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Introduction

Let G be a discrete group or a compact Lie group, and let X and
Y denote finite equivariant CW complexes. In Section 1 of Chapter II
we introduce the notion of an equivariant simple-homotopy equivalence
f:X—Y. The main part for this definition is the definition of an
equivariant elementary expansion, see Definition 1.1 in Chapter II.
Having defined equivariant elementary expansions (collapses) the notions,
equivariant formal deformation, equivariant expansion (collapse), and
equivariant simple-homotopy equivalence, follow in complete analogy
with the corresponding notions in the ordinary non-equivariant case as
defined by Whitehead [18].

We then define an equivariant Whitehead group Why(X) of any
finite equivariant CW complex X. If @ is the trivial group, and X
thus is an ordinary CW complex, this simply gives us the geometrically
defined Whitehead group WA(X) of X which, for connected X, is
known to be isomorphic to Wh(my(X)), the (algebraicly defined) Whitehead
group of the group =,(X), see Cohen [6], Eckmann-Maumary [1], and
Stocker [15]. We prove that if @ acts freely on X then Why(X) ~
Wh(G\X). Thus if G is a discrete group acting freely on X, and X is
simply connected, we have Wh(X) >~ Wh(G). In Section 1 of Chapter III
we determine Whe(X) in terms of Whitehead groups of quotient groups
of subgroups of @&, for the case when @ is a discrete abelian group and
X is such that for any subgroup H of G each component of X¥ is
simply connected.

Let now again G denote any discrete group or an arbitrary compact
Lie group. In Section 3 of Chapter II we define the geometric equivariant
Whitehead torsion 7,(f) € Wh(X) of any G-homotopy equivalence
f:X—Y, and prove that f is an equivariant simple-homotopy equi-
valence if and only if 7,(f) = 0. If @ acts freely on X and Y, then
any G-homeomorphism f:X—Y is an equivariant simple-homotopy
equivalence. This follows from the recent affirmative answer by T.
Chapman to the question of topological invariance of ordinary Whitehead
torsion, and the isomorphism Why(X) =~ Wh(G\X) for free actions.
We also give a sum theorem for 7,(f). In Section 4 we prove a technical
result which says that any element in Why(X) can be represented by
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an element which is in »simplified form», see Corollary 4.4 in Chapter IT
for the precise statement. This result is the key to the results proved in
Chapter III.

In Chapter III we first consider actions of discrete abelian groups
and prove the already mentioned theorem about Wh(X), see Theorem
1.4 and the discussion preceeding it. Using known results about Whitehead
groups of groups this gives us information about Whg(X). For example
it follows that if G = Z,., m > 1, is a finite cyclic group, and X is such
that each component of any X", H c @, is simply connected, then
Whe(X) is a free abelian group of finite rank. If G = Z,, Z;, Z, or Zg,
then Why(X) =0, where X is as before, and hence in this situation
any G-homotopy equivalence is an equivariant simple-homotopy
equivalence. We also say something about the case G =2® ... ® Z.
We conclude the first section by an example of an inclusion ¢ : X — W,
in fact X = {2}, of equivariant CTI" complexes which is a G-homotopy
equivalence but not an equivariant simple-homotopy equivalence and the
induced inclusion on the orbit spaces is an ordinary simple-homotopy
equivalence and moreover if we forget about the G-action then the inclusion
i: X— W 1is an ordinary simple-homotopy equivalence.

In the final section we consider actions by an n-dimensional torus
G = T, n > 1. In this case we have Why(X) = 0, forevery X satisfying
the condition that for any closed subgroup H of ' = T each component
of X* is simply connected, and hence in this situation any G-homotopy
equivalence is an equivariant simple-homotopy equivalence. This result
applies in particular to differentiable 7™ actions on compact differentiable
manifolds.

Notations. By I" we denote the n-fold product of the unit interval with
itself and I is identified with the front (n — 1)-face I"* x {0} C I".
By J"! we denote the union of all other (n — 1)-faces and 0I" is the
boundary of I, ie. aI* = I""'U.J 1. We shall use G-spaces of the
form G/H x I", where H is some closed subgroup of . Here G acts
trivially on I” and by the standard left action on G/H. If H is a closed
subgroup of G we denote by (H) the family of all subgroups conjugate
to H, and for any G-space X, we denote by X' the set of points fixed
under H.



Chapter I. Review of equivariant CW complexes

In this chapter G denotes a topological group which is either a compact
Lie group or a discrete group.

Definition 1.1. Let X be a Hausdorff G-space and 4 a closed G-
subset of X, and n a non-negative integer. We say that X is obtainable
from A4 by adjoining equivariant n-cells if there exists a collection {c]};c;
of closed G-subsets of X such that

1) X =AU (Uc}), and X has the topology coherent with {4 , ¢]};c ;.

jeJ

2) Denote ¢} =c¢j N4, then

(¢ —c)N(c —c)=01if i #j.

3) For each j€J there exists a closed subgroup H; of G and

a G-map
[;i:(GH; x I, G|H; X oI")— (¢ , ¢})
such that fi(G/H; x I") = ¢/, and f; maps G[H; X (I" — 9I") G-home-

omorphically onto ¢} — c].

Such a G-pair (X, 4) in fact determines the G-subsets c¢; uniquely,
that is, any two collections of closed (-subsets of X which satisfy condi-
tion 1)—3) in the above definition are the same. Moreover X is not ob-
tainable from A by adjoining equivariant m-cells if m # n. We call
the G-subsets ¢! for the equivariant n-cells of (X, 4) and also say that
X is obtained from A4 by adjoining the equivariant n-cells ¢;. The G-
subsets b = ¢} — ¢/, which are open subsets of X — A, are called open
equivariant n-cells of (X, d). Any G-map f;:G/H; X I"—c; which
satisfies the conditions in Definition 1.1 is called a characteristic G-map
for ¢}, and its restriction f; | : G/H; X oI"— ¢} — A is called an attaching
G-map for ¢;. We call (H;) for the type of c;.

Definition 1.2. An equivariant relative CW complex (X, 4) consists
of a Hausdorff G-space X, a closed G-subset A of X, and an increasing
filtration of X by closed G-subsets (X, A,k =0,1,..., such that
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1) (X, A) is obtainable from A by adjoining equivariant 0-cells,
and for k>1 (X, A)* is obtainable from (X ,A)*! by adjoining
equivariant k-cells.

2) X =U(X,4), and X has the topology coherent with

k=0

{(X, 4 hzo -

The G-subset (X, A4)* is called the k-skeleton of (X, A). Observe
that it is part of the structure of an equivariant relative CW complex
(X,A). The (open) equivariant k-cells of ((X,A4)*,(X,A4)*?) are
called (open) equivariant k-cells of (X , 4). Observe that the orbit space
pair (A\X,G\ 4) inherits the structure of an ordinary relative CW complex
with k-skeleton equal to G'\(X , 4)*. We say that dim (X, 4) =m if
X=(X,A4A)" but X # (X,4)" L. If no such integer m exists we
say that dim (X, 4) = co. We have dim (X, 4) = dim (G\X , G\ 4).
If (X, A) isa G-pair which admits the structure of an equivariant relative
CW complex then dim (X , A) is well-defined, that is, does not depend
on the skeleton filtration. This follows since the corresponding statement
for ordinary relative CT structures is a well-known fact.

Let (X, A) be an equivariant relative CW complex, and let X, be
a closed @Q-subset of X. Then we say that (X,, X, N 4) is a subcomplex of
(X, A) if the filtration X, N (X, 4% k=0,1,...,gives (X,,X,N 4)
the structure of an equivariant relative CW complex. It is easy to show
that then (X, X,U A) is an equivariant relative CW complex with
skeletons (X, X,U Ay = X, U (X, 4)~ In fact X,U(X,A4)* is
obtained from X, U (X, 4)*! by adjoining all the equivariant k-cells
of (X, A4) which are not equivariant k-cells of (X, X, N 4).

If A=0 we call X an equivariant CTV complex and denote its
k-skeleton by X* An equivariant CT/ pair (X, X,) consists of an
equivariant CW complex X and a subcomplex X, of X. An equivariant
CW complex X (pair (X, X,)) is said to be finite if X has only a finite
number of equivariant cells. Observe that in case ' is a discrete group
and X thus also automatically has the structure of an ordinary CW
complex this does not mean that the ordinary CT complex X necessarily
is finite.

Let (X, A) be a G-equivariant relative CIV complex and (Y, B)
a G'-equivariant relative OW complex. Assume that either both X
and Y are locally compact or X is arbitrary and Y is compact. Then
(X,A)x(Y,B)=(X X Y,X xBUAXY)is a (G X G)equivari-
ant relative CW complex with n-skeleton equalto U (X, 4)* X (Y, B)".

k+p=n

In this paper we shall only use this in the case G’ = {e}, that is, (¥ . B)
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is an ordinary relative CW complex and the product (X, 4) x (Y, B)
is again a G(-equivariant relative CW complex.

The following result is not explicitly stated in Chapter I of [10] although
it is an immediate consequence of results given there. We shall have use of
it in this paper and hence we state it here and give its proof.

Proposition 1.3. Let (X, 4) be an equivariant relative CW complex.
Then the inclusion ¢:4— X is a G-homotopy equivalence if and only
if 4 is a strong (-deformation retract of X.

Proof. Assume that ¢: 4 -—> X is a G-homotopy equivalence. Then it
follows that for each closed subgroup H of G the inclusion 4 | : A¥ — X®
is a homotopy equivalence. Thus the pair (X*, A¥) is n-connected for
all n. By Corollary 1.11 in Chapter I of [10] this imples that (X, 4)
is equivariantly mn-connected for all n (see Definition 1.9. in Chapter
I of [10]). Thus, by Corollary 2.9 in Chapter I of [10], any G-map
fi(X,4)— (X, A4) is G-homotopicrel. 4 toa G-map from X into A4.
Applying this to the identity map we see that A4 is a strong G-deformation
retract of X. The »if» part of the claim is obvious.

Now let G’ be another topological group which is either a compact
Lie group or a discrete group, and let ¢ : ¢ — G’ be a continuous homo-
morphism. Let (X, 4) be a G-equivariant relative CW complex
and (Y ,B) a G'-equivariant relative CI complex. A g¢-map
fi(X,4)—~(Y,B), ie. f(gx) = ¢(g)f(x) z€X, ¢€G, is called skeletal
if f(X,A)fc(Y,B), for all k> 0. Observe that if X and Y in
fact are G-equivariant and @'-equivariant, respectively, CW com-
plexes and 4 and B are subcomplexes then the above condition reads
fX*UA)c Y*UB, for all k>0, and hence the absolute map
f: X —Y mneed not itself be skeletal. This »freedom» in the definition
of a skeletal map between pairs is in some cases extremely convenient.
The following theorem is Theorem 2.14 in Chapter I of [10].

Theorem 1.4, Let (X, A4) and (Y ,B) be a G-equivariant and a
G'-equivariant, respectively, relative CW complex. Assume that the
g-map f:(X,4)— (Y, B) is skeletal on the subcomplex (X,, X, N 4)
of (X ,A4). Then there exists a skeletal ¢-map f:(X,A4)—(Y,B)
which is @-homotopic rel. (X, U 4) to f.

(In fact the statement in [10] reads »rel. Xp» but the proof gives the
wrel. (X, U A)» version). Taking X, =0 (or X,= 4, it amounts to
the same) we have the following.

