
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(a + ä) : Coaa--> C","o

and r(ä + d) € Wh(n) depends only on C and not on the different choices

made. The torsion of C is now defined to be

r(C) : r@ + ö) e Wh@) .

Observe that if C is of the form

C :o-->C*!C,-r--ro
then we have

r(C) : (- r)"-lz(ä) .

This fact is of great importance for us as well as the following result. If

o-->C'--,C L C" --+o

is a short exact sequence of ac1'clic chain complexes of based Z[z]-modules
such that in each clegree m, the short exact seqllenee

O--> C*--- C*--> C*-> 0

splits as a sequence of based Zln)-moddes (i.e. the union of a preferred

basis for C'^ and, one for C'i is a preferred. basis for C-) then

r(C):r(C')lt(C").
With this much about torsion of acyclic chain of based modules in mind u'e

are now read;, to proceecl.

Let Y be an equivariant Cll- complex and ä a subgroup of G.

Consider YH, i.e. the set, of points fixecl uuder ä. Since G is assumed

to be abelian lre have GYH: YE. Let I'fl be a component of ylr.
Denote o: 7-{ and define

Go:{geGigl-f:1-{i.
We call Go for the group of Yfl. Observe that Go is a proper subgroup

of G if and only if the G-component, GI-fl contains more than one con-

nected component. Since every point in I'f is fixed under fJ it follows

that If is a (G*l[)-equivariant, Cll' complex. Also observe that if
Y{ is a compollerrt of IE belonging to the same G-component as y{,
i.e,. GY{ : GY{, then the group of 7'{ equals G* and Y{ and Y!
are isomorphic as (G*lH)-eqaivariant Cll' complexes. Now define

Y?* : U yl-

where the union is over all subgroups K such that H C K and H + K,
and for fixed 1{ the union is over all components If of YK which are
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subsets of Y{. We have G*YI': Yl*, (the groups of allthe compo-
nents Yf may well be proper subgroups of G*). Thus IfE is a (G*lH)-
equivariant subcomplex of Yfl and G*lH achs freely on y{ - y7*.
(Of course yf - Yl" is empty for all but a finite number of subgroups
ä but an action on the empty set, is free.)

Now let (Y , X) be an equivariant CW pair such that i, : X --> V
is a G-homotopy equivalence. Then i induces an one-to-one correspondence
between the components of XE and VE for every subgroup .t1. Lel Xf
be a component of -f,E and lef V{ denote the corresponding component
ZE. Denote the group of Xfl by Go and observe lhal Go is also the group
of V{. Thus we have the (G,lH)-equivariant CW patu (Vy , X{ U Yl")-
ff X{ is a component, of XE belonging to the same G-component as
X{ then the (G,l[)-eqtivariant CW pairs (Vtr , XY U Vi") ancl

Vf , X{ U Viu) are isomorphic. Let

. . .-> c*Vf , xf u v?\ 3 c,-,(vf, xfl u v?*)-*. . .

be the cellular chain complex of Vf ,Xf U V7"). That, is, C,(V{ ,

xf u y7") : H^((vf)" u -Tfl u vl", (yf)"-'u xfl u T'i"), *here
H,( , ) denotes singular hornologv rvitlr. integer coe'fTicients, atrd A

is the boundary homomorphism in the exact homology sequence of the
corresponding triple. Since G*lU acts freely on lri - 6{ U V7"}
it follorvs that each C"VI , Xf U ViH) is a free ZlG,lH)-module and
a basis is obtained by choosing one ordinary n-cell from each (G"lH)-
equivariant n-cell of Vf - 6{ U V7"). Since any two bases obtained
in this rvar. differ from each other only in the order of the bases elements
and by multiplication of the bases elements bv + elements frorn the
group GolH, it follorrs that they both generate the same familv of preferred
bases. Thus each C^Jr{,lffl U I'fn) becorires a l:aserl ZlG, H)-nodule
in this way. Since tire homologv of the chain complex C'(f'f , Xfl U Zi")
is isomorphic to ,I1*(T'{,Xf UY]u) it follou's fi'om tlie lemma belo'qr
that CVf , X{ U Y],H) is an acyclic chain complex.

