ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

587

BIHARMONIC MEASURE

 $\mathbf{B}\mathbf{Y}$

LEO SARIO

HELSINKI 1974 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1975.587

Copyright © 1974 by Academia Scientiarum Fennica ISSN 0066-1953 ISBN 951-41-0201-0

Communicated 11 March 1974

KESKUSKIRJAPAINO HELSINKI 1974

Biharmonic measure

The harmonic Green's function g is known to exist on a Riemannian manifold R if and only if the harmonic measure ω of the ideal boundary β does not reduce to a constant. This measure is a harmonic function on the complement $S_0 = R - \bar{R}_0$ of the closure of a regular region R_0 , with essentially the boundary values 1 on ∂R_0 and 0 on β . The biharmonic Green's function γ on R, with »boundary values» $\gamma = \Delta \gamma = 0$ on β , exists if and only if $\omega \in L^2(S_0)$ [22]. In the present paper we ask: can a nonharmonic biharmonic function be introduced on S_0 with the property that its nondegeneracy characterizes the existence of γ , in analogy with the nondegeneracy of ω characterizing the existence of g? We shall show that this is possible. The function, which we will call the biharmonic measure σ of β , is the limit of biharmonic functions σ_{Ω} on subregions $S_0 \cap \Omega$ of S_0 , with the Ω regular subregions of R containing \bar{R}_0 . In contrast with approximating harmonic measures ω_{Ω} with $\omega_{\Omega} = 1$ on ∂R_0 , $\omega_{\Omega} = 0$ on $\partial \Omega$, the function σ_{Ω} , with $\Delta \sigma_{\Omega} = \omega_{\Omega}$, vanishes on the entire boundary of $S_0 \cap \Omega$, and spans $S_0 \cap \Omega$ like an arc shaped bridge. As Ω increases, the height of this arch σ_{Ω} increases, and its limit σ as Ω exhausts R is either an arch spanning S_0 or else the constant ∞ . We shall show that the finiteness of σ is independent of the choice of S_0 , and we can therefore introduce the class O_{Σ} of Riemannian manifolds with boundaries of infinite biharmonic measure.

We first explore O_{Σ} in its own right. For radial spaces, which play a central role in biharmonic classification theory, we decompose σ into its biharmonic, harmonic, quasiharmonic, and constant components. The biharmonic type of R can then be easily tested. In particular, $\sigma < \infty$ if both the biharmonic and harmonic components of σ tend to zero as one approaches β . We use this test to determine the type of a number of fundamental manifolds used in biharmonic classification theory. E.g., for the Poincaré N-ball

The work was sponsored by the U. S. Army Research Office, Grant DA-ARO-31-124-73-G39, University of California, Los Angeles.

MOS Classification 31B30.

$$B_{\alpha}^{N} = \{x = (x^{1}, \dots, x^{N}), |x| = r, r < 1, ds = (1 - r^{2})^{\alpha} |dx|, \alpha \in \mathbf{R}\}$$

we obtain the following complete characterizations:

$$B_{\alpha}^N \in O_{\varSigma} \Leftrightarrow \left\{ \begin{aligned} &\alpha \leq -3/2 \;, & N=2 \;, \\ &\alpha \not\in (-3 \;, \; 1) \;, & N=3 \;, \\ &\alpha \geq (N-2)^{-1} \;, & N>3 \;. \end{aligned} \right.$$

After this study of σ we establish its characteristic property in our original problem:

$$O_{\Sigma} = O_{\Gamma}$$
,

where O_{Γ} is the class of Riemannian manifolds which do not carry the biharmonic Green's function γ . In particular, the above values of α exclude γ on the Poincaré ball B_{γ}^{N} .

The role of O_{Σ} in general biharmonic classification theory will be discussed in another context.

1. The Laplace-Beltrami operator $\[\] = d\delta - \delta d$ gives the class $\[\] H$ of harmonic functions $\[\] h$, $\[\] \Delta h = 0$, and the class $\[\] H^2$ of nonharmonic biharmonic functions $\[\] u$, $\[\] \Delta^2 u = 0$, $\[\] \Delta u \neq 0$. Let $\[\] R_0$, $\[\] \Omega$ be regular subregions of $\[\] R$, with $\[\] \bar{R}_0 \subset \Omega$, and set $\[\] S_0 = R - \bar{R}_0$, $\[\] \alpha = \partial R_0$, $\[\] \beta_\Omega = \partial \Omega$. Take $\[\] \omega_\Omega \in C(\bar{S}_0 \cap \bar{\Omega})$, $\[\] \omega_\Omega \in H(S_0 \cap \Omega)$, $\[\] \omega_\Omega | \alpha = 1$, $\[\] \omega_\Omega | \beta_\Omega = 0$. The directed limit $\[\] \omega = \lim_{\Omega \to R} \omega_\Omega$ is the harmonic measure on $\[\] \bar{S}_0$ of the ideal boundary $\[\] \beta$ of $\[\] R$.