Corollary 1.5. Any ¢-map f:(X,4)—(Y,B) is @-homotopic rel.
A to a skeletal ¢-map f :(X,A4)— (Y, B).
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Applying Theorem 1.4 to a ¢@-map F:(X,4) x I— (Y, B) which
is assumed to be skeletal on the subcomplex (X X {0}U X X {1},
A x {0} U A4 x {1}) we get

Collary 1.6. Let F:(X,A) X I—(Y,B) be a ¢-homotopy bet-
ween the skeletal ¢@-maps f,,f;: (X, 4)— (Y ,B). Then there exists
a skeletal ¢@-homotopy F:(X,4) x I—(Y,B) between f, and f
suchthat # | A x I=F|A x L.

The following facts will be used frequently in this paper without further
reference. If (X, X,) is an equivariant CW pair and f:X,— Y is
a skeletal G-map then the adjuction space Y Us X is an equivariant
CW complex containing Y as a subcomplex. The mapping cylinder My
of any skeletal G-map f:X — Y is an equivariant C'W complex contain-
ing X and Y as subcomplexes (X inthe {0} endand Y inthe {1} end).
It follows from Proposition 1.3 that f is a G-homotopy equivalence if
and only if X is a strong G-deformation retract of M. The subcomplex
Y is always a strong G-deformation retract of 2/

Let ¢:G— G be a continuous homorphism. We shall now describe
the process of »changing a G-space X into a G'-space, denoted by ¢(X),
through the homomorphism ¢». Let X be an arbitrary left G-space.
Consider the space @ X X and define a right G-action @: (G X X) X
G—>G x X by d(9,2),9) = (@pg),g'x), where g'€F, g€G and
2€X. We define

¢(X) =G X, X

to be the orbit space of G x X wunder this right G-action. Let
7: G x X —¢(X) be the natural projection and denote z(g", x) = [¢", «].
Thus we have [¢'¢(g),2] = [¢",gx] for every g€G. Now define a left
G'-action

p: G X ¢(X) = g(X)

by v (g ,[9,2]) = [9'¢s,x]. This completes the construction of the
G@'-space @(X). We shall use the notation

7: X — ¢(X)

for the canonical g-map defined 7(x) = [e, 2], where ¢€G" is the identity
element. Also observe that if ¢: G —{e} = @ then ¢(X)= G\X, and
in this case 7 : X —>¢(X) is the natural projection onto the orbit space.

Any G-map f:X —Y induces a G'-map ¢(f): ¢(X)—¢(Y) defined
by o(f)[g ,x]) = [g',f(®)]. It is immediately seen that ¢(f) is a well-
defined continuous @’-map. If h:Y —Z is another G-map we have
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o(hf) = @(h)p(f). It follows that if f is a G-homeomorphism then ¢(f)
is a G'-homeomorphism.

Observe that if K is a topological space with trivial G-action
then we have @X X K)=¢(X) X K, as @'-spaces, given by
lg',z,k1—([9',«], k). Thus a G-homotopy F:X X I— Y between
two G-maps f, and f; induces a G'-homotopy ¢(F): ¢(X) X I—¢(Y)
between the G’-maps ¢(f,) and ¢(f;). If f is a G-homotopy equivalence
then ¢(f) is a G’-homotopy equivalence, and if 4 is a strong G-deforma-
tion retract of X then ¢(4) is a strong G’-deformation retract of ¢(X).

Also observe that if Y’ is a G'-space and f: X — Y’ is a @-map
then f induces a G'-map

o(f)  p(X)—> Y’

defined by ¢(f)([g", «]) = g'f(x). The fact that we use the same notation
@(f) in these two slightly different contexts should not cause any confusion.

Now let H be any closed subgroup of G' and consider the G-space
G/H (standard left G-action). We claim that the map

o g(GH) — G [g(H)

defined by «([g", ¢H]) = (¢'¢(g))¢(H) is a G’-homeomorphism. Since
x([9'p(90) - 95 '9H]) = (9'9(90)9(90) ¢ (9))¢ (H) = (¢'¢(9))¢(H) it follows that
o is a well-defined continuous map. Clearly « is a G’-map. The map
B:G|p(H)—@(G/H) defined by p(¢'¢(H)) = [g’',eH] is also immediately
seen to be a well-defined continuous G'-map. Since «ff = id and fx = id
this shows that « is a G’-homeomorphism. We identify ¢(G/H) with
G'|p(H) through «. It follows that we have

p(GIH X I") = G'|p(H) X I™.
Using this fact one easily proves the following

Proposition 1.7. If (X, A) is a G-equivariant relative CIW complex
then (¢p(X), ¢(4)) is a G'-equivariant relative CW complex.

If f:(X,4)— (Y,B) is skeletal then also ¢(f): (p(X), ¢(4))—
(p(Y) , p(B)) is skeletal.

Chapter II. Foundations of equivariant simple-homotopy theory

Recall that G denotes a topological group which is either a compact
Lie group or a discrete group. By »equivariant» we mean »G-equivarianty
if not otherwise is specified. Only when two groups G and G’ are involved
in the discussion at the same time shall we be more specific and speak
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about G-equivariant and G'-equivariant. From now on all equivariant
CW complexes are automatically assumed to be finite equivariant Cw
complexes. Thus we shall write »equivariant CW complex (pair)» when
we in fact mean »finite equivariant C'W complex (pair)».

§ 1. Equivariant formal deformations

Definition 1.1. An inclusion i: X — Y of equivariant C'W complexes
is called an equivariant elementary expansion if the equivariant C'W pair
(Y ,i(X)) satisfies the following conditions.

1) There is an integer » > 1 such that

Y = iX)uptuon,

where 5"~! and " denote an open equivariant (n — 1)-cell and an open
1 {
equivariant n-cell, respectively, of 1" — /(.X).
2) There exists a closed subgroup H of ¢ and a G-map

c:GH x I"—>Y
such that
(a) o(GIH x J" Y c (X)) .

(b) o G/H % I"'— Y is a characteristic G-map for the equivariant

|

(n — 1)-cell "1
(c) o is a characteristic G-map for the equivariant n-cell 0" .

By definition it follows that if ¢: X — Y isan equivariant elementary
expansion and %:X’'=X is an isomorphism of equivariant CW com-
plexes then also :X'—1 is an equivariant clementary expansion.
Since we also define the identity map id: X — X to be an equivariant
elementary expansion it follows that any isomorphism h:X'=2zX of
equivariant CJ complexes is an equivariant elementary expansion.
Tt is also immediately seen that if i : X — 1" is an equivariant elementary
expansion and % : Y= 7Y’ is an isomorphism of equivariant CIV com-
plexes then %i: X — Y’ is an equivariant elementary expansion.

We shall in the following identify X with i{(X) and consider X itself
as a subcomplex of ¥. Hence we also use the terminology »Y is an
equivariant elementary expansion of X» and denote Y=XUptub
Observe that the open equivariant cells 57" and 5" have the same type
and we call this for the type of the equivariant elementary expansion
and the integer n for its dimension. Any G-map ¢ : G/H X I"— Y which
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satisfies the conditions in Definition 1.1 will be called a characteristic
simple G-map for (6", b"7%).

The conditions (a) — (¢) in Definition 1.1 are equivalent to the four
conditions that, o(G/H x J"')c X', o(G/H x aI"™') € X"~%, ¢ maps
G/H x (I""' — 8I*™") G-homeomorphically onto "', and ¢ maps
G/H X (I" — 2I") G-homeomorphically onto &". Thus Y is an equiv-
ariant elementary expansion of X if and only if Y is the adjunction
space of G/H x I*, for some closed subgroup H of ¢, and X by a
G-map ¢4 : G/H x J"'— X"~! which also satisfies ¢.(G/H x 3I"™') € X"~2,

We use the terminology »X is an equivariant elementary collapse of 1»
to mean exactly the same thing as »Y 1is an equivariant elementary
expansion of X». Observe that a strong G-deformation retraction
F:@HXI)YXI—>GHXI" of GHXI" to GHxJ*' and
a characteristic simple G-map o:G/H X I"—~ Y for (b*,b""') together
give rise to a strong G-deformation retraction F: Y X I— Y of ¥ to X.
Let r:Y— X denote the corresponding G-retraction. Thus the inclusion
t: X— Y isa G-homotopy equivalence and r is a G-homotopy inverse
to 4. Infact any G-retraction from 1 onto XX isa G-homotopy inverse
to the inclusion ¢ : X — 1" and any two such G-retractions are G-homotopic
rel. X. Thus regardless of the different choices of F and o the
G-retraction 7 : ¥ — X is uniquely determined up to G-homotopy rel. X.
We call r: Y — X for an equivariant elementary collapse. A G-map
which is either an equivariant elementary expansion or collapse is called
an equivariant elementary deformation.

Let (V,X) and (W, X) be two equivariant CTW pairs. We define
an equivariant formal deformation from ¥ to W rel. X to be a finite

composite &k =1k,...k of equivariant elementary deformations 17,
ky . ky kP - .
V=X—-X,— =X, =T
where each X; contains X as asubcomplexand k; X = id, j=1,...,p.
(Here k;|X = id means that; if ¢;: X — X; is the inclusion representing
X as a subcomplex of X; then ki, ;=71 ,for j=1,...,p.) Let
k;: X;— X, be the equivariant elementary deformation inverse to k.
Then k=1Ik ...k is a G-homotopy inverse, rel X, to k, and [ is

an equivariant formal deformation from 17 to V7 rel. X. We say that
V and W have the same equivariant simple-homotopy type rel. X if
and only if there exists an equivariant formal deformation from T  to
W rel. X. We denote this by

Vs Wrel X,

adding the word »equivariantly» when we want to be very specific. If each
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k;j: X;_;—X; is an equivariant elementary collapse (expansion) we say
that k =k, ...k, is an equivariant collapse (expansion) and we also
express this by saying that 7 collapses (expands) equivariantly to W.
Observe that in these special cases we in particular have Vs W rel. W
(and rel. ¥V, respectively).

We define a G-map f: V— W, where f|X = id, to be an equivariant
simple-homotopy equivalence rel. X if and only if f is G-homotopic
rel. X to an equivariant formal deformation k:V— W, which thus
also is rel. X.

If G = {e}, the trivial group, these definitions reduce to the correspond-
ing definitions in the ordinary »non-equivariant» case, see Section 13 in
Whitehead [18].

An equivariant simple-homotopy equivalence f: X —-Y induces an or-
dinary simple-homotopy equivalence f': G\ X — G"\\Y on the orbit spaces.
But f need not be an equivariant simple-homotopy equivalence even if
the induced map on the orbit spaces is an ordinary simple-homotopy
equivalence. Consider the following simple example. Let Y be the two-
sphere 2 with G = S' acting by the standard »free» rotation leaving
the south pole {S} and the north pole {N} fixed. The orbit space is a unit
interval which collapses to {0}. But the inclusion 4:{S}— Y is not
an equivariant simple-homotopy equivalence. Of course in this example
the G-map i is not even a G-homotopy equivalence. We shall give a better
example later on.

Lemma 1.2. Let (V,X) be an equivariant CIV pair such that
Vs X rel. X. Then both the inclusion 7: X — ¥V and any G-retraction
r:V—X are equivariant simple-homotopy equivalences.

Proof. Since X s V rel. X theinclusion i: X —V is an equivariant
formal deformation and hence an equivariant simple-homotopy equivalence.
Since X is a strong G-deformation retract of V it follows that any G-
retraction 7:V—X is a G-homotopy inverse to ¢ and hence also an
equivariant simple-homotopy equivalence.