Lemma 1.7. Let (y , B) be &n equivariant CIf pair and let
{yr, . .., Y*} be a finite collection of equivariant subcomplexes of }'
which is closecl under intersection. If the inclusions i : B --> Y and
i*: B i Y*-->Yx, lt : 7,...,ffi, are G-homotopy equivalences then

so is the inclusion j : B U, aj fr) --+ Y.

Proof. We shall proyebrrldr"rr" L or'L m rhat t :B-->B U (Ö Ii)
is a G-homotopy equivalence, and since i, : B ---> Y is a G-homotopS. equiv-
alence the claim follows from this. Let m:1. Since ar:Bl1 Yr+!I ,
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is a 4-homotopy equivalence B n YL is a strong G-deformation retract
of Y, and hence -B is a strong G-deformation retract of B U I, which
shows that t:B-->BUYr is a G-homotopy equivalence.

Now assume that our claim is true for the value m-L and denote
fr

Y^-r: U Yo. Since the family of the Ip: s is closed. under intersection
[:l

it follows that t^-rfi I- is the union of m,- I sets 16. Thus by the
induction hypothesis the inclusions t : B --> B U (Y*-t n Y*) and.

i :B-->BaJy^-L are G-homotopy equivalences and. so is also t :

B-->BLJ Y*. Thus it follorvs that the inclusions of B U (i^-rny^)
into both BU Y^-r and BUY* are G-homotopy equivalences. It
now follows that BU (y*-LnY^) is a strong G-deformation retract
of B U (y^-rlJ Y^), and therefore the composite i : B --> B l)
,(t^-rn y-)--+B U (i^-r. U y-) is G-homotopy equivalence.

We nory appt)- Lemma l.l as follos's. Since tr/E is a finite equivariant
OW complex ancl G is abelian there exists a finite number of subgroups
K, , . .. , K- such that if r( is any subgroup of G such that H c K
and H+K then YK:YKt forsome i,:L,...,nx. Inotherwords
7et Kr, . . . , K* be the family of all isotropy groups for points in Vrr
'except the group 11, which of course may or may not occur as the isotropy
.group of a point in VIr. Since VK, n Vui - l/(\+Kil it follows that
the family {Y*,,...,V*^} is closedunderintersection. Since i,:X->V
is a G-homotopy equivalence it follorrs that also il : XE --> VE and
i,l: XH (1 VKi : Iir<; --s yKt are G-homotopy equivalences. Thus by

Iemma 1.1. the inclusion j : XH U (

equivalence, and hence in particular a

component of Xn U ( ö T/ur) rvhich

the restriction of j gi# a hornotop).

is acyclic. We have proYed.

,YrV",) 
-+ Yn is a G-homotopy

homotop)' equivalence. Since the

contains Xf equals Xf U V7*

equivalence ji: Xfl U V7* + V{.
clrain complex C Vf , Xfl U V7')

Proposition 1.2. Let (V , X) be an equivaliant CtrY pair such that
i, : X --> 7 is a G-homotopy equivalence and let H be anv subgroup of
G and X{ u component, of XE. Denoting the group of Xf by G, rve

have that CVY , X{ U YiH) is an acyclic chain complex of based

ZlG"lHl-modules.

We denote the torsion of the chain complex C(Vf , Xfl U tzi") by

r(c(v , nr) € wh(G*l H)
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I{ext we shov' that this torsion is an invariant of equivariant simple-
homotopy type.

Proposition 1.3. Assume that V s W rel. X. Then we have

/C(V, X)fl) : r(C(W , X)fl)

for every subgroup H of G and any component Xf of XH.

Proof. ft is enough to prove this for the case that trlr is equivariant
elementary expansion of V. Thus assume that this is the case and denote

W-Vl)b-l1)b".
Assume that the type of this equivariant elementary expansion is K and let

o:GlKxI"-->W
be a characteristic simple G-map for (ö" , b-'). Since the set o({eK} xJ"-')
is connected it lies in one component, say Xf;, of XK.

If K c H then WH : VE and. the claim is obvious. If H c K,
where H +R, and GXf cGX{, then by excision $,e have an iso-
morphism of chain complexes i,: C(l'{, Xfl U V7") 

= 
C(TI'{, Xf U il'irr)

which in each degree is an isomorphism of based modules and hence the
wanted conclusion follorus. In case GXf + CXf we have again the
situation thaf GW{ : GVf and this is also true for K : H.