We introduce:

Definition. The directed limit

$$\sigma = \lim_{\Omega \to R} \sigma_{\Omega} \,,$$

where

$$\sigma_{\varOmega} \in C(\bar{S_0} \cap \bar{\varOmega}) \cap H^2(\bar{S_0} \cap \varOmega) \;, \quad \exists \sigma_{\varOmega} = \omega_{\varOmega} \;, \quad \sigma_{\varOmega} \; x = \sigma_{\varOmega} | \beta_{\varOmega} = 0 \;,$$

is the biharmonic measure of the ideal boundary β of the Riemannian manifold R.

The limit always exists. In fact, if $g_{S_0 \cap \Omega}(x, y)$ is the harmonic Green's function on $S_0 \cap \Omega$ with pole y, then

$$\sigma_{\scriptscriptstyle \varOmega}(x) = \int\limits_{S_0 \, \cap \, \varOmega} g_{S_0 \, \cap \, \varOmega}(x \, , \, y) \omega_{\scriptscriptstyle \varOmega}(y) dy \, ,$$

with dy the Riemannian volume element at y. Since both $g_{S_0 \cap \Omega}$ and ω_{Ω} increase with Ω , so does σ_{Ω} , and the limit σ exists, finite or infinite, at every $x \in S_0$. We shall show in No. 7 that the finiteness is independent of x and of S_0 .

LEO SARIO

2. We first study the biharmonic measure σ on radial spaces, e.g., the N-space and the N-ball, each endowed with a radial metric $ds = \lambda(r)|dx|$, r = |x|. We choose $R_0 = \{r < r_0\}$, $S_0 = \{r > r_0\}$.

Let Q be the class of quasiharmonic functions q, defined by $\Delta q=1$. The space of all radial biharmonic functions u(r), $\Delta^2 u(r)=0$, is generated by four functions: any $u_0(r)\in H^2-Q$, $\Delta u_0(r)$, any $q_0(r)\in Q$, and the constant 1. Thus every u(r) has a decomposition

$$u(r) = au_0(r) + b\Delta u_0(r) + cq_0(r) + d,$$

which depends on the choice of u_0 and q_0 . In particular, if the biharmonic measure

$$\sigma(x) = \sigma(r) = \int_{S_0} g_{S_0}(x, y)\omega(y)dy$$

is finite, it has such a decomposition, and $\sigma(x) \to 0$ as $x \to \beta$.

Testing of the finiteness of σ is facilitated by the following simple criterion:

Lemma. If every radial $u \in H^2$ on S_0 is unbounded, then the biharmonic measure σ is infinite. If there exists a function $u_0(r) \in H^2 - Q$ with $u_0(r) \to 0$, $\Delta u_0(r) \to 0$ as $x \to \beta$, then $\sigma < \infty$.

Proof. The first part of the Lemma is clear, since $\Delta \sigma = \omega$ entails $\sigma \in H^2$. If $u_0(r) \to 0$, $\Delta u_0(r) \to 0$ as $x \to \beta$ for some $u_0 \in H^2 - Q$, then $a = 1/\Delta u_0(r_0)$ gives $\Delta (au_0) = \omega$, and $b = -au_0(r_0)/\Delta u_0(r_0)$ provides us with the function $\sigma = au_0 + b\Delta u_0$ which has all the properties required of the biharmonic measure.

3. For our first radial space we take the Euclidean N-space E^N . The type distinction is here fascinatingly simple:

Theorem 1. The ideal boundary of E^N has a finite biharmonic measure if and only if N > 4.

Proof. Let us first construct σ for N>4 by means of the definition $\sigma=\lim_{\Omega\to R}\sigma_\Omega$. Choose $r_0=1$, $\varrho>1$, $\Omega=\{r<\varrho\}$, and write σ_ϱ for σ_Ω . For the decomposition

$$\sigma_{\varrho} = a_{\varrho} u_0(r) + b_{\varrho} \Delta u_0(r) + c_{\varrho} q_0(r) + d_{\varrho}$$

we take

$$\sigma_o = a_o r^{-N+4} + b_o r^{-N-2} - c_o r^2 + d_o$$
 ,

where we have absorbed in b_ϱ the constant $[2(N-4)]^{-1}$ from $\Delta r^{-N+4}=2(N-4)r^{-N+2}$, and in c_ϱ the constant $-(2N)^{-1}$ from $\Delta r^2=-2N$. By the definition of σ_ϱ ,

$$\begin{cases} \sigma_{\varrho}(1) = a_{\varrho} + b_{\varrho} + c_{\varrho} + d_{\varrho} = 0 \;, \\ \sigma_{\varrho}(\varrho) = a_{\varrho}\varrho^{-N+4} + b_{\varrho}\varrho^{-N+2} + c_{\varrho}\varrho^{2} + d_{\varrho} = 0 \;, \\ \varDelta\sigma_{\varrho}(1) = 2(N-4)a_{\varrho} - 2Nc_{\varrho} = 1 \;, \\ \varDelta\sigma_{\varrho}(\varrho) = 2(N-4)a_{\varrho}\varrho^{-N+2} - 2Nc_{\varrho} = 0 \;. \end{cases}$$

From the third and fourth equations we obtain

$$\begin{split} a_\varrho &= [2(N-4)(1-\varrho^{-N+2})]^{-1}\,,\\ c_\varrho &= \varrho^{-N+2}[2N(1-\varrho^{-N+2})]^{-1}\,. \end{split}$$