Lemma 1.3. Let f: X — 1 be an equivariant simple-homotopy equiv-
alence, and let K be any closed subgroup of . Then f: GX¥ > GY*
is an equivariant simple-homotopy equivalence.

Proof. Let B=AUDb""'UD" be an equivariant elementary expansion
of A, of say type (H). Then GB* = GA* Ub*~'UD" if (K) < (H) and
GBY = GA* if (K) & (H), that is, GB® is in either case an equivariant
elementry expansion of GA®. It follows that if &: X — Y is an equiv-
ariant formal deformation then so is also k|:GXX— @YX, Since any
G-homotopy from f to k restricts to a G-homotopy from f|to k| this
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shows that f|:GX*—@Y* is an equivariant simple-homotopy équiv—
alence.

Lemma 1.4. Let Y be a G-equivariant elementary expansion of X,
and let ¢ : G— G be a continuous homomorphism. Then ¢(Y) is a G'-
equivariant elementary expansion of ¢(X).

Proof. Denote ¥ =X Ub"'Ub", and assume that the type
of the equivariant elementary expansion is (H). Let ¢:G/H X I"—~Y
be a characteristic simple G-map for (b*,5""). We have ¢(Y) =
PpX)Ud" ") Ug(d"), and since @(G/H x I") = G'|pH) x I" it is
easily seen that ¢(o): G [p(H) X I"—@(Y) is a characteristic simple
G'-map for (p(d"), @("")). Thus ¢(Y) is a G'-equivariant elementary
expansion, of type @(H), of ¢(X).

Corollary 1.5. Let (V, X) and (W, X) be G-equivariant CW pairs
such that Vs W rel. X G-equivariantly. Then we have ¢@(V)s @(W)
ral. ¢(X) G'-equivariantly.

Both Lemma 1.6 and Corollary 1.7 below will be used frequently in
the following. We shall call both of them for the »relativity principles.

Lemma 1.6. Assume that (V,X) and (W ,X) are equivariant
CW pairs such that Vs W rel. X. Let f: X — Y be a skeletal G-map.
Then (Y Us V) s (Y Us W) rel. Y.

Proof. Let V=X,—X,—...— X, =W be an equivariant formal
deformation rel. X. Denote Y;=Y U X;,e=0,...,p. Tt is then
immediately seen that YU V=Y, —>Y,—>...>Y,=YU W is
an equivariant formal deformation rel. Y.

Observe in particular the special case of Lemma 1.6. when f is an
inclusion. By Corollary 1.5 and Lemma 1.6 we have

Corollary 1.7. Let (V,X) and (W ,X) be as in Corollary 1.5. and
let f: X— Y be a skeletal p-map. Then we have (Y’ Uyin®(W)) s (Y
Uypw(V)) rel. Y’ G'-equivariantly.

The following lemma and its two corollaries will be used frequently.
The »same» lemma in the ordinary non-equivariant case is Lemma 11
in Whitehead [18].

Lemma 1.8. Let f:X-— 7Y be a skeletal G-map and let X, be
a subcomplex of X. Then M collapses equivariantly to My ..

Proof. Let A be a subcomplex of X such that X = 4 Ub, where
b is an open equivariant, say, n-cell of X. We claim that M 4 is an
equivariant elementary collapse of M. Assume that the type of b is (H)
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and let «:G/H X I"—> X be a characteristic G-map for 5. We have
My = M;,U (D x{0})U@®x(0,1) and alx X id):GH X I" X
I— My, where m:X X I— M" denotes the restriction of the natural
projection, is clearly a characteristic simple G-map for (b X (0, 1),b X {0}).
This proves the above claim. Nowlet X, X; c...cC X,, = X be sub-
complexes of X such that X, — X, ; consists of exactly one open equiv-
ariant cell, for 4= 1,...,m. By what we just showed My x; ; is an
equivariant elementary collapse of Myx;,7 = 1,...,m. This completes
the proof of the lemma.

Corollary 1.9. Let f: X — Y be a skeletal G-map. Then My collapses
equivariantly to Y.

Corollary 1.10. Let (X, X,) be an equivariant CW pair. Then X X [
collapses equivariantly to X, X I UX X {1}, and hence of course also
to Xy x TUX x {0}.

§ 2. The equivariant Whitehead group Wh(X)

Let (V,X) bean equivariant CTI" pair such that X isa strong G-
deformation retract of 7. (By Proposition 1.3 in Chapter I this is
equivalent to the fact that the inclusion ¢: X— ¥V is a G-homotopy
equivalence.) Let (77, X) be another such pair. Define a relation ~ by

(V,X)y ~(W,X)< Vs W rel. X equivariantly .

This is an equivalence relation. Since (V ,X) ~ (W, X) if (V ,X) =~
(W, X), where =~ stands for an isomorphism of equivariant CWW com-
plexes which is the identity on X, it is easy to see that the equivalence
classes with respect to the relation ~ form a set. We denote this set by
Whe(X). Let s(V, X) denote the equivalence class determined by (V , X).
Now define an additicn in A {X) by

s(Ty, X) = s(7, . X) = s(1, Uy T, X) .

Since X is a strong G-deformation retract of both 17 and V, it
follows that X 1is a strong G-deformation retract of 15 Uy V,. Thus
s(ViUx Vy, X) € Whe(X) is defined. This addition is well-defined. If
(Vy, X) ~(W;,X) and (T,.X) ~(I,,X) then it follows from the
relativity principle, Proposition 1.6, that we have (V,Ux7V,,X) ~
(ViUx Wy, X) ~ (W, Ux W, , X). Clearly this addition is associative
and commutative and the element s(X ., X) € Whg(X) is a zero element.
We shall shortly show that every element in W/iy(X) has an inverse, i.e.,
Whe(X) is an abelian group. But first we establish some other results.
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Let f: X — Y’ be a skeletal g-map, where ¢ : @ — G’ is a continuous
homomorphism and Y’ is a @'-equivariant CW complex. We define

fo: Whe(X) — Whe(Y)
as follows. If s(V , X) € Whe(X) then we set
f*S(V N X) = S(YI U‘F(f) (}:’(V) N Y’) 5

where ¢(f): ¢(X)— Y’ denotes the (’-map induced by the ¢-map
f: X — Y. It is easily seen that this definition makes sense and it follows
from the relativity principle, Corollary 1.7, that it is well-defined. Clearly
J+ 1s additive and takes the zero element into the zero element, i.e., f, is
a homomorphism between abelian semi-groups with zero element. If
h:Y —Z7" is a ¢'-map, where ¢’ : G'—G” is a continuous homomor-
phism, then we have (Af)y = hyfy: Whe(X)—> Whe. (Z"). In particular
the canonical g-map 7 :X — ¢(X) induces a homomorphism which we
shall denote by ¢, instead of 7,. Thus we have

Pt Whe(X) > Whe(p(X)

for any continuous homomorphism ¢:G— @', and ¢, is defined by
pus(V, X) = s(p(V) , p(X)).

Lemma 2.1. Let f,, f1 X — 1" be skeletal ¢-maps which are ¢-
homotopic. Then (fo)s = (fi)s: Whe(X)— Whe(Y7).

Proof. Let F:X X I—1Y be a g@-homotopy from f, to f,. By
the equivariant skeletal approximation theorem (Corollary 1.6 in Chapter I)
we can assume that F is skeletal. Thus F induces

Fo: Whe(X X I)— Whe(Y').
Now consider the inclusions 4,, ¢;: X — X X I, defined by 17 =
(@,k), k=01 Let s(V,6X)€ThyX). Using Corollary 1.10 we then
have (i)ys(V, X) =s(X X IUTV X {0}, X ¥ ) =s(I' x I,X x I) =
S(X X TUV x {1}, X X I)= ())(7, X). Thus (ig)s = (i})5 : Whe(X)
—> Whe(X X I). Hence we have (fy)e = Fiy(io)s = Fu(i))s = (fi)s-

Lemma 2.2. Let X € V C W, suchthat X is a strong G-deformation
retract of V' and V isastrong G-deformation retract of W. Then we have

S(W,X)=rs(W,TV)+s(V, X),
where 7: V— X is a skeletal G-retraction.

Proof. First we observe that it follows that X isa strong G-deformation
retract of W and hence s(W,X) € Whg(X) is defined. Let i: X — V
be the inclusion and 7: ¥V — X a skeletal G-retraction. Then ir: V—V

2
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is G-homotopic (in fact rel. X) to idy. Thus by Lemma 2.1 we have
(ir)s(W,V)=s(W, V). This means that VU, WsW rel. V and
hence in particular rel. X. Thus s(V Ui, W, X) = s(W, X) and since
VU, W, X)=s(V,X)+sX U W, X)=s(V, X)+ res(W, V)

the lemma follows.

We are now ready to prove that every element in Whig(X) has an
inverse. Let s(V,X)€ Whe(X) and let r: V—X be a skeletal G-
retraction. By Lemma 1.8. the mapping cylinder 3/, collapses equivariantly
to X x I, and thus M,s X x I rel. X x I. Let 7: X X I— X denote
the projection and define I, = X U_,JM,. By the relativity principle,
Lemma 1.6, we have J,s X rel. X, and hence s(J,, X) = 0 € Wh¢(X).
Now XcC Vc M, and since X x I UV x {0} is a strong G-deform-
ation retract of M, it follows that V is a strong (-deformation retract
of JI,. Thus Lemma 2.2 applies and gives us

0=r.s(i,,V)+s(V,X),
that is, 7.s(J,, V) € Whe(X) is an inverse to s(J7, X). We have proved

Theorem 2.3. For every G-equivariant C1°~ complex X T7g(X)
is an abelian group. A ¢@-map f:X— 1" induces a homomorphism
fi: Whe(X)— Whe(Y') and any two g¢-homotopic ¢-maps induce the
same homomorphism.

We call Whe(X) for the equivariant Whitehead group of X. If
G = {e}, the trivial group, and X hence denotes an ordinary CW complex
it is clear from the way we have defined our Whe(X) that Wy (X) =
Wh(X). Here Th(X) is the Whitehead group of the CW complex X
as defined in Cohen [6]. Eckmann-Maumary [7], and Stécker [15]. It is
also well-known that this ordinary Whitehead group 17(X), for connected
X, is isomorphic to Ih(7y(X)), the (algebraicly defined) Whitehead
group of the group =;(X). For the proof of this see Stocker [15] or Cohen [6].

The following type of »sum theorem» has played an important role in
the ordinary simple-homotopy theory. The proof of our equivariant version
of the sum theorem is exactly the »same» as the one given by Stocker [15]
for the ordinary case.

Proposition 2.4. Let (11", X) be an equivariant CTI" pair such that
W=W,UW, and I,=T;NT, Denote X;=2IXnN W, and
assume that X is a strong G-deformation retract of Wi, k=0,1,2.
Then we have

s(W, X) = (i)ss(Wy, Xy) + (ig)ss(Wy , Xp) — (i9)«(Wo X,)

where ir: Xi—>X ,k=0,1,2, denote the inclusions.
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Proof. We have X = X,UX, and X,= X;NX, Denote V=
XUWy, k=0,1,2. Clearly X is a strong G-deformation retraction
of Vi, for k=0,1,2. Since Xc V,cV;, j=1, 2, it follows that
also the inclusions Vy — V;, j=1, 2, are G-homotopy equivalences and
hence by Proposition 1.3 in Chapter I V, is a strong G-deformation
retract of V;,j=1,2. Since W= V,UV,and V;NV,= V, we have

s(W, Vo) =s(Vy, V) + s(Vy, V)

by the definition of the sum in Whg(V,). Let 7: Vy— X be a retraction.
Then we have by Lemma 2.2

(W, X)=rs(0W, V) L+ s(V,y,X)

s(Vi, X) = rus(V; . Vo) = s(Vy, X), j=1,2.
From the above four formulas we get

s(W,X)—s(Vy, X)—s(Vy, X) = —s(V,, X)

and this is the claimed formula since (&)ys(Wi, Xi) = s(Vi, X), k =
0,1,2.