Thus it only remains to prove our claim in the case ä : K and for
the component Xf; (or any other component of the G-component GXf).
Denote c':C(Yf ,xfuViK) and C:c(Wf,xf;uWi*), and
let Gu be the group of .Kf;. Then we have a short exact sequence of chain
complexes

rvhere C" is of the form

0->C'-+C+C"->0,

s -e' C': & C':-r -+ o

arrd C'i and Ci-, arc based ZlGBlKl-modules of rank I and r(D) : 0.

Since moreover the above short exact sequence of chain complexes in
each dimension splits as a sequence of based ZlGBlKl-modules we have

r(C) : r(C') + /C") : r(C') + (- I)"-1r(0) : t(C') ,

which is what we wanted to prove.

Thus we have a well-d.efined map

@: W;G(X) +25'* WtL(GoG,H)lH)
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by defining

@(s(V, X)) : fu(C(V, X)f), <i<m(H), all H c G .

Here rn(H) denotes the number of G-components of XH and Go1,,r,

is the group of a component Xfl representing the G-component GXy ,

L < i < rn(H). The direct sum is over all subgroups ä of G and for
each fixed H over a set of one representing component from each G-

component of XH. This definition is independent on which component
of a G-component we choose to represent the G-component. Moreover
for any (V , X) we have fhaf r(C(V , X)f) S 0 for only a finite number
of subgroups ä.

It follows from the appropriate short exact sequence of chain complexes
that r(C(V urW , x)y) : .r(C(Y , X)f) | r(C(W, x)I), for any sub-
group ä and anv component Xfl of -Kä. Thus

@(s(Y Uxll' , f)) : <D(s(1'/,I)) + @(s(ll',I)) ,

that is, @ is a homomorphism. \tr:e are now ready for

Theorem 1.4. Assume that, X is an equivariant CIIr complex such.

that for any subgroup I/ of G each component Xfl of Xä is simply
connected. Then @ is an isomorphism.

Proof . Let us first make a getreral remark. Let (X , A) lte a pair with
-lf and A connected. ancl assnlre tliat -{ is simpl5, connectecl. Then any
map ,f i (1" , ai") -+ (I . ,{) l.ith f(J"*') : {a), some a € ,{, cletermines
a unique elernent lf)e h(X , A), in otherlvorcls u'e need not, consider
any base point in -4. It follorvs that if (X,A) is a z-pair s,here z is

a rliscrete group lher, w,(X , ,4) is a left Zlnl-rnoclule, ancl moreover the
Hurewicz homomorphism { : n,(X, Å)* H,(X,,4) is a hollornorphism
of Z[z]-modules.

Let s(W, X) € lfhc{-X) be such that @(.t(II',I)) : 0. By Corollary
,1.4 in Chapter fI (ancl the fact tliat @ i-q rell-definecl. i.e. Proposition 1.3.)

lr'e can assume that (If . -Y) is in -cinrplifiecl four. Thus x-e have

lT' -XUUbi-'UUb','
tr\'e denote

)-: lr u uöl-'.
Nolv let ä denote a subgroup of G r-hich occtus as the type of some

of tlre equivariant cells öi. Let Xfl be a courponent of XE and lef Y{
and IV{ be the corresponding comporlents of }-ä aucl tr[ä, respectively.
By the second part of Corollary 4.4. in Chapter II tire number of equivariant
z-cells bi in GIV{ which have t5.pe ä equals the number of equivariant
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(n - 1)-cells b?-t in GW{
Let us denote these by b:

(and hence in GY{) which have type H.
ancl lr:-', s__-1r... )'t't'1,. Thus\rrehave

GVr u T,y?\u"q b: ,

TTL

G6ruY7*)uUb3-'.

u il'i'))
G(Xfl U il'iä))

as in Corollarv

GW{ -
GYY -

I{orv let Go be the group of X{, and hence also the group of Ifl and
\Y{, and, consider Lhe (G*l[)-equivariant CW pair (W{ ,X{ U ltr'7t;.
We have the commutative diagram

0--+ H,(!y{ , yy u rri") 4 H,-r(Y{ u il'7", Xfl u II',7E;-+ o

tdIö
n^(W{, Y{ u w7")-- n^-r(Yf u w7*, xf u wiH)

r,vhere { denotes the Hurervicz homomorphism. X'irst observe that' the
upper rorv equals the cellular chain complex of ]ff , X{ U trflfE;. Thus
we have

(- r)"-r7(a): /c(ll" x)i') : 0 € wh(G"lH).