If a , b , c , d are the limits of a_{ϱ} , b_{ϱ} , c_{ϱ} , d_{ϱ} as $\varrho \to \infty$, then

$$a = [2(N-4)]^{-1}, c = 0.$$

The first and second equations above then give

$$\begin{split} b &= \lim_{\varrho \to \infty} \{-\; (1 \,-\, \varrho^{-N+2})^{-1} [a_{\varrho} (1 \,-\, \varrho^{-N-4}) \,+\, c_{\varrho} (1 \,-\, \varrho^2)]\} = -\; [2(N-4)]^{-1} \,, \\ d &= \lim_{\varrho \to \infty} \left[-\; (a_{\varrho} \,-\, b_{\varrho} \,+\, c_{\varrho})\right] = 0 \;. \end{split}$$

Thus we have the explicit expression

$$\sigma(r) = [2(N-4)]^{-1}(r^{-N+4}-r^{-N+2})$$

for the biharmonic measure of the ideal boundary of E^N for N > 4.

4. We now deduce the same result for N > 4 using the Lemma and its proof. For $u_0(r) = r^{-N+4}$, $\Delta u_0(r) = 2(N-4)r^{-N+2}$, we have

$$a = [2(N-4)]^{-1}r_0^{N-2}, b = -[2(N-4)]^{-2}r_0^N,$$

and for $r_0 = 1$ the function $\sigma = au_0 - b \perp u_0$ is the biharmonic measure $[2(N-4)]^{-1}(r^{-N-4}-r^{-N-2})$.

To prove that $\sigma = \infty$ for $N \leq 4$, we use the representation for $\sigma < \infty$

$$\sigma(r) = \begin{cases} ar^2 \log r + b \log r - cr^2 - d , & N = 2 , \\ ar + br^{-1} - cr^2 + d , & N = 3 , \\ a \log r + br^{-2} - cr^2 - d , & N = 4 . \end{cases}$$

For N=2, this is unbounded unless a=b=c=0, and σ is constant. For N=3 or 4, it is unbounded unless a=c=0 and σ is harmonic. However, by $\Delta\sigma=\omega$, σ cannot be harmonic, a contradiction. The proof of Theorem 1 is complete.

5. Can the biharmonic measure of the ideal boundary of E^N be made finite even for $N \leq 4$ if we »shrink» or »expand» the boundary by replacing

Leo Sario

the Euclidean metric ds = |dx| by the metric $(1 + r^2)^{\alpha} |dx|$, with α a sufficiently small or large constant? Denote the resulting space by R_{α}^{N} . The answer is perhaps somewhat unexpected:

Theorem 2. The biharmonic measure σ of the ideal boundary of R_{α}^{N} is infinite for all α if $N \leq 4$. For N > 4, σ is infinite if and only if $\alpha \leq -\frac{1}{2}$.

Proof. An explicit construction of σ as the limit of σ_{Ω} , as in No. 3, is now not possible, and we make use of the Lemma. We know that σ has the form

$$\sigma(r) = au_0(r) + b\Delta u_0(r) + cq_0(r) + d.$$

First we shall find bounded functions u_0 , Δu_0 for N>4. Choose again $S_0=\{r>1\}$. For $h(r)\in H(S_0)$,

$$\begin{split} \varDelta h(r) &= -r^{-N+1}(1+r^2)^{-N\alpha}[r^{N-1}(1+r^2)^{(N-2)\alpha}h'(r)]' = 0 \;, \\ h(r) &= c \int_{-r}^{r} r^{-N+1}(1+r^2)^{-(N-2)\alpha}dr \sim c \int_{-r}^{r} r^{-N+1-2(N-2)\alpha}dr \\ &= \left\{ \begin{aligned} a + br^{-(N-2)(1+2\alpha)} & \text{if } N > 2 & \text{and } x \neq -\frac{1}{2} \;, \\ a + b \log r & \text{if } N = 2 & \text{or } x = -\frac{1}{2} \;. \end{aligned} \right. \end{split}$$

Thus h(r) belongs to the family B of bounded functions if and only if N>2, $x>-\frac{1}{2}$, an assumption we shall make for the present. Here and later we disregard irrelevant multiplicative and additive constants, and we choose an h_0 with

$$h_0(r) \sim r^{-(N-2)(1+2\alpha)}$$
,

which $\to 0$ as $r \to \infty$ if N > 2, $\alpha > -\frac{1}{2}$.

For $\Delta u(r) = h_0(r)$, we obtain

$$[r^{N-1}(1 + r^2)^{(N-2)\alpha}u'(r)]' \sim r^{1+4\alpha}$$
.

Accordingly, in view of $x \neq -\frac{1}{2}$, we have $[] \sim r^{2-4x}$, and, again by virtue of $x \neq -\frac{1}{2}$, we can take u_0 with

$$u_0(r) \sim r^{-(N-4)(1-2\alpha)}$$
.

This $\to 0$ as $r \to \infty$ if -2(N-4)x < N-4, which in turn, under our assumption $x > -\frac{1}{2}$, holds if and only if N > 4. By the Lemma, we conclude that $\sigma < \infty$ if N > 4, $\alpha > -\frac{1}{2}$.