We shall now study the case when G acts freely on X and prove that
Ps: Whe(X)— TWh(G'\X) is an isomorphism. Recall that if ¢ : G—{e}
then ¢(X) = G\ X and hence this ¢ gives us ¢y : Whe(X) — Wh(G\X).
We first give two lemmas.

Lemma 2.5. Let (Y, X) be an equivariant CW pair such that &
acts freely on Y. Assume that G\ X is an elementary collapse (in the
ordinary sense) of G\Y. Then X isan equivariant elementary collapse
of Y.

Proof. Let us denote (17, X') = (G\Y,G\X) andlet p: ¥V — Y’
denote the projection onto the orbit space. By the assumption we have
Y'=X'Ue"'Ue", where ¢! and ¢ denote an open (n—1)-cell and
n-cell, respectively, of 1’ — X', Moreover there is a map o' : I"— Y’
such that o'(J"™') c (X')"~! and o'(3I"*) c (X')*% and furthermore
¢’ maps I"' — 9I"~' homeomorphically onto ¢"~! and I" — 3I" homeo-
morphically onto e". Since p: Y — Y’ is a principal G-bundle and I
is contractible it follows that ¢’ can be lifted, that is, there exists a map
0 : I"—>Y such that p6 = ¢’. Now define ¢:G x I"—> Y by o(g, ) =
96 (x). Then o isa G-map such that o(G x J*) € X" Tand o(G x aI""Y)
C X"*, and moreover ¢ maps G X (I""!' — 3I""!) G-homeomorphically
onto p~e"') and @ X (I* — 9I") G-homeomorphically onto p~i(e").
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Since Y = X Up (" ") Up~(e") this shows that X is an equivariant
elementary collapse of Y.

Lemma 2.6. Let X be an equivariant CW complex such that G
acts freely on X. Let Y’ be an elementary expansion in the ordinary
sense of G\ X. Then there exists an equivariant elementary expansion
Y of X such that G\ Y = Y.

Proof. Denote X’ = G\X. By the assumption Y’ is the adjunction
space of X’ and I" by somemap ¢ :J" ' — (X')"~! which also satisfies
@' ("N c (X)%, that is, Y = X'Uy I" Since p:X—>X' isa
principal G-bundle and J"~' is contractible there exists a lifting o, I"
—>X"'c X of o,. Let o,:G x I">X""" be defined by o,(g,a) =
go.(a). Thenwealsohave o, (G x a["")c X"~% Thus ¥ = XU, (¢ x I")

satisfies the conclusion of the lemma.

Theorem 2.7. Let X be an equivariant C'TI" complex such that
acts freely on X. Then ¢, : Whe(X)— Wh(G\X) iz an isomorphism.

Proof. Let s(V,X)€ Whe(X) and assume that gus(V,X)=
(G\V ,0\X) = 0 € Wh(G\X). This means that G\ VsG\X rel. G\ X.
By Lemma 2.5 and 2.6 it follows that ¥'s X rel. X equivariantly, that
is, s(V,X)=0. Thus ¢, is a monomorphism. Now let s(V',G\X) €
Wh(GN\X). Let r%(p): V— V' be the principal G-bundle induced from
p: X—>G X by aretraction r: V' — GN\X. Then T is an equivariant
CW complex on which ¢ acts freely and T contains X' as a subcomplex.
Since the inclusion i :X— T induces isomorphisms on all homotopy
groups it follows by Corollary 5.5 in Bredon [4] in case ¢ is a discrete
group and by Proposition 2.5 in [9] in case (' is a compact Lie group,
that 3 is a G-homotopy equivalence. Thus, by Proposition 1.3 in Chapter
I, X isastrong G-deformation retract of T, and the equivariant CW pair
(V,X) determines an element s(I", X) € TThg(X). Since ¢us(V,X) =
(V', G\X) this shows that ¢, is an epimorphism.

Let G/G, be the group of components of &, i.e. &, denotes the identity
component of ¢. We now have

Corollary 2.8. Let X be as in Theorem 2.7 and assume moreover
that X is simply connected. Then TWh(X) = W(G/G,).

Proof. Tt follows from the exact homotopy sequence of the fibration
p: X—>O\X that 7,(G\X) = G/G,. Hence the corollary follows from
Theorem 2.7 and the well-known isomorphism Wh(G\X) o2 Wh(m (G\X)),
see Section 3 in Stocker [15] or § 21 in Cohen [6].
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§ 3. Geometric equivariant Whitehead torsion of
a G-homotopy equivalence

In this section we first give a characterization of an equivariant simple-
homotopy equivalence in terms of its mapping cylinder, see Theorem 3.6
below. The proofs of this result and of those preceeding it are completely
analogous to the ones in the ordinary »non-equivariant» case, see (5.4)—
(5.8) in Cohen [6] or § 3 in Eckmann-Maumary [7]. Then we define the
(geometric) equivariant Whitehead torsion of a G-homotopy equivalence
f: X — Y. It is an element of Why(X), (see the remarks below concerning
this choice). We denote it by 7,(f), and we have 7,(f) = 0 if and only if
f is an equivariant simple-homotopy equivalence. Recently Chapman [5]
has given an affirmative answer to the outstanding problem concerning the
topological invariance of ordinary Whitehead torsion for finite CW com-
plexes. From this result it follows immediately, by Theorem 2.7, that if X
and Y are equivariant CW complexes such that G-acts freely then
any G-homeomorphism f:X-— 1 is an equivariant simple-homotopy
equivalence.

Lemma 3.1. Assume that V collapses equivariantly to X. Let
f:V—Y be a skeletal G-map. Then M; collapses equivariantly to
VUM x, where flX:X—7.

Proof. Let V=X,—-X, ,—...—-X,=X be a sequence of

equivariant elementary collapses. Denote 11, = V' U M, x; We claim
that W, is an equivariant elementary collapse of W;,1 <j < m.

This is seen as follows. Assume that the equivariant elementary collapse
from X; to X, , is of type (H,), and denote X;= X, ; Ub"'UD",
andlet ¢:G/H; X I"— X; be a characteristic simple G-map for (b, b"?).
Then we have W; =W, , U ("' x (0,1))U (" x (0,1)) and a(c X id) :
GIH; X I" X I —W,, where z:X; x I— W; denotes the restriction
of the natural projection, is clearly a characteristic simple G-map for
(0" X (0,1),8"" x (0,1)). (The G-map =z(c X id) restricted to
GIH; X (I"™' x {0} x I) gives a characteristic G-map for b"~! x (0,1)).

Lemma 3.2. Let Y be an equivariant elementary expansion of X.
a) Let 7:X— Y betheinclusion. Then M; collapsesequivariantly to X.
b) Let r:Y-—X be a skeletal G-retraction. Then M, collapses equiv-
ariantly to Y.

Proof. a) We have M; =X X IUY x {1} which collapses equi-
variantly to X X I which again collapses equivariantly to X x {0}.
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b) By Lemma 3.1 M, collapses equivariantly to Y X {0}U M, x=
Y % {0} UX x I which in turn collapses equivariantly to Y X {0}.

Lemma 3.3. Let f:X—Y and h:Y—Z be skeletal G-maps.
Then M;Uy Mys My rel. X U Z.

Proof. Define F = hp:M;—>Z, where p:M;— Y is the natural
projection. Then F is skeletal. Consider the mapping cylinder Mg.
First observe that by Lemma 1.8 M collapses equivariantly to Mg x =
M,s. Secondly observe that since My collapses equivariantly to Y (by
Corollary 1.9) and since F restricted to Y equals %:Y —Z, it follows
by Lemma 3.1 that My collapses equivariantly to My Uy My The claim
now follows from these two facts.

By repeated use of Lemma 3.3 and the relativity principle we get.

i Y
Corollary 3.4. Let X, — X;— ... = X, be a sequence of skeletal
(-maps, and denote f=f,...f;. Then ;s I Uy M, U... UXP_1 My,.

Proposition 3.5. Let f,.f;: X — ¥ be G-homotopic skeletal G-maps.
Then M, s M, rel. X U Y. Thus, if f, and f; furthermore are G-
homotopy equivalences, we have s(M; , X) = s(M; , X) € Whe(X).

Proof. Let F:X x I—Y bea G-homotopy from f, to f;. By the
equivariant skeletal approximation theorem, Corollary 1.6 in Chapter I,
we can assume that F is skeletal. Since X x I collapses equivariantly
to X x {0} and to X x {1} it follows by Proposition 3.1 that we in
particular have

X X TUM s MpsX x ITUM; vel. X x IUY .

Let ¢q: X <xIUY—>XUY be the map defined by qx,t)==x
and ¢(y) =y, and denote M= (XUY) U, Mp. By the relativity
principle, Lemma 1.6, we then have M s JpsM r orel. X uy.

Theorem 3.6. Let f: X-— Y be a G-map. Then the following three

statements are equivalent:

(a) f is an equivariant simple-homotopy equivalence. )

(b) There exists an equivariant skeletal approximation f to f such that
Mss X rel. X. _

() F(ir E)L?y equivariant skeletal approximation f to f we have M7 sX
rel. X.

Proof. By Proposition 3.5 (and the fact that equivariant skeletal
approximations exist) statements (b) and (c) are equivalent. We shall
show that (a) and (b) are equivalent. Assume that f: X — Y is an equiv-
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ariant simple-homotopy equivalence. This means, by definition, that f
is G-homotopic to an equivariant formal deformation k =k, ...k : X =
Xy—>X;—>...—>X,=17Y. Then k is an equivariant skeletal approxi-
mation to f, and by Corollary 3.4 and repeated use of Lemma 3.2 a) and
b) we have Mips X rel. X. .

It remains to prove that (b) implies (a). Let f: X— Y be an equiv-
ariant skeletal approximation to f such that M3 s X rel. X. We have
f :pi: X — Mp— Y, where i denotes the inclusion and p is the natural
projection. By Lemma 1.2 ¢ is an equivariant simple-homotopy equivalence.
By Corollary 1.9 and Lemma 1.2 p is an equivariant simple-homotopy
equivalence. Since f is G-homotopic to f = pi it follows that f is an
equivariant simple-homotopy equivalence.

Now let f: X— Y be a skeletal G-homotopy equivalence. We define
7,(f) = s(M;, X) € The(X) .

(Here the »p in 7, stands for »geometricr.) We call 7,(f) for the
(geometric) equivariant Whitehead torsion of f. If f,,f,: X—Y are
G-homotopic skeletal G-homotopy equivalences then, by Proposition 3.5,
we have 7,(f,) = 74(f1)-

Thus we can extend the above definition to any G-homotopy equivalence
f:X—Y by defining

o f) = ()

where f“ is any equivariant skeletal approximation to f. We can now
reformulate Theorem 3.6. in the following form.