Secondlv obselve that since Xfl ;s sirnpll- connectecl b1' assumption ancl

Xf U firlH is obtained from Xfl b," adjoinirrg (orclinarv) (z - l)-cells
and z-cells and since n - L > 2 it follorvs rhat Xf U lI/78 is simply
connected, and for the same reason Y{ U W7" is simply connected.
The pair (tlt{ ,7'f U }firr) is (zr, - I)-connected since W{ is obtainecl
from Y{ u ltrTu by adjoining z-cells and similarly (yfl U fir|' ,

Xf U $ria) is (tt, - 1)-connecteC. Thus b;, the Hurervicz theorem the
homorphisms { are isomorphisrns and hence by the remarks macle at
the beginning of tire proof each { is an isotnorphism of ZlG"läl-modules.

The homologp'modules are based ZIG*lHl-modules, i.e. free ZlG"lHl
modules togetherw.ith a family of preferred bases. Thus the homotopy
groups are free ZIG*lH)-modules and rvith corresponding preferred bases

gir,,en as follo\I.rs. Let

f,, (GIII x I" , GIII )< i.I\-+ (61 ,b?-> (GW{ , G(Y{

h,,: {.G f H >< I"-' ,G I Ir >< AI"-') -* (b:-' ,b:-t) --r (GVr U TTITH} ,

becharecteristic G-mapsfor 6: allcl 6:*',s:1 ,...,nl ,

/*.1 in Cha,pter ff, and. rnoreover chosen sucit that

f ,({eII} x I") c Wf
h,({e{r}x IT1'-') c y{ cI.fl u wf § == 1'"'' ffi
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Define

1", Q" , OI")--> (Wf , Yf U Wl")
fi,": (r"-r , ar-')+ (r'fl u W7" , xf u wlH)

by f":f,l{eH} x I" and -h,:h"l{eH} x 1"-',§: 1,...,n1. Since

f,(J"-'): {r,},r"e X{ cX and -h"(ar-'): 
{i"l ,i"e x{ c X, we have

lf"l e n,(W! , Yf u lrl') ,

lfi,l e n*_,(Yf u W{ , x{ u Wl') ,

for s: 1,... ,m. The imagesof theelements [f,] and Lir"),t: 1,...,
m, under the Hurewicz isomorphisms form preferred bases for the respective
homology modules.

Now let

aii,) a,[4tl t ctst e ZIG*I H) ,

and denote il : (ct"). Thus u'e have

t(A):0eIlth(G*lH),

and hence the matrix A can be transformed into an identity matrix by a
finite sequence of operations of the four types given in (*). By a different
choice of characteristic G-maps fl for b:, §: 1, ...,ffi, (but still
satisfying f!({"u} x 1") c W{ and f:(J"-') : {"'") , ri e x{1 the matrix
of ä can be made into any matrix obtained from A by multiplying rows
by + elements from GofH.

Nowlet L 1r l rn ancl L ltt (rz, rvhere r +p. LeL

6 : (1" , Or") --> (TI'fl , ]',fl U TI:i') ,

where 6(J"-'): {fr} for some r Q, X{, be such that

16l: lf,l + lf Å € r,(Il'fl, I'r u ri') .

_o
Denote in Qa) : "i. Thus we have ci c b| n lff and ö; c vi and
moreover Gci: U;. Since ir', , aI" --- l'f u tt'lHU c; is homotopic to
a contant map it follorvs that the maps

f,l , oi : oI" --> Yf u fi'lE u c;

are homotopic. Define the G-map

al : GIH X oI" --> Ggf u W-/) u b;

by (a)(gH ,A): gö(y) ,g e 0Y". It follows that ol is G-homotopic to

f.l : GIH x OI" --+ G(Y{ U W?") U åi. I{ow define

NL

sL
t:I

Ann. Acad. Sei. Fennicre
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W : (w - ul1v,,tGlV x r") ,

(where al is considered as a G-map into W - b:). By Lemma 4.I in
Chapter II we have fr s I4l rel. (W - öi). Moreover the matrix of the
boundary homomorphism

d : n^1fr{, YY u Wl')-- n^-r(Y! u W?*, xf u WIH)

is the one obtained fuorlr. A by changing lhe r : th rorr b5r adding to it the
p: th row.