In the discussion of the case $\sigma = \infty$, the nonuniqueness of the generators u_0 , Δu_0 , q_0 (and 1) makes it necessary to consider the unboundedness of all four components of $\sigma(r) \in H^2$. For $\Delta q(r) = 1$, we obtain

$$[r^{N-1}(1+r^2)^{(N-2)\alpha}q'(r)]' \sim r^{N-1+2N\alpha}$$

and therefore

$$q'(r) \sim \begin{cases} r^{1+4\alpha}, & \alpha \neq -\frac{1}{2}, \\ r^{-1} \log r, & \alpha = -\frac{1}{2}. \end{cases}$$

We choose

$$q_0(r) \sim \left\{ egin{array}{ll} r^{2+4lpha} \,, & \chi
eq -rac{1}{2} \,, \ & (\log r)^2 \,, & \chi = -rac{1}{2} \,. \end{array}
ight.$$

For N=2 and any α , $h_0(r) \sim \log r$, and u'(r) satisfies

$$[ru'(r)]' \sim r^{1+4\alpha} \log r \;, [] \sim r^{2+4\alpha} \log r \;, u'(r) \sim r^{1+4\alpha} \log r \;,$$

so that we can take

$$u_0(r) \sim \left\{ egin{array}{l} r^{2+4lpha} \log r \;, \;\; \chi
eq -rac{1}{2} \;, \\ (\log r)^2 \;, \; \chi = -rac{1}{2} \;. \end{array}
ight.$$

Therefore,

$$\sigma(r) \sim \begin{cases} ar^{2+4\alpha} \log r + b \log r + cr^{2-4\alpha} + d, & x \neq -\frac{1}{2} \\ a (\log r)^2 + b \log r + d, & x = -\frac{1}{2}. \end{cases}$$

By virtue of $\Delta \sigma = \omega$, we have $a \neq 0$, $b \neq 0$, hence $\sigma \notin B$, and $\sigma = \infty$. For N = 3, $\alpha \neq -\frac{1}{2}$,

$$h_0(r) \sim r^{-1-2\alpha}$$
 , $u_0(r) \sim r^{1+2\alpha}$, $q_0(r) \sim r^{2+4\alpha}$.

Since $a \neq 0$ and hence $b \neq 0$, we have $\sigma \notin B$, hence $\sigma = \infty$.

For N=3, $x=-\frac{1}{2}$, $h_0(r) \sim \log r$ and

$$[r^{2}(1+r^{2})^{-1} u'(r)]' \sim r^{2}(1-r^{2})^{-3} \log r \sim r^{-1} \log r,$$

$$[] \sim (\log r)^{2}, \quad u'(r) \sim r^{-1} (\log r)^{2}, \quad u_{0}(r) \sim (\log r)^{3}.$$

Since $q_0(r) \sim (\log r)^2$, we have $\sigma(r) \sim (\log r)^3 \notin B$, hence $\sigma = \infty$. For N = 4, $\alpha \neq -\frac{1}{2}$, $h_0(r) \sim r^{-2-4\alpha}$.

$$[r^3(1+r^2)^{2\alpha}u'(r)]' \sim r^{1-4\alpha} \cdot u'(r) \sim r^{-1} \cdot u_0(r) \sim \log r$$

In view of $q_0(r) \sim r^{2+4\alpha}$, $\sigma(r)$ grows at least as rapidly as $\log r$, hence $\sigma = \infty$.

For
$$N=4$$
, $\alpha=-\frac{1}{2}$, $h_0(r)\sim \log r$.

$$[r^3(1+r^2)^{-1}u'(r)]' \sim r^{-1}\log r \;, \;\; u'(r) \sim r^{-1} \; (\log r)^2 \;, \;\; u_0(r) \sim (\log r)^3 \;.$$

Since $q_0(r) \sim (\log r)^2$, we have $\sigma(r) \sim (\log r)^3 \notin B$, hence $\sigma = \infty$. We have proved that $\sigma = \infty$ for $N \leq 4$, all α .

For N > 4, $\alpha < -\frac{1}{2}$,

$$h_0(r) \, \sim r^{-(N-2)(1-2\alpha)} \; , \quad u_0(r) \, \sim r^{-(N-4)(1+2\alpha)} \; , \quad q_0(r) \, \sim r^{2+4\alpha} \; .$$

Therefore, $\sigma \sim r^{\beta}$, with

$$\beta \ge \min \left[-(N-2)(1+2x), -(N-4)(1+2\alpha) \right].$$

The two quantities are both positive for $\alpha < -\frac{1}{2}$, so that $\sigma \notin B$, hence $\sigma = \infty$.

For N > 4, $\alpha = -\frac{1}{2}$, $h_0(r) \sim \log r$,

$$[r^{N-1}(1 \ + \ r^2)^{-(N-2)/2}u'(r)]' \ \sim r^{-1}\log r \ , \ u'(r) \ \sim r^{-1} \left(\log r\right)^2 \ , \ u_0(r) \ \sim (\log r)^3 \ ,$$

and $q_0(r) \sim (\log r)^2$. Consequently $\sigma(r) \sim (\log r)^3 \notin B$, and $\sigma = \infty$.