Theorem 3.8". A G-homotopy equivalence f: X — Y is an equivariant
simple-homotopy equivalence if and only if 7,(f) = 0.

In the »classicaly ordinary case the question whether a homeomorphism
between two CTV complexes is a simple-homotopy equivalence has until
very recently been an open problem ever since Whitehead posed the question
(see the Introduction in Whitehead [18]). An affirmative answer to this
velassicaly question has now been given by Chapman [5]. He has proved
the following theorem.

Theorem. (Chapman). Let K, L be finite connected CTW complexes
and let f:|K|— |L| be a map. Then f is a simple-homotopy equivalence
if and only if the map

fxid: K| X @—|L| X @

is homotopic to a homeomorphism of |K| X @ onto |L| X Q.
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(We have used Chapmans notation.) Here @ denotes the Hilbert cube.
The »only if» part is due to West [16].
In the case when G is assumed to act freely we have

Theorem 3.7. Let X and Y be equivariant CW complexes such
that G acts freely on X and Y. Then any G-homeomorphism f: X — Y
is an equivariant simple-homotopy equivalence.

Proof. Let f: X— Y be a G-homeomorphism. Denote the induced
map on the orbit spaces by f': G\ X — G\ Y. Then f’is a homeomorphism
and hence by Chapmans result a simple-homotopy equivalence. (Observe
that we have not assumed that G\X and G\ Y are connected, but of
course the conclusion still holds.) Thus 7,(f’) = 0 € Wh(G'\X). By Theorem
2.7 @4 Whe(X)— Wh(GN\X) is an isomorphism. Since M; = G\ My
it follows that we have @, (7,(f)) = 7,(f') = 0. Thus 7,(f) = 0 and hence
f is an equivariant simple-homotopy equivalence by Theorem 3.6".

Proposition 3.8. Let f: X—Y and A:Y—>Z be G-homotopy
equivalences. Then we have

to(hf) = T(f) + fi welh) -

Proof. By Lemma 3.3. we have t,(hf) = s(M, X) = s(MyUy M, X).
Consider the inclusions X c Myc M;Uy M, and let r: My;—X be
a G-retraction. By Lemma 2.2 we have

S(M;Uy M, , X) = rys(M Uy M, My) + s(M;, X)
= ryjuS(Mp, Y) + s(Mf, X),

where j:Y-—> M; denotes the inclusion. But since 7j:Y — M;— X
isa G-homotopy inverse to f we have r.j, = f5 . This completes the proof.

Corollary 8.9. Let f: ¥ — X be a G-homotopy inverse to f: X — Y.
Then () = — furel/).

Proof. We have 0= 1,(ff) = 7,(f) + fz'%(f), and hence (f)=
— fa(f)-

Corollary 8.10. Let f:X— 1, and A:X— 1Y, be G-homotopy
equivalences. Then 7,(f) = 7,(k) if and only if there exists an equivariant
simple-homotopy equivalence ¢: Y;— Y, such that the diagram

/ Y,
X/la

is G-homotopy commutative.
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Proof. Assume that such a o exists. Then 7,(0) =0, and hence
t4(h) = 1o(of) = T(f) + fi'7e(0) = w(f).

Now assume on the other hand that 7,(f) = 74(k). Define o =
hf:Y,— Y, where f:Y;—X is a G-homotopy inverse to f. Then

15(0) = T4(hf) = 16(f) + (N3 7eh) = — fume(f) + fuzs(h) = 0
and hence ¢ is an equivariant simple-homotopy equivalence.

Lemma 3.11. Let (V, X) be an equivariant CW pair such that the
inclusion 4: X — V is a G-homotopy equivalence. Then we have 7,(1) =

s(V , X) € Whe(X).

Proof. By definition we have
7(1) = s(M;, X) = s(X X TUV x {1}, X x {0}).

It follows from Corollary 1.10 that (X x IUV X {1})sV x IsV x {0}
rel. X x {0}, and hence s(X x ITUV x {1}, X x {0}) = s(V , X).

It should be observed that we could as well have defined the geometric
equivariant Whitehead torsion of a G-homotopy equivalence f: X — Y
tobe 7,(f) = fus(My, X) € Whe(Y). Since f, is an isomorphism 7,(f) = 0
if and only if 7,(f) = 0. In fact we have by Corollary 3.9 that 7,(f) =
— 7,(f), where f:Y-—>X is a G-homotopy inverse to f. Taking 7,(f)
as the definition would be in complete analogy with the definition given
in Cohen [6] in the standard non-equivariant case. Our choice is by Pro-
position 3.8 in agreement with the point of view taken in Eckmann-Maumary
[7], see 2.2 in [T7].

We conclude this section by observing that a restatement of the »sum
theorem», i.e. Proposition 2.4., gives us the following important result
(compare again with Stocker [15] and Cohen [6]).

Theorem 3.12. Assume that X = X, UX,, X, = X;NX, and Y =
Y,UY,, Y, =Y NY, Let f: X—Y be a G-map which restricts
to G-homotopy equivalences fi:Xt— Y, for £k =0,1,2. Then f
is a @-homotopy equivalence and

T(f) = (s Te(f1) + (G2)sTe(fo) — (i0)5Te(fo) 5

where 4 : Xp—>X,k=0,1,2, denote the inclusions. In particular if
each fi,k=0,1,2, is an equivariant simple-homotopy equivalence so

is f.
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§ 4. Simplified form

We shall in this section show that every element in Whg(X) can be
represented by a pair (W, X) which is in simplified from. This means
that the equivariant cells of W — X are concentrated in two consecutive
dimensions # — 1 and n, where n — 1 > 2, plus some further purely
technical conditions on the attaching G-maps for these equivariant cells.
As the case is in the ordinary non-equivariant theory the »simplified form»
result is the clue to the transition from the geometric side of the theory
to the algebraic side. We shall study this transition for our equivariant
Whitehead theory in Chapter III in the two cases that G is either a discrete
abelian group or G is a torus group 7™, n > 1. For Whiteheads original
treatment of »simplified form» in the ordinary non-equivariant case see
Lemmas 13—15 in Whitehead [18]. See also (7.4) in Cohen [6].

Lemma 4.1. Let X be an equivariant CJI" complex and let
fo fi:GIH x 01" > X

be G-homotopic G-maps such that fi(G/H x oI")yc X"',i =0, 1. Let
Y;= XUy (G/H x I"), the equivariant CW complex obtained by
adjoining G/H x I" to X by fi,i =0,1. Then Y, s Y; rel. X.

Proof. Let F:(G/H x aI"x I,G/H x 3" x {0,1})— (X, X" ") be
a G-homotopy from f, to f;. It follows from the equivariant skeletal
approximation theorem, Corollary 1.5 in Chapter I, that we can assume
that F is skeletal, ie. that F(G/H x o[" x I)c X"U X" ! = X".
Define Y = X Uz (G/H X I" x I), the equivariant CW complex
obtained by adjoining G/H X I" X I to X by F:G/H x oI" x I —- X"
— Y . Since the obvious inclusions ¢ : Y,— Y and 4, — Y both are
equivariant elementary expansions the lemma follows.

Let (V,V,) be an equivariant CW pair. By o, (H)(V — V,) we
denote the number of equivariant n-cells of type (H) in V — V,.

Lemma 4.2. Let (V,,X) and (JI,,X) be equivariant CW pairs
and let k: V,— TV, be an equivariant formal deformation rel. X. Let V
be an equivariant CTV complex containing 17, as a subcomplex. Then
there exists an equivariant CIV complex 1" containing I, as a subcom-
plex, such that «,(H)(W — W) = x,(H)(V — V,) for every n and (H),
and an equivariant formal deformation % :V— T rel. X.

Proof. By induction on the number of equivariant cellsin V — ¥V, and
on the number of equivariant elementary deformations in k it follows that
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it is enough to prove the lemma in the case when ¥ — V, consists of one
equivariant cell and k: V,— W, is an equivariant elementary deformation.

If k: V,— W, is an equivariant elementary expansion then its natural
extension k:V-—>W,U, ¥V = W,U, V is also an equivariant elementary
expansion and W = W, U, V is of the required form.

Now let k: V,— W, be an equivariant elementary collapse. Assume
that the type of the open equivariant cell e? = T — V, is (H) and let
f:GH x oI — Vh~'— V, be an attaching G-map for é’. Thus V =
VoUr (G/H % I). The G-map kf:G/H x oI"—>Wi'—7V, is G-
homotopic to f and hence by Lemma 4.1 there exists an equivariant
formal deformation %: V— VUi (G/H X I?) rel. V,. The natural
extension k: 7V, Ui (G/H X IP)— W Uy (G/H X IP)  of k:Vy— W,
is an equivariant elementary collapse. Thus % = kh: V— W, Uy
(G/H x I?) is an equivariant formal deformationrel. X and W = W, Uy
(G/H x I?) is of the required form.

Recall from [10] (see Definition 1.8 in Chapter I of [10]) that we say
that a G-pair (Y, B) satisfies condition =, ,m >0, if for any closed
subgroup H of @ every G-map f:(G/H x I™,G/H x oI™)— (Y , B)
is G-homotopic rel. G/H x oI™ to a G-map from G/H x I™ into B.

Lemma 4.3. Let (V,X) be an equivariant CW pair which satisfies
condition w,, for some m > 0, and assume that

V=Xuybruyosrttu...uyo:.
Then there exists an equivariant CW complex W of the form
W=XUUegtuyeu... uyegstms

such that Vs I rel. X. In fact the number of open equivariant cells b
and ¢ is such that

0 , k< m,
) lam+1(H)(V—X) , k=m 1,
DT = 2= | NV = X) - s a YNV = X, b=+ 2,
[ xx(H)(V — X) , k>m+ 3,

for every orbit type (H).

Proof. Let fi:(G/H; x I™,GJH; X oI™)— (V™ , X" — (V,X) be
a charachteristic G-map for b?. Using the fact that (V , X) satisfies
condition m, and the equivariant skeletal approximation theorem, Co-
rollary 1.5 in Chapter I, it follows that there exists a G-homotopy rel.
(G[H; x oI™)
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Fi(QH, x I™, GH, x oI™) x I— (V , X"

such that (F}),=f; and (F;),(G/H; x I"™ x {1})c X™. It now follows
by applying the equivariant skeletal approximation theorem once more,
this time Corollary 1.6 in Chapter I, that we can assume that F; is
skeletal, i.e. that F;(G/H; x I™ x I)c V™*'. Observe that

F(G/H; x oaI™hH c V™
and F(G/H, x J™) € X™. Now define
Fi:GH; x J""' > V"V

by Fia,l)= Fi(a), for (a,1)€G/H, x I"*' x {1}, and F,b,t) =
F;®), for (b,t)€GH, x oI™™"' x I,t€I. TFor each F,; adjoin
G/H; X I"™* to V by F;, thus forming

V=V Ug (UGH;: x I"*?).