An expansion of the matrix A tr(l f) i* "r*tired 
geometrically by\0 rl

performing an equivariant elementary expansion of type H, that is,
adjoin GIE x I" to W by a G-map

o* : GIH x J"-r --> GX{ c W

defined by o*(gH ,U) : gr, for some fixed u e X{.
Thus it norv follows that there exists an equil'ariant Cll' complex V

such that

YsW ret. W-«öaf
r:1

and (V , X) is in simplified form and there are m I q, rvhere q. > 0,
equivariant z-cells "i; , ei*, and g equivarianb (n - I)-cells ei7'r, . . . ,

ef*'o in V - (W - (,U ö])), and characteristic G-maps u":GlH X 1"->

äl,s: 1, ..., rn * Q, and h,: GIH x l"-r-->ö!.-r, s:1tl* 1, ...,
m * e, such that

67a,1 : lVr,f , t - l, . . .,nL + q.

Here

ä : n^(V{, Uf u W7\-, w^_r(U{ U Wl*, xY U WiH)

where we have denoted U-YU"h-*', U...Ue[;!. Observe that
W?*: Vl*.

Thus the maps t7"l ,7t,": (1"-r , OI"-') --> pf U W7* , Xfl U TvlH) are
homotopic. It follows from this that there exist

rfr": OI"--sUf U WiH, § : 1, . . .,nL * e,

such that 6" is homotopic to d,;Af and iD,l I'-r:Vt", and moreover
fi"(J"-') CXfl. Thus the corresponding G-map w":Gf H X OI"->C!{U
IIrIE is G-homotopic to u,lGlU x AI". Now form the equivarianb CW
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n+q

complex i, ay attachingequivariant z-cells GIH x I" to V -(Uren
bytheattaching G-maps u",s : I, . . .,m *q. It foilows fromlemma
4.I in Chapter II that

7*V rel.

Iloreover it fotrtrorvs directly from

tD, that f collapses equir,'ariantly
rrl m.

w-(ub"-Lt)uÖ").
s:I s:l

\Ire have shor,vn that

m*g

v --(U el) .

S:1

the properties of attachirg G-maPs

ro v ( ö b:-' u ij' e:-' uij'r:) -s:l §:!70 §:l

nnttun

trY sll'- ,"grr-'U,[-l,b]) rel. trf - ("U å3-'r"g,ur, .

That, is, all equivariant cells in W - X which have type II and belong

to the G-componenr GWf have been »removed». Appil ing t'his procedure

for every subgroup that occurs as the t}'pe of some ecpir.ariant cell in
W - X and to each G-component of II'r' r'te get

II's X rel. X.

That is s(TV , X): 0 € Whc(X) and we have proved that @ is
injective.

The surjectivity of @ is proved as follows. Let H be a subgroup of
G for r.vhich m(H); 0, and let GXfl be a G-component of XH. Choose

some tr e (ffl)o. Let G, be the gronp of ,Yfl, and let 11 : (a"t) be any

rron-singnltrt nt x ltl matrix orer ZlG,lH). Norv define

It' '. G,tH x ö12-> Gffl c X

to be the G-rnap cleterminecl bv the coticlitiou (n)({eU} x AI2): {,}'
Let Gyf : GXflU biu...Ubi, be tlie ecFrivariant C"tY complex

obtained by adjoining rir, clifferent equirariaut 2-celis tllH x I2 to GX{
by the attaching G-map /2,, ancl let /2, cletrotethe corresponding charac-

teristic G-map for b?. Their [/r,]e zr().fl,ffl) ,t:1,...,n1, form

a bases for the free ZlGolH)-nocl::rle zrll-fl, .Ifl;. n

Now let a": (12 , i'Izj --> (yf, , Xf ) be such tiiat la"l : 2ra",l7t',1'