We have shown that $\sigma=\infty$ for N>4, $\alpha\leq-\frac{1}{2}.$ The proof of Theorem 2 is complete.

6. Next we consider the Poincaré N-ball B_{α}^{N} , which plays an important role in general biharmonic classification theory. By definition,

$$B_{\alpha}^{N} = \{x = (x^{1}, \dots, x^{N}), |x| = r, r < 1, ds = (1 - r^{2})^{\alpha} |dx|, \alpha \in \mathbf{R}\}.$$

We shall give a complete characterization of the finiteness of σ :

Theorem 3. The biharmonic measure of the ideal boundary of the Poincaré ball B_{α}^{N} is finite if and only if

$$\begin{cases} \alpha > -3/2 , & N = 2 , \\ \alpha \in (-3, 1) , & N = 3 , \\ \alpha < (N-2)^{-1} , & N > 3 . \end{cases}$$

Proof. For $h(r) \in H$,

$$\Delta h(r) = -r^{-N+1}(1-r^2)^{-N\alpha} [r^{N-1}(1-r^2)^{(N-2)\alpha}h'(r)]' = 0.$$

and we choose

$$h_0(r) \sim \left\{ \begin{array}{l} \log r \sim 1 - r \,, \ N = 2 \,, \ \text{any } \ \chi \,, \\ (1 - r)^{-(N-2)\chi - 1} \,, \ N > 2 \,, \ \chi = (N-2)^{-1} \,, \\ \log (1 - r) \,, \ N > 2 \,, \ \chi = (N-2)^{-1} \,. \end{array} \right.$$

For
$$\Delta u(r) = h_0(r)$$
,

$$[r^{N-1}(1-r^2)^{(N-2)\alpha}u'(r)]' \sim (1-r)^{N\alpha}h_0(r) \; ,$$

$$u'(r) \sim (1-r)^{-(N-2)\alpha} \int_{-r}^{r} (1-r)^{N\alpha} h_0(r) dr$$
.

Fore N=2, we take

$$u_0(r) \sim \int_0^r \int_0^r (1-s)^{2\alpha+1} ds dr \sim \begin{cases} \int_0^r (1-r)^{2\alpha+2} dr \sim (1-r)^{2\alpha+3} , & \alpha \neq -1 , \\ & -3/2 , \\ \int_0^r \log (1-r) dr \sim (1-r) \log (1-r) , \\ & x = -1 , \\ \int_0^r (1-r)^{-1} dr \sim \log (1-r) , & x = -3/2 . \end{cases}$$

For N=3, we obtain successively

$$u(r) \sim \begin{cases} \int_{-r}^{r} (1-r)^{-\alpha} \int_{-r}^{r} (1-s)^{2\alpha+1} ds dr , & \alpha \neq 1 , \\ \int_{-r}^{r} (1-r)^{-\alpha} \int_{-r}^{r} (1-s)^{3} \log (1-s) ds dr , & \alpha = 1 , \end{cases}$$

$$u(r) \sim \begin{cases} \int_{-r}^{r} (1-r)^{\alpha+2} dr , & \alpha \neq 1 , -1 , \\ \int_{-r}^{r} (1-r)^{3} \log (1-r) dr , & \alpha = 1 , \end{cases}$$

$$\int_{-r}^{r} (1-r)^{3} \log (1-r) dr , & \alpha = -1 ,$$

$$u_{0}(r) \sim \begin{cases} (1-r)^{\alpha+3} , & \alpha \neq 1 , -1, -3, \\ (1-r)^{4} \log (1-r) , & \alpha = 1 , \\ (1-r)^{2} \log (1-r) , & \alpha = -1 , \\ \log (1-r) , & \alpha = -3 . \end{cases}$$

For N=4,

$$u(r) \sim \begin{cases} \int (1-r)^{-2x} \int (1-s)^{2x+1} ds dr, & \alpha \neq \frac{1}{2}, \\ \int (1-r)^{-1} \int (1-s)^2 \log (1-s) ds dr, & \alpha = \frac{1}{2}, \end{cases}$$

$$u_0(r) \sim \begin{cases} (1-r)^3 , & x \neq \frac{1}{2}, -1, \\ (1-r)^3 \log (1-r), & x = \frac{1}{2}, \\ (1-r)^3 \log (1-r), & x = -1. \end{cases}$$

$$\begin{split} u(r) \sim \begin{cases} \int (1-r)^{-(N-2)\alpha} \int (1-s)^{2\alpha+1} ds dr \;, & x \neq (N-2)^{-1} \;, \\ \int (1-r)^{-1} \int (1-s)^{N/(N-2)} \log \; (1-s) ds dr \;, & \alpha = (N-2)^{-1} \;, \\ u_0(r) \sim \begin{cases} (1-r)^{-(N-4)\alpha+3} \;, & \alpha \neq 3(N-4)^{-1} \;, \; (N-2)^{-1} \;, -1 \;, \\ \log \; (1-r) \;, & \alpha = 3(N-4)^{-1} \;, \\ (1-r)^{(2N-2)/(N-2)} \log \; (1-r) \;, & \alpha = (N-2)^{-1} \;, \\ (1-r)^{N-1} \log \; (1-r) \;, & \alpha = -1 \;. \end{cases} \end{split}$$

$$u_0(r) \sim \begin{cases} (1-r)^{-(N-4)\alpha+3}\,, & \alpha \neq 3(N-4)^{-1}\,,\,(N-2)^{-1}\,,-1 \\ \log \,(1-r)\,, & \alpha = 3(N-4)^{-1}\,, \\ (1-r)^{(2N-2)/(N-2)}\log \,(1-r)\,, & \alpha = (N-2)^{-1}\,, \\ (1-r)^{N-1}\log \,(1-r)\,, & \alpha = -1\,. \end{cases}$$