Since F; also satisfies Fi(G/H; % oI™"')c V™ it follows that V is an
equivariant expansion of V. Let

hi: GIH; < I"*— ¥

be the restriction of the natural projection. Denoting A:(G/H; X j"‘“) =
B+ and h(G/H, x I™**) = Br'* we can write

V=VUUBrt*uyBr.
Since Britc F™ e X U U it follows that
V,=XUuybruysrt

is a subcomplex of V. Let % :@/H; x I"*'— V, denote the G-map
obtained by restricting %; to G/H; x I™' x {0}. Then k; is a charac-
teristic G-map for Br' and its restriction % |:G/H; x I"— V, is
a characteristic G-map for 5", and moreover L (G/H, x J™) =
F(GIH, x J™ x {0}) = F(G/H; x J")c X™. Thus it follows directly
from the definitions that ¥, collapses equivariantly to X. By Lemma
4.2 there exists an equivariant CIV complex JI containing X as a
subcomplex, with o, (H)(W — X) = x (HY(V — 170) for every n and (H),
such that Vs W rel. X. Since, as we already noted, V isan equivariant
expansion of ¥V it follows that Vs I/ rel. X. Clearly the number of
equivariant cells in W — X with a specific dimension and type is as
required.
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Corollary 4.4. Let (V, X) be an equivariant CW pair such that X
is a strong G-deformation retract of V. Then there exists an equivariant
CW complex W of the form

W=XuUbtuyb:, where n —1>2,

such that Vs W rel. X and such that there are characteristic G-maps
9,  GH; x I""'—b7"' satisfying h,({eH;} X oI"™") = {y,} ,y, € X, and
Ji: GIH; x I"— Db} satisfying fi({eH;} X J"7!) = {x;} , x; € X.

Moreover, for any closed subgroup H of G and any G-component
GWH of QWY we have o, (H)(GWH — GX¥) =, (H)(GWE — aX¥)
where GX¥ denotes G-component corresponding to GW7.

Proof. Since X is a strong G-deformation retract of V it follows that
(V, X) satisfies condition =, for all m > 0. Thus, by repeated use of
Lemma 4.3., there exists W’ such that W' = X U Je}"" U Ue’, with
n—1>2 and Vs W rel. X. Let h:G/H, x I""'— &' be charac-
teristic G-maps. Since #h:G/H, x I""'—> X, where 7: W' —X is
a G-retraction, is an extension of A; : G'H; » 9I"'— X it follows that
h;| is G-homotopic the G-map which maps {¢H,} x 2I""' to some point
y; € X. Adjoining G/H; X I"™' to X by these »equivariantly constant»
maps we obtain an equivariant CW complex X U |Jb7~!, and it follows
from Lemma 4.1 that (X U Ue! ) s (X UUDB™) rel. X. By Lemma 4.2
there exists W = X U Ubr ' U Ud! such that W’'s W rel. X. Let f:
GIH, x oI"—>dr— X U b~' be attaching G-maps. Since J"7' is
contractible it follows that f ; is G-homotopic to some f;: G/H; > oI"
— X U Ub™! satisfying fi({eH:} x J*7') = {a:} € X. Adjoining G/H; x
I" to XUUDb™" by the fi:s we obtain W= XUUb'UU,
and by Lemma 4.1 it follows that W s W rel. X. (Now denote the corres-
ponding characteristic G-maps for b7 also by f).

To prove the claim about the number of the equivariant cells 57~ and
0! observe that the G-homotopy equivalence ¢: X — W induces a one-
to-one correspondence between the G-components of GX® and GIVH,
and the restriction i) : GX¥ — GW{ is again a G-homotopy equivalence.
Let, for convenience, ¢ : A— B denote the inclusion induced by i. on
the orbit spaces. Since B — A consists of (n — 1)-cells and n-cells and
since 5 :A—>B is a homotopy equivalence it follows that the number
of (n — 1)-cells and n-cells in B — A are the same. This being true for
any G-component GWH the claim follows by induction starting from
H = @, i.e. from the components of the fixed point set.
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Chapter III. Actions of abelian groups
§ 1. Actions of discrete abelian groups

In this section the transformation group ¢ is assumed to be a discrete
abelian group. First we recall the definition of the Whitehead group Wh(x)
of a group = and some facts about torsion of acyclic chain complexes
of based modules, see Whitehead [18], Milnor [14], Maumary [13] and
Cohen [6].

Let & be a group and R = Z[x] the group ring of w over the integers.
Denote the group of all non-singular n X n matrices over R by GL(n, R).
We have the natural inclusion of GL(n-+1, R) into GL(n,R) given by

A0
A— ( 0 1) .

The direct limit GL(R) = lim GL(n , R) is called the infinite general
linear group of R. A matrix is called elementary if it agrees with the
identity matrix except for one off-diagonal entry. Let FE(R) denote the
subgroup of GL(R) generated by all elementary matrices. Whitehead
proved that KE(R) is the commutator subgroup of GL(R). Let F(R) be
the subgroup of GL(R) generated by E(R) and all matrices obtained by
replacing one diagonal entry in an identity matrix by - «, where « € 7.

Define
Wh(n) = GL(R)/F(R) .

This is the Whitehead group of z. Since F(R) contains the commutator
subgroup of GL(R) it follows that Wh(x) is in fact a group and moreover
that it is abelian. We write T7h(7) additively. Denote the natural projection
by 7:GL(R)— Wh(x), and identifving a non-singular 2 X n matrix
A with its image in GL(R) we write 7(4d) € IWA(z) and call 7(4) for
the torsion of the matrix A. Thus we have t(4B) = 7(4) + ©(B).

Let 4 bean n X n matrix over R = Z[x]. Then 7(4d) = 0 € Wh(x)
if and only if 4 can be transformed into an identity matrix I"*? by
a finite sequence of operations of the following type.

(1) Multiply a row by — 1.
(2) Multiply a row on the left by an element of .
(*) (3) Change a row by adding to it some other row.

(4) Expand to (? (1}) €GLn + 1, R).

Observe that a permutation of the rows can be performed by using
operations of type (1) and (3). Also observe that the operation of changing
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a row by adding to it a left group ring multiple of some other row is the
composite of operations of type (1), (2) and (3). In fact this operation is the
result of multiplying the matrix 4 on the left by an elementary matrix,
but it is convenient to have the above four operations as the basic ones.

Let M be a free Z[n]-module. (Here and in the following we always
mean by »free module» a »finite dimensional free module» if not otherwise
is explicitly stated.) Let {e;, ..., em} be a basis for M. The family of
preferred bases generated by {e;,...,em} is the family of all bases
{er,...,e,} such that the change of bases matrix A4 = (a;), where
e, = > aye; , a; € Z[x], satisfies 7(4) =0 € Wh(z). (Any group ring

Z[n] ilas the property that any two bases of a free Z[z]-module contain
the same number of elements, i.e. the dimension is well-defined.) A free
Z[x]-module together with a family of preferred bases is called a based
Z[x]-module.

Now let M and N be based Z[z]-modules and

f:M—>N

an isomorphism of Z[x]-modules. Let B denote the matrix of f with
respect to some bases for J and N from the respective families of preferred
bases. The element 7(B) € Wh() is independent of which bases from the
families of preferred bases one chooses and is called the torsion of the
isomorphism f: M — N and denoted by

(f) € Wh(x) .

Finally let us recall the definition of the torsion of an acyclic chain complex
of based Z[nx]-modules. Let
9 ) ]
C:0>C,—-C, ;—>-"—=C;—0

be an acyclic chain complex over Z[x] where each ('; is a based Z[x]-
module. Since C is acyclic and each C; is a free module there exists a chain
homotopy 6:C— C from the identity homomorphism to the zero homo-
morphism (such a ¢ is also called a chain contraction), that is, homo-
morphisms ¢ :C;—C; ; such that 60 4 00 = id. (The homomorphisms
0 can be chosen such that 62 = 0, which is a convenient but not necessary
choice.) Denote

Ooddzol®03®...
Oew’en:C()@Oz@...

and consider Coaa and Ceen as based Z[n]-modules in the obvious way.
Now the homomorphisms @ and & define an isomorphism
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(0 4 0) : Coaa—> Ceven
and 7(@ + 0) € Wh(x) depends only on C' and not on the different choices
made. The torsion of C is now defined to be
7(C) = ©(0 + 6) € Wh(n) .
Observe that if C is of the form

2
c:.0—>0C,=2C,_,—0
then we have
7(0) = (— 1)"'7(9) .
This fact is of great importance for us as well as the following result. If
0> 020

is a short exact sequence of acyclic chain complexes of based Z[x]-modules
such that in each degree m the short exact sequence

0—>C.>C, —Cl—0

splits as a sequence of based Z[n]-modules (i.e. the union of a preferred
basis for €., and one for C,, is a preferred basis for C,) then

7(0) = =(C") + =(C").

With this much about torsion of acyeclic chain of based modules in mind we
are now ready to proceed.

Let Y be an equivariant CTI" complex and H a subgroup of G.
Consider YH, ie. the set of points fixed under H. Since ¢ is assumed
to be abelian we have GY# = Y% Let IT¥ be a component of Y.
Denote « = Y¥ and define

G,={g€q|gYi=T17}.

We call G, for the group of Y] Observe that G, isa proper subgroup
of @ if and only if the G-component GY{ contains more than one con-
nected component. Since every point in Y7 is fixed under H it follows
that Y¥ is a (G, /H)-equivariant CTI" complex. Also observe that if
Y¥ is a component of Y belonging to the same G-component as Y f,
ie. GYY = @YY, then the group of Y¥ equals G, and Y} and Y7
are isomorphic as (G, /H)-equivariant CT" complexes. Now define

Y=y v¥

where the union is over all subgroups K such that H € K and H # K,
and for fixed K the union is over all components Y¥ of Y* which are



SOREN ILLMAN 33

subsets of Y¥. We have G, Y7¥ = Y7¥ (the groups of all the compo-
nents Y; may well be proper subgroups of G,). Thus Y7¥ isa (G /H)-
equivariant subcomplex of Y3 and G /H acts freely on Y¥ — Y7
(Of course Y¥ — Y7 is empty for all but a finite number of subgroups
H but an action on the empty set is free.)

Now let (V,X) be an equivariant CW pair such that ¢: X—V
is a G-homotopy equivalence. Then ¢ induces an one-to-one correspondence
between the components of X and V¥ for every subgroup H. Let X7
be a component of X and let V{ denote the corresponding component
VH. Denote the group of Xi' by @, and observe that @, isalso the group
of Vi. Thus we have the (G /H)-equivariant CW pair (VY, X¥U V7H).
If X¥ is a component of X¥ belonging to the same G-component as
X7 then the (G /H)-equivariant CW pairs (VE, XFU V7H) and
(VE, XTU V7¥H) are isomorphic. Let

a
s> O (VL XTU VT — O (VY XF U 7T e -

be the cellular chain complex of (V¥ ,X¥U y7#). That is, C(VH,
XEUVeH = H (v u XEU VE, (7Bt U XE U TPH), where
H,(,) denotes singular homology with integer coefficients, and @
is the boundary homomorphism in the exact homology sequence of the
corresponding triple. Since G /H acts freely on VI — (X¥U V7H)
it follows that each O (VY¥,X¥UV7H) is a free Z[G /H]-module and
a basis is obtained by choosing one ordinary n-cell from each (G, /H)-
equivariant n-cell of Vi — (X¥U V7¥). Since any two bases obtained
in this way differ from each other only in the order of the bases elements
and by multiplication of the bases elements by -~ elements from the
group G /H, it follows that they both generate the same family of preferred
bases. Thus each C (7Y, X{TU I'TH) becomes a based Z[G, 'H]-module
in this way. Since the homology of the chain complex (77 X®y F7H)
is isomorphic to H. (V¥ XPU V) it follows from the lemma below
that C(V{, XU V7H) is an acyclic chain complex.