It follows since fi,,1012) : {r}, that, §-e can choose z'" such that u"(012) :
{r}. Now let /,1 :OI3--> If betheextensionof e" clefineclby 1/,1;1,f"-1; :
{r}, and let

f,l:GIII x Ai3->Gt'Y
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be the corresponding G-map. Let GWf : eVf U öi U.. .Ub'* be
obtained b5, adjoining equivariant 3-cells GIH X I8 to GY{ by /"1 , s :
L , . . . , rn, and let ,f" denote the corresponding characteristic G-maps.
Now the boundary homomorphism

d : nr(W{ , Yf)--nz\{ , Xf)

is given ty ätå :ia,,yLr,], i.e. has matrix .4 in these bases. Thus ä

is an isomorphism l:ria ,, follows easily that n,(llrf, Xfl) : 0 for all
z. Thus the inclusion i, : X! -> W{ is a homotopy equivalence ancl using
Corollary 5.5 in Bredon [a] we see that i, : GX{ --> GWf is a G-homotopy
equivalence. Thus X is a strong G-deformation retract of GWf U X and
hence s(GW{ UX,X) eWhc(X). We now have tD(s(GW{ UX,X)):
r(A) e Wh(G"lH). Since @ is a homomorphism this shows that @ is
surjective.

Known facts about Whitehead groups Wh(n) together rvith Theorem
1.4 now gives us the follorving information about llthc(X).

Theorem 1.5. Let G be a finite abelian group and X an equivariant
CW complex such that for any subgroup ä of G each cornponent of. XH
is simply connected. Then Whs(X) is a finitely generated abelian group.

Proof. This follows from Corollary (20.3) in Bass [] and Theorem 1.4.

Theorem 1.6. Let G : Z^, ffi ) l, be a finite cyclic group and let X
be as above. Then Whc(X) is a finitely generated free abelian group.

Proof. Itisknownthatif n: Z*,nll, then Wh(n) isafreeabelian
group on lnlzl + I - d(rz) generators, where lnl2l denotes the integral
part of nl2 and d(z) is the number of divisors of lo, see Example 3 on
page 54 in Bass [f] and Proposition 4.14 in Bass-Milnor-Serre [3]. Since
@ is an isomorphism onto a finite direct, sum of such Whitehead groups,
the theorem follows.

Observe that the result quotecl in the above proof implies that
Wh(Z"): 0 if n : 1,2,3, 4 or 6, and that for all other finite cy-clic
groups z we have Wh(n) I 0. (The fact that Wh(Z"): 0 for n : 2 ,3
and 4 is due to Higman [8], and the case n: I is elementary.) Since any
quotient group of a subgroup of one of the groups {"} , Z, , Z,r , Zq and Zu
is again one of these groups we have.

Theorem 1.8. Let G : Z*, where rt,: I ,2 ,3 ,4 ot 6, and let X
be as before. Then Whc(X) : 0.
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Corollary 1.9. Let G and X be as in Theorem 1.8, and let Y denote
an equivariari, CW complex. Then any G-homotopy equivalenee f : X--> Y
is an equivariant simple-homotopy equivalence.

Proof . This follows from Theorem 3.6' in Chapter II and Theorem 1.8.

The case G: {"\ in Corollary 1.9 is just the standard fact that a

homotopy equivalence between simply connected CW complexes is a

simple-homotopy equivalence.
I{ow let G again denote an arbitrary discrete abelian group and let

K be a subgroup of G. Then the equivariant Whitehead group of the
discrete G-space GIK is given by

Thus in particular

Il-hc(G) - ll-lt({e}) : 0, aucl

Tl'.å6({r}) = "å 
@ ll'h(GtH) .

In many cases it is convenieut arrcl natural to restrict the attention to the
subgroup of Whr(X) consisting of all elements s(I'[, X) such that the
isotropy groups of points in I7 belong to some family 7 of subgroups
of G. Denote this group by WhG(X ; I). h is clear from the proof of
Theorem 1.4 lhat @ gives an isomorphism

wthc(x ; F) = f f'* wh{G*(,qlr/) .
Ire F i:r

If for example the fJ-action on I is semi-flee. that is, the only possible

isotropy groups are the tririal grotlp {e} ancl the l-hole group G, t'heu
it is in many cases uatural to onlr- consicler pairs (II- , I) rvhere the action
on W also is serni-free.