For $\Delta q(r) = 1$

$$[r^{N-1}(1-r^2)^{(N-2)x}q'(r)]' \sim (1-r)^{Nx},$$

$$q'(r) \sim \begin{cases} (1-r)^{2x-1}, & x \neq -N^{-1}, \\ (1-r)^{(N-2),N}\log(1-r), & \alpha = -N^{-1}. \end{cases}$$

For $N \geq 2$,

$$q_0(r) \sim \left\{ egin{array}{ll} (1-r)^{2lpha+2}\,, & lpha
eq -N^{-1}\,, -1\,, \\ (1-r)^{(2N-2)/N}\log\left(1-r
ight)\,, & lpha = -N^{-1}\,, \\ \log\left(1-r
ight)\,, & lpha = -1\,. \end{array}
ight.$$

$$\begin{split} h_0(r) &\to 0 \quad \text{if} \quad \left\{ \begin{array}{l} N = 2 \;, \; \text{any} \; \; \chi \;, \\ N > 2 \;, \; \; \chi < (N-2)^{-1} \;, \end{array} \right. \\ u_0(r) &\to 0 \quad \text{if} \quad \left\{ \begin{array}{l} N = 2 \;, \; \; \chi > - \, 3/2 \;, \\ N = 3 \;, \; \; \chi > - \, 3 \;, \\ N = 4 \;, \; \text{any} \; \; \chi \;, \\ N > 4 \;, \; \; \chi < 3(N-4)^{-1} \;. \end{array} \right. \end{split}$$

We conclude by the Lemma that

$$\sigma < \infty \;\; ext{if} \; \left\{ egin{array}{l} N=2 \;,\;\; lpha > -\; 3/2 \;, \ N=3 \;,\;\; lpha \in (-\; 3 \;, \, 1) \;, \ N>3 \;,\;\; lpha < (N-2)^{-1} \;, \end{array}
ight.$$

as claimed.

In preparation for the case $\sigma = \infty$, we observe that

$$\begin{split} h_0 \not\in B \Leftrightarrow \left\{ \begin{aligned} N &= 2 \;,\;\; \text{no} \;\; \alpha \;, \\ N &> 2 \;,\;\; \alpha \geq (N-2)^{-1} \;, \end{aligned} \right. \\ u_0 \not\in B \Leftrightarrow \left\{ \begin{aligned} N &= 2 \;,\;\; \alpha \leq -3/2 \;, \\ N &= 3 \;,\;\; \alpha \leq -3 \;, \\ N &= 4 \;,\;\; \text{no} \;\; \alpha \;, \\ N &> 4 \;,\;\; \alpha \geq 3(N-4)^{-1} \;, \end{aligned} \right. \end{split}$$

$$q_0 \not\in B \Leftrightarrow N \geq 2$$
 , $\alpha \leq -1$.

We have obtained

$$au_0 + b \, \exists \, u_0 \notin B \Leftrightarrow \left\{ egin{array}{ll} N = 2 \; , \; \; lpha \leq -3/2 \; , \\ N = 3 \; , \; \; lpha \notin (-3 \; , \; 1) \; , \\ N > 3 \; , \; \; lpha \geq (N - 2)^{-1} \; , \end{array}
ight.$$

except that we shall return later to the case N>4, $\alpha \geq 3(N-4)^{-1}$. Here for N=2, we have $h_0\in B$, with

$$u_0(r) \sim \left\{ \begin{array}{l} (1-r)^{2\alpha+3} \,, & \alpha < - \; 3/2 \;, \\ \\ \log \, (1-r) \,, & \alpha = - \; 3/2 \;, \end{array} \right.$$

whereas

$$q_0(r) \sim (1-r)^{2x-2}, \quad x \le -3/2.$$

Thus the rates of growth of u_0 and q_0 are different for $x \le -3/2$, and we have $\sigma \notin B$, hence $\sigma = \infty$ as claimed.

For N=3, $h_0 \not\in B$, $u_0 \in B$ if $\alpha \geq 1$, with

$$h_0(r) \sim \begin{cases} (1-r)^{-\alpha+1}, & \alpha > 1, \\ \log (1-r), & \alpha = 1, \end{cases}$$

whereas

$$q_0(r) \sim (1-r)^{2\alpha+2} \,, \quad x \geq 1 \;.$$

Thus the rates of growth are different for $x \ge 1$, hence $\sigma = \infty$. Moreover, $h_0 \in B$, $u_0 \notin B$ for $\alpha \le -3$, with

$$u_0(r) \sim \begin{cases} (1-r)^{x-3}, & x < -3, \\ \log(1-r), & x = -3. \end{cases}$$

whereas

$$q_{\rm 0}(r) \sim (1-r)^{2\alpha + 2} \,, \ \ {\rm s} \le - \ 3 \;.$$

The rates of growth are different for $\alpha \leq -3$, hence $\sigma = \infty$.