Lemma 1.1. Let (Y ,B) be an equivariant CJI” pair and let

{Yy,..., Y} be a finite collection of equivariant subcomplexes of Y
which is closed under intersection. If the inclusions 7:B—Y and
h:BNYr—>Y,, k=1,...,m, are G-homotopy equivalences then

so is the inclusion j:BU (U Ys)— Y.
k=1

Proof. We shall prove by induction on m that ¢ : B—>BU (U Y})
k=1

is a G-homotopy equivalence, and since ¢ : B— Y isa G-homotopy equiv-
alence the claim follows from this. Let m = 1. Since ¢: BN Y, — 7T,
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is a G-homotopy equivalence B N Y, is a strong G-deformation retract
of Y, and hence B is a strong G-deformation retract of B U Y, which
shows that ¢ : B—>BU Y, is a G-homotopy equivalence.

Now assume that our claim is true for the value m-1 and denote

Y...1 = U Y. Since the family of the Y,:s is closed under intersection
k=1

it follows that ¥, ;N Y, is the union of m — 1 sets Y Thus by the
induction hypothesis the inclusions ¢ :B—BU(Y,_,NY,) and
¢ :B—~BUY,_, are G-homotopy equivalences and so is also ¢ :
B—>BUY,. Thus it follows that the inclusions of BU (Y, _,NY,)
into both BU Y, , and BUY, are G-homotopy equivalences. It
now follows that BU(Y,_,NY,) is a strong G-deformation retract
of BU(Y,_,UY,), and therefore the composite % :B—>BU
(¥,..NnY)>BU (Y, ,UY,) is G-homotopy equivalence.

We now apply Lemma 1.1 as follows. Since V¥ is a finite equivariant
CW complex and @ is abelian there exists a finite number of subgroups
K,,...,K, such that if K is any subgroup of G such that H Cc K
and H # K then YX¥ = Y% for some i=1,...,m. In other words
let K;,...,K, be the family of all isotropy groups for points in V¥
except the group H, which of course may or may not occur as the isotropy
group of a point in V¥ Since V5N V% = V&+E) it follows that
the family {V¥ ..., V¥m} is closed under intersection. Since i: X — ¥V
is a G-homotopy equivalence it follows that also i|: X¥— V¥ and
i : X¥n V¥ = X% F% are G-homotopy equivalences. Thus by

Lemma 1.1. the inclusion j:X¥U (U V%) —Y# is a G-homotopy
i=1
equivalence, and hence in particular a homotopy equivalence. Since the

component of X¥U (U V™) which contains X¥ equals X¥U V7H
i=1

the restriction of j gives a homotopy equivalence ji: X7 U Vi¥— Vi

Thus H.(VZ, X¥U V7¥) = 0 and the chain complex C(VE, X¥ U V¥

is acyclic. We have proved.

Proposition 1.2. Let (V,X) be an equivariant CJI" pair such that
t: X—V is a G-homotopy equivalence and let H be any subgroup of
G and X¥ a component of X*¥. Denoting the group of X{' by &, we
have that C(VZ,XZU V7H) is an acyclic chain complex of based

Z[G/H]-modules.

We denote the torsion of the chain complex C(VE, X¥U V¥ by
(C(V, X)) € Wh(G,/H) .
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Next we show that this torsion is an invariant of equivariant simple-
homotopy type.

Proposition 1.3. Assume that Vs W rel. X. Then we have
OV, X)) = «(C(W , X)1))
for every subgroup H of G and any component Xi' of X%

Proof. It is enough to prove this for the case that 1 is equivariant
elementary expansion of V. Thus assume that this is the case and denote

W=Vubud.
Assume that the type of this equivariant elementary expansion is X and let
c:GK X I">W

be a characteristic simple G-map for (5", b"""). Since the set o({eK}xJ ")
is connected it lies in one component, say Xg, of XX,

If Kc H then W¥ = V¥ and the claim is obvious. If HC K,
where H 7 K, and GX§ c GXf, then by excision we have an iso-
morphism of chain complexes i: C(VY, X{U VTHz o, XF U WH)
which in each degree is an isomorphism of based modules and hence the
wanted conclusion follows. In case GX§ ¢ GXJ we have again the
situation that GWH¥ = GVH¥ and this is also true for K = H.

Thus it only remains to prove our claim in the case H = K and for
the component X (or any other component of the G-component GX&).
Denote € = C(V§,XgU V%) and C=CW;,XEUW:¥), and
let G; be the group of X§. Then we have a short exact sequence of chain
complexes

0—>C—-C—>C"—0,

where C” is of the form
0—C. % C _,—0

and C, and C,_, are based Z[G;/K]-modules of rank 1 and 7(3) = 0.
Since moreover the above short exact sequence of chain complexes in
each dimension splits as a sequence of based Z[G;/K]-modules we have

#(C) = T(C") + T(C") = T(C") + (— 1)'2(d) = =(C")
which is what we wanted to prove.

Thus we have a well-defined map

m(H)

D : WhG(X)—>§ 2, ® Wh(G g, m/H)

i=1
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by defining
D(s(V , X)) = {=(C(V, X)LH}ISiSm(H) ,all HC G

Here m(H) denotes the number of G-components of X¥ and Gim)
is the group of a component X; representing the G-component GXI,
1 <7 <m(H). The direct sum is over all subgroups H of G and for
each fixed H over a set of one representing component from each G-
component of X¥. This definition is independent on which component
of a @-component we choose to represent the G-component. Moreover
for any (V, X) we have that =(C(V , X)¥) % 0 for only a finite number
of subgroups H.

It follows from the appropriate short exact sequence of chain complexes
that (C(VUx W, X)H) = ¢(C(V, X)¥) - ¢(C(W, X)F), for any sub-
group H and any component X¥ of X#. Thus

D(s(V U T, X)) = &(s(7, X)) - &(s(7", X))

that is, @ is a homomorphism. We are now ready for

Theorem 1.4. Assume that X is an equivariant CW complex such
that for any subgroup H of G each component X of X¥ is simply
connected. Then @ is an isomorphism.

Proof. Let us first make a general remark. Let (X, 4) be a pair with
X and A connected and assume that 4 is simply connected. Then any
map f: (", 0l")— (X, d) with f(J" ') = {a}, some a € 4, determines
a unique element [f] €. (X , 4), in other words we need not consider
any base point in 4. It follows that if (X, 4) is a z-pair where = is
a discrete group then z,(X , 4) is a left Z[x]-module, and moreover the
Hurewicz homomorphism ¢ : @.(X . 4)— H,(X . 4) is a homomorphism
of Z[a]-modules.

Let s(W,X) € Whe(X) be such that @(s(1I", X)) = 0. By Corollary
4.4 in Chapter II (and the fact that @ iswell-defined, i.e. Proposition 1.3.)
we can assume that (JI7,.X) is in simplified form. Thus we have

W=XUuUUp'uybs . where n —1>2.
We denote
Y=XUypy.
Now let H denote a subgroup of & which occurs as the type of some
of the equivariant cells 7. Let X¥ be a component of X¥ and let Y
and W¥ be the corresponding components of 1 and ¥, respectively.

By the second part of Corollary 4.4. in Chapter IT the number of equivariant
n-cells b7 in GW¥ which have type H equals the number of equivariant
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(n — 1)-cells 5*~' in GWH (and hence in GY]) which have type H.
Let us denote these by &* and 077!, s=1,...,m. Thus we have

G = GOU T U UL,

GY® = qXFU YTHU Ulbg'_1 .

s=

Now let @, be the group of X%, and hence also the group of Y7 and
WH and consider the (G, /H)-equivariant CW pair (Wi, XU WH).
We have the commutative diagram

0 H (W, YXU WsH £ H, (YU IPH, XEU W) —0

a (WH, YU Wi =, (YT U WP, XU 75

where ¢ denotes the Hurewicz homomorphism. First observe that the
upper row equals the cellular chain complex of (Wi, X¥U W7¥). Thus
we have

(— 1)"—17(8) = T(C(”Y , X){[) — 0 € I'Vh(Ga;/H) )

Secondly observe that since X7 is simply connected by assumption and
XEY WwsH? is obtained from Xj' by adjoining (ordinary) (n — 1)-cells
and n-cells and since n — 1 > 2 it follows that XU W7# is simply
connected, and for the same reason Y1y W™ is simply connected.
The pair (WY, Y¥U W7¥) is (n — 1)-connected since Wi is obtained
from YHXU WY by adjoining n-cells and similarly (YU W77,
XTywoH) is (n — 1)-connected. Thus by the Hurewicz theorem the
homorphisms ¢ are isomorphisms and hence by the remarks made at
the beginning of the proof each ¢ is an isomorphism of Z[G,/H]-modules.

The homology modules are based Z[(/ /H]-modules, i.e. free Z[(G /H]
modules together with a family of preferred bases. Thus the homotopy
groups are free Z[@, /H]-modules and with corresponding preferred bases
given as follows. Let

foo(GH x IM, GIH x oIy — (br, b — (GW, (YT U ™))
Byt (GIH » 1" GJH % 01" Y — (5"~ 1, 0"~ 1) — (G(YT U W), ¢(X{ U ITTH)

be characteristic G-maps for 6 and "', s =1,...,m, asin Corollary
4.4 in Chapter 1I, and moreover chosen such that

fifeH} x Iy W

s=1,...,m.
h({el} x " Yic YU WY
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Define

foor, ey — (WF, YR U Wyt

hy:(I"', o) — (YT U WH, XTU WTH)
by fi=/fl{eH} x I and hy=h/{eH} x I""',s=1,...,m. Since
fl" ™ = {2}, 2, € X¥c X and k(2" = {%,}, 2, € XT € X, we have
[f] € @, (WY, YT U WTH),

[7"3] € nn—l(:Y{I U I/V{I H 'X{I U I/V1>H) )
for s=1,...,m. The images of the elements [f,] and [A],s =1,
m, under the Hurewicz isomorphisms form preferred bases for the respective

homology modules.
Now let

m

0f] = 2 adl], au € Z[GH]

t=1

and denote 4 = (ay). Thus we have
7(4) =0 € Wh(G /H),

and hence the matrix 4 can be transformed into an identity matrix by a
finite sequence of operations of the four types given in (*). By a different
choice of characteristic G-maps f, for b, s=1, ,m, (but still
satisfying f/({eH} x I"yc W and f/(J"") = {2}, «, E X ) the matrix
of 3 can be made into any matrix obtailled from 4 by multlplying rows
by -+ elements from G /H.

Nowlet 1 <r <m and 1 < p < m, where r = p. Let

(I, oIy — (WE, YU msH),
where #(J""!) = {x} for some a € X, be such that
(6] = [f] = [fp] € (WL, YT U TTH).

. O .