Theorem 1.10. Assume that lf is a connectecl and simplv-connectecl
equivariant CII| complex such that the G-action is semi-free and each

component of the fixecl points set is simplv corurectecl. Then rve have

Wlt,c(X; {{e} , G}) ,= ll'h(G).

CorollaryT.ll.Let G:Z @...Q2 ancllet f beasinTheorem
1.r0. Then Wlt,c(X; {{e}, {G}i) : 0.

Proof . By a Corollary to Theorem 2 in Bass-Heller-Swan [2] we have

Wh(Z @. . . @ Z) : 0. The case ll'h(Z) : 0 is due to Higman [8].

Corollary l,lL.Let G:Z @...@Z undlet X and I beequiv-
ariant CW complexes such that the G-action is semi-free and every
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component of the fixed point sets is simply-connected. Then any G-
homotopy equivalence f : X --> Y is an equivariant, simple-homotopy
equivalence.

Proof. By Theorem 3.6. in Chapter II, / is an equivariant simple-
homotopy equivalence if and only if s(Mi,X) :0 ewhc(X), 'w,here

M7 is the mapping cylinder of some equivariant skeletal approximation
of /. Butthe G-actionon M7 issemi-freeandhence s(MF,X):Wh"(X;
{{e}, G}; : 6.

Both Corollary l.l1 and I.l2 still hold with the family {{r),G}
replaced by any family I : {H} of subgroups of the form H -
Hr@ .... @.Iy'-, where each Hr eitherequals {0} or Z, here rz denotes
the number of summands in G : Z @ ... @ Z.

Example 1.13. We conclude this seetion by the following example.
Let G:Zs and consider the element a:(- 1+r+öeZIZ;.
Since (-l+t+t[)(-L+tz *rB):l the element a is a unit ancl
it, is known that the I X I matrix [o] represents a generator of Wh(Zu) -Z. Let X: {"} andlet W be theequivariant CW complex, constructecl
as in the proof of the surjectivity of @, such fbat Q(s(W , {"})) : zlQ e
Wh(Z). Since s(W,{r\)+0eWh6(r\) the inclusion i:{r}+II'
is not an equivariant simple-homotopl'equiralence. The orbit space Il'' :
Zu\W is a CItr' complex obtained b1- acljoining a3-cellto B2 byadegree
one map and hence !Y' s Ds rel. §2, by Lemma f 3 in Whitehead [18].
Thus W'- {r} rel. {r} and the induced inclusion on the orbit spaces
,i,' :{r)-->W' is an ordinary simple-homotopy equivalence. This is the
»better example» promised in the cliscussion preceeding Lemma L2 in
Chapter fL Observe moreover that Zu acts freely on W - {*}, and that
if we forget Llne Zu-action then the inclusion i : {*\ -+ I7 is an ordinar;'
sim ple-homotopy equivalence.

§ 2. Toral actions

In this section we consider actions by the n -dimensional torus T'n , n 2 l.
(The case T0 : Zz was already treated in Section l).

Theorem 2.1. Let G - T^ ,n ) l, and let X be an equivariant CII'
complex such that each component of XE is simply connected for ever5.-

closed subgroup H of G. Then we have Whc(X): 0.
The proof is similar to the part of the proof of Theorem 1.4 u'hich

proves that @ is injective. Since G is connected any component of Xä
is a G-component, i.e. the group of every component of. Xn is G. Since
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GIH is connected the group of components of GIH is the trivial group

{e} and we know hhat Wh({e}) : O. We omit the details.

Corollary 2.2. Let G:7",n)1, andlet X and I beequivariant
CW complexes as in Theorem 2.1. Then any G-homotopy equivalence

f : X --> I is an equivariant simple-homotopy equivalence.

Proof . X'ollows from Theorem 3.6' in Chapter II and Theorem 2.1.

By Theorem 2.6 in [9] (or Lemma 4.4 in Matumoto [11]), Corollary 2.2

in particular applies when X and Y are compact differentiable G'
nranifolds. Moreover the assumption that f : X --> Y is a G-homotopy
equivalence can by the equivariant Whitehead theorem be expressed in
rron-equivariant homotopy terms, see Proposition 2.5 in [9].

University of Helsinki,
Department of Mathematics,
SX'-00f00 Helsinki t0
n'inland
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