For N=4, $h_0\not\in B$, $u_0\in B$ if $\alpha\geq \frac{1}{2}$, with

$$h_0(r) \sim \left\{ \begin{array}{ll} (1-r)^{-2\alpha+1} \,, & \alpha > \frac{1}{2} \,, \\ \log \, (1-r) \,, & \alpha = \frac{1}{2} \,, \end{array} \right.$$

whereas

$$q_0(r) \sim (1-r)^{2\alpha+2}, \ \alpha \geq \frac{1}{2}.$$

The rates of growth are different for $\alpha \geq \frac{1}{2}$, hence $\sigma = \infty$.

For N > 4, $h_0 \notin B$, $u_0 \in B$ if $x \in [(N-2)^{-1}, 3(N-4)^{-1}]$, with

$$h_0(r) \sim \left\{ \begin{array}{ll} (1-r)^{-(N-2)\alpha+1} \,, & \alpha \in ((N-2)^{-1} \,, \ 3(N-4)^{-1}) \,, \\ \\ \log \, (1-r) \,, & \alpha = (N-2)^{-1} \,, \end{array} \right.$$

whereas

$$q_0(r) \sim (1-r)^{2\alpha+2} \,, \ \ \alpha \in [(N-2)^{-1} \,, \ \ 3(N-4)^{-1}) \;.$$

Thus the rates of growth are different for $x \in [(N-2)^{-1}, 3(N-4)^{-1})$, hence $\sigma = \infty$. Moreover, $h_0 \notin B$, $u_0 \notin B$ for $x \geq 3(N-4)^{-1}$, with

$$\begin{split} h_0(r) &\sim (1-r)^{-(N-2)\alpha-1} \,, \quad x > 3(N-4)^{-1} \,, \\ u_0(r) &\sim \left\{ \begin{array}{ll} (1-r)^{-(N-4)\alpha-3} \,, & x > 3(N-4)^{-1} \,, \\ \log \, (1-r) \,, & \alpha = 3(N-4)^{-1} \,, \end{array} \right. \end{split}$$

whereas

$$q_0(r) \sim (1-r)^{2\alpha+2}, \quad \alpha \ge 3(N-4)^{-1}.$$

The rates of growth are all different for $\alpha \geq 3(N-4)^{-1}$, hence $\sigma = \infty$. The proof of Theorem 3 is herewith complete.

7. We proceed to the proof of the fundamental property of σ referred to in No. 1. Let R be an arbitrary Riemannian manifold, R_0 its regular subregion, and x a point of $S_0 = R - \bar{R}_0$.

Proposition. The finiteness of the biharmonic measure $\sigma(x)$ on \bar{S}_0 is independent of R_0 and of x.

Proof. For any region G, let $g_G(x,y)$ be the harmonic Green's function on G, with pole y. Denote the harmonic measure on S_0 by ω . The biharmonic measure on S_0 and the biharmonic Green's function on R, if they exist, are

$$egin{align} \sigma_{S_0}(x) &= \int\limits_{S_0} g_{S_0}(x\;,\,y) \omega(y) dy\;, \ & \ \gamma(p\;,q) &= \int\limits_{R} g_{R}(p\;,\,y) g_{R}(y\;,q) dy\;. \end{align}$$

We are to prove:

I. If $\sigma_{S_0}(x) < \infty$ for some S_0 , $x \in S_0$, then $\gamma(p,q) < \infty$ for any p, $q \in R$.

II. If $\gamma(p\ ,q)<\infty$ for some $p\ ,q\in R$, then $\sigma_{S_0}(x)<\infty$ for any $S_0\ ,x\in S_0.$

Proof of I. Given $\sigma_{S_0}(x) < \infty$ for some S_0 , $x \in S_0$, choose any p, $q \in R$ and regular subregions R_1 , Ω of R with

$$\bar{R}_0 \cup x \cup p \cup q \subset R_1 \subset \bar{R}_1 \subset \Omega \ .$$

Set
$$\alpha_0 = \partial R_0$$
, $\alpha_1 = \partial R_1$, $\beta_\Omega = \partial \Omega$, $S_1 = R - \bar{R}_1$, and take

$$\omega_{\varOmega} \in C(\bar{\varOmega} \cap \bar{S}_0) \cap H(\varOmega \cap S_0) \;, \;\; \omega_{\varOmega} |_{X_0} = 1 \;, \;\; \omega_{\varOmega} |_{\beta_{\varOmega}} = 0 \;.$$