Denote f, (I") = c;. Thus we have c;CbyN Wi and ¢;c Y7 and
moreover Gcr = br. Since f, :2I"— YU WU, is homotopic to
a contant map it follows that the maps

fl.o o> YUy uUel
are homotopic. Define the G-map
v|: G/H X oI"— G(YT U W7H) U bp

by () (gH ,y) = gdly),y € 0Y". It follows that »| is G-homotopic to
frl:G/H x oI"— (YT U W7¥) U by, Now define
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W= (W — b)) Uy(@/H x I},

(where wv| is considered as a G-map into W — b!). By Lemma 4.1 in

Chapter II we have WsW rel (W — b7). Moreover the matrix of the
boundary homomorphism

3 (WH, YEU W™ >, _(YHU WPH, XTU WTH)

is the one obtained from A4 by changing the r: th row by adding to it the
p:th row. 4 0
An expansion of the matrix 4 to ( 0 1) is realized geometrically by

performing an equivariant elementary expansion of type H, that is,
adjoin G/H X I" to W by a G-map

o, QH x J"'—>QXcW

defined by o, (9H ,y) = ga, for some fixed x € X7
Thus it now follows that there exists an equivariant CT/ complex V
such that

m

VsW rel. W— (U5}

s
s=1

and (¥, X) is in simplified form and there are m 4 ¢, where ¢ >0,

equivariant n-cells e}, ..., e, . and q equivariant (n — 1)-cells ej 7}, ...,
m

e;j‘_lq in V— (W —(Ub¥b;), and characteristic G-maps u,:G/H x I"—

s=1

&,s=1,...,m+q, and h:GHXI"'-&", s=m-+1, ...,
m -+ q, such that
la]=1[k],s=1,...,m+q.
Here
0:m,(VY', UT U WiH)—>m, (U U WTH, XT U WTH)
where we have denoted U = Y Ue,} U...Ue . Observe that
WoH — pE,

Thus the maps @, ,%, : (I"™', oI ) — (UTU W¥, XFU W>H) are
homotopic. It follows from this that there exist

Wl —>UFPUWH ,s=1,...,m+q,
such that @, is homotopic to %] dI" and @, I"~' = h,, and moreover

@,(J"') € XI. Thus the corresponding G-map w,:G/H x oI"— G(UZ U
WH is G-homotopic to w,|G/H x oI". Now form the equivariant CTW
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o mtq
complex ¥V by attaching equivariant n-cells G/H x I" to V —(Ue¢,)
s=1
by the attaching G-maps w,,s=1,...,m + g. It follows from Lemma
4.1 in Chapter 1I that
~ mtq
VsV rel. V—(Ue).
s=1

Moreover it follows directly from the properties of attaehing G-maps
m-+-q

w, that v collapses equivariantly to 7V — (U brtu U e" 'uyey) =
s=m s=1
— U bt u U b").

We have shown that

WsW —(Ubrtuysy) rel. W—(Uob;""uyb).
s=1 s=1 s=1 s=1
That is, all equivariant cells in W — X which have type H and belong
to the G-component GWi have been »removed». Applying this procedure
for every subgroup that occurs as the type of some equivariant cell in
W — X and to each G-component of 11" we get

WsX rel. X.

That is s(IW,X)=0€ Whe(X) and we have proved that @ is
injective.

The surjectivity of @ is proved as follows. Let H be a subgroup of
G for which m(H) > 0, and let GX{ bea G-component of X", Choose
some x € (X790, Let ¢, be the eroup of X{, and let 4 = (as) be any
non-singular m > m matrix over Z[G 'H]. Now define

hoGHxP—>GXTcX

to be the G-map determined by the condition (k))({eH} X 0I%) = {x}.

Let GYT—=@XPUBIU...UL, be the equivariant CT complex

obtained by adjoining m different equivariant 2-cells G/H X I? to GXY

by the attaching G-map /. and let %, denote the corresponding charac-

teristic G-map for 0% Then [h]€x(YY.X{),t=1,...,m, form
a bases for the free Z[G /H]-module m,(17 H C X, m

Now let o :(I2,dI2)— (YT, Xf) be such that [v]= 2 adlh].
t=1

Tt follows since 7, (dI%) = {a}, that we can choose ¢, such that v(dI?) =
{«}. Now let fi|: 0> — Y be the extension of ¢, defined by (b =
{z}, and let

fol : G/H x 03— GYT
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be the corresponding G-map. Let GW{ =GYFUDBIU...UDBS be
obtained by adjoining equivariant 3-cells G/H X I3 to QY by f.|,s =
1,...,m, and let f; denote the corresponding characteristic G-maps.
Now the boundary homomorphism

5 : ﬂa(W{I ’ Y{I)'—*ﬂz(yfl H X{{)

m

is given by 9[f,] = > aq[k], i.e. has matrix 4 in these bases. Thus 3

t=1

is an isomorphism and it follows easily that =, (W, X¥) =0 for all
n. Thus the inclusion ¢: X} — W' is a homotopy equivalence and using
Corollary 5.5 in Bredon [4] we see that i : GXY — G@W{ is a G-homotopy
equivalence. Thus X is a strong G-deformation retract of GWF¥ U X and
hence s(GW{ U X, X)€ Whe(X). We now have D(s(@WHFU X , X)) =
7(4) € Wh(G/H). Since @ is a homomorphism this shows that @ is
surjective.

Known facts about Whitehead groups Wh(x) together with Theorem
1.4 now gives us the following information about WAy (X).

Theorem 1.5. Let G be a finite abelian group and X an equivariant
CW complex such that for any subgroup H of @ each component of X¥
is simply connected. Then Wh¢(X) is a finitely generated abelian group.

Proof. This follows from Corollary (20.3) in Bass [1] and Theorem 1.4.

Theorem 1.6. Let G' = Z,,,m > 1, be a finite cyclic group and let X
be as above. Then Wh¢(X) is a finitely generated free abelian group.

Proof. Itis known thatif = = Z,,n > 1, then Wh(n) is a free abelian
group on [n/2] 4 1 — 6(n) generators, where [n/2] denotes the integral
part of n/2 and d(n) is the number of divisors of n, see Example 3 on
page 54 in Bass [1] and Proposition 4.14 in Bass-Milnor-Serre [3]. Since
@ is an isomorphism onto a finite direct sum of such Whitehead groups,
the theorem follows.

Observe that the result quoted in the above proof implies that
Wh(Z,) =0 if n=1,2,3,4 or 6, and that for all other finite cyclic
groups = we have Wh(xn) £ 0. (The fact that Wh(Z,) = 0 for n = 2,3
and 4 is due to Higman [8], and the case n = 1 is elementary.) Since any
quotient group of a subgroup of one of the groups {e}, Z,, Z,, Z, and Z,
is again one of these groups we have.

Theorem 1.8. Let G = Z,,, where m=1,2,3,4 or 6, and let X
be as before. Then Why(X) = 0.
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Corollary 1.9. Let @ and X be as in Theorem 1.8, and let Y denote
an equivariant CW complex. Then any G-homotopy equivalence f: X — ¥
is an equivariant simple-homotopy equivalence.

Proof. This follows from Theorem 3.6" in Chapter IT and Theorem 1.8.

The case G = {e¢} in Corollary 1.9 is just the standard fact that a
homotopy equivalence between simply connected CW complexes is a
simple-homotopy equivalence.

Now let G again denote an arbitrary discrete abelian group and let
K be a subgroup of G. Then the equivariant Whitehead group of the
discrete G-space (/K is given by

Whe(GIK) >~ > @ Wh(K/H).

al HCK
Thus in particular
Whe(G) >~ Wh({e}) = 0, and
Whe({el) >~ > @ Wh(G/H) .

all H
In many cases it is convenient and natural to restrict the attention to the
subgroup of Whg(X) consisting of all elements s(I7", X) such that the
isotropy groups of points in W belong to some family F of subgroups
of G. Denote this group by Why(X ; F). It is clear from the proof of
Theorem 1.4 that @ gives an isomorphism

m(H)
Whe(X 5 F) =~ Z Z @ Wk’(Ga(i,H)/H) .
HEF i=1
If for example the G-action on X is semi-free, that is, the only possible
isotropy groups are the trivial group {e¢} and the whole group &, then
it is in many cases natural to only consider pairs (11", X) where the action
on W also is semi-free.

Theorem 1.10. Assume that X is a connected and simply-connected
equivariant CTI" complex such that the (G-action is semi-free and each
component of the fixed points set is simply connected. Then we have

Whe(X ; {{e}, @) 2= TTh(G).

Corollary 1.11. Let G =Z @ ... @ Z and let X be as in Theorem
1.10. Then Whe(X ; {{e}, {G}}) = 0.

Proof. By a Corollary to Theorem 2 in Bass-Heller-Swan [2] we have
WhiZ @ ...® Z)=0. The case Wh(Z) =0 is due to Higman [8].

Corollary 1.12. Iet G=Z @ ... @ Z andlet X and Y beequiv-
ariant CW complexes such that the G-action is semi-free and every
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component of the fixed point sets is simply-connected. Then any G-
homotopy equivalence f:X-—Y is an equivariant simple-homotopy
equivalence.

Proof. By Theorem 3.6. in Chapter II, f is an equivariant simple-
homotopy equivalence if and only if s(M7, X)= 0 € Whg(X), where
M7 is the mapping cylinder of some equivariant skeletal approximation
of f. Butthe G-actionon My issemi-free and hence s(M7 , X) = Whe(X ;

{{e}, 6} = 0.

Both Corollary 1.11 and 1.12 still hold with the family {{e}, G}
replaced by any family F = {H} of subgroups of the form H =
H ®....® H,, whereeach H; either equals {0} or Z, here m denotes
the number of summands in G =2 @ ... @ Z.

Example 1.13. We conclude this section by the following example.
Let G =Z; and consider the element a = (— 14t -+ ) € Z[Z;].
Since (— 14+t +t4)(— 1+ +) =1 the element a is a unit and
it is known that the 1 X 1 matrix [a] represents a generator of Wh(Z;) ~
Z. Let X = {x} andlet W be the equivariant CW complex, constructed
as in the proof of the surjectivity of @, such that @(s(W , {x})) = 7[a] €
Wh(Zs). Since s(W,{x}) 5= 0 € Whe({x}) the inclusion i:{a}—TI"
is not an equivariant simple-homotopy equivalence. The orbit space W' =
Z\W isa CT complex obtained by adjoining a 3-cellto S2 by a degree
one map and hence W’'s D3 rel. S2, by Lemma 13 in Whitehead [18].
Thus W’ ~{x} rel. {x} and the induced inclusion on the orbit spaces
t":{oe}— W’ is an ordinary simple-homotopy equivalence. This is the
»better example» promised in the discussion preceeding Lemma 1.2 in
Chapter II. Observe moreover that Z; acts freely on W — {z}, and that
if we forget the Zj-action then the inclusion ¢:{a}— W is an ordinary
simple-homotopy equivalence.

§ 2. Toral actions

In this section we consider actions by the n-dimensional torus 7", n > 1.
(The case T = Z, was already treated in Section 1).

Theorem 2.1, Let ¢ =7T",n > 1, and let X be an equivariant CTV
complex such that each component of X is simply connected for every
closed subgroup H of G. Then we have Wh(X) = 0.

The proof is similar to the part of the proof of Theorem 1.4 which
proves that @ is injective. Since @ is connected any component of X
is a G-component, i.e. the group of every component of X* is @. Since
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G/H is connected the group of components of G/H is the trivial group
{e} and we know that Wh({e}) = 0. We omit the details.

Corollary 2.2. Let G =T",n > 1, andlet X and Y be equivariant
CW complexes as in Theorem 2.1. Then any G-homotopy equivalence
f:X—Y is an equivariant simple-homotopy equivalence.

Proof. Follows from Theorem 3.6 in Chapter II and Theorem 2.1.

By Theorem 2.6 in [9] (or Lemma 4.4 in Matumoto [11]), Corollary 2.2
in particular applies when X and Y are compact differentiable G-
manifolds. Moreover the assumption that f: X — Y is a G-homotopy
equivalence can by the equivariant Whitehead theorem be expressed in
non-equivariant homotopy terms, see Proposition 2.5 in [9].

University of Helsinki,
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SF-00100 Helsinki 10
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