We shall use the following constants:

$$\begin{split} m_{1\varOmega} &= \min_{\mathbf{y} \in \alpha_{1}} \ g_{S_{0} \cap \varOmega}(y \;, x) \;, \quad M_{1\varOmega} &= \max_{\mathbf{y} \in \alpha_{1}} g_{S_{0} \cap \varOmega}(y \;, x) \;, \\ m_{2\varOmega} &= \min_{\alpha_{1}} \omega_{\varOmega} \;, \quad M_{2\varOmega} &= \max_{\alpha_{1}} \omega_{\varOmega} \;, \\ m_{3\varOmega} &= \min_{\mathbf{y} \in \alpha_{1}} g_{\varOmega}(y \;, p) \;, \quad M_{3\varOmega} &= \max_{\mathbf{y} \in \alpha_{1}} g_{\varOmega}(y \;, p) \;, \\ m_{4\varOmega} &= \min_{\mathbf{y} \in \alpha_{1}} g_{\varOmega}(y \;, q) \;, \quad M_{4\varOmega} &= \max_{\mathbf{y} \in \alpha_{1}} g_{\varOmega}(y \;, q) \;, \\ m_{i} &= \lim_{\varOmega \to R} m_{i\varOmega} \;, \quad M_{i} &= \lim_{\varOmega \to R} M_{i\varOmega} \;, \quad i = 1 \;, 2 \;, 3 \;, 4 \;, \\ k_{1} &= \frac{M_{3}M_{4}}{m_{2}m_{2}} \;, \quad k_{2} &= \frac{M_{1}M_{2}}{m_{2}m_{4}} \;. \end{split}$$

We obtain

$$g_{\varOmega}(y\,,\,p) \leq rac{\mathcal{M}_{3\varOmega}}{m_{1\varOmega}}\,g_{S_{\circ}\cap\varOmega}(y\,,\,x) \quad ext{on} \quad s_1 \cup eta_{\varOmega}\,, \quad ext{hence on} \quad ar{\varOmega} \cap ar{S}_1\,,$$
 $g_R(y\,,\,p) \leq rac{\mathcal{M}_3}{m_1}\,g_{S_{\circ}}(y\,,\,x) \quad ext{on} \quad ar{S}_1\,,$ $g_{\varOmega}(y\,,\,q) \leq rac{\mathcal{M}_{4\varOmega}}{m_{2\varOmega}}\,\omega_{\varOmega}(y) \quad ext{on} \quad ar{\varOmega} \cap ar{S}_1\,,$ $g_R(y\,,\,q) \leq rac{\mathcal{M}_4}{m_2}\,\omega(y) \quad ext{on} \quad ar{S}_1\,.$

Therefore,

$$\int\limits_{S_1} g_R(p,y)g_R(y,q)dy = \int\limits_{S_2} g_R(y,p)g_R(y,q)dy$$

$$\begin{split} &\leq k_1 \int\limits_{S_1} g_{S_0}(y\;,x) \omega(y) dy \\ &= k_1 \int\limits_{S_1} g_{S_0}(x\;,y) \omega(y) dy \\ &< k_1 \int\limits_{S} g_{S_0}(x\;,y) \omega(y) dy < \; \infty \;, \end{split}$$

and a fortiori

$$\gamma(p, q) = \int_{R} g_{R}(p, y)g_{R}(y, q)dy$$

$$= C_{1} + \int_{S_{1}} g_{R}(p, y)g_{R}(y, q)dy$$

$$= C_{1} + k_{1}\sigma_{S}(x) < \infty.$$

Proof of II. Suppose $\gamma(p,q)<\infty$ for some $p,q\in R$. Take any regular region R_0 and an $x\in S_0=R-\bar{R}_0$. For R_1 , Ω chosen as before,

$$\begin{split} g_{S_0 \cap \varOmega}(y \;, x) & \leq \frac{M_{1\varOmega}}{m_{3\varOmega}} \; g_\varOmega(y \;, p) \quad \text{on} \quad \alpha_1 \cup \beta_\varOmega \;, \; \; \text{hence on} \quad \bar{S}_1 \cap \bar{\varOmega} \;, \\ g_{S_0}(y \;, x) & \leq \frac{M_1}{m_3} \; g_R(y \;, p) \quad \text{on} \quad \bar{S}_1 \;, \\ \omega_\varOmega(y) & \leq \frac{M_{2\varOmega}}{m_{4\varOmega}} \; g_\varOmega(y \;, q) \quad \text{on} \quad x_1 \cup \beta_\varOmega \;, \; \; \text{hence on} \quad \bar{S}_1 \cap \bar{\varOmega} \;, \\ \omega(y) & \leq \frac{M_2}{m_4} \; g_R(y \;, q) \quad \text{on} \quad \bar{S}_1 \;. \end{split}$$

Therefore,

$$\begin{split} \sigma_{S_0}(x) &= \int_{S_0} g_{S_0}(x \, , y) \omega(y) dy \\ &= C_2 + \int_{S_1} g_{S_0}(x \, , y) \omega(y) dy \\ &\leq C_2 + k_2 \int_{S_1} g_R(y \, , p) g_R(y \, , q) dy \end{split}$$

$$= C_2 + k_2 \left(C_3 + \int_R g_R(p, y) g_R(y, q) \, dy \right)$$

= $C_2 + k_2 (C_3 + \gamma(p, q)) < \infty$.

8. In view of the Proposition, we may introduce the class of Riemannian manifolds R with ideal boundaries of infinite biharmonic measure

$$O_{\Sigma} = \{R, \sigma = \infty\}.$$

The class of Riemannian manifolds which do not carry biharmonic Green's functions γ is denoted by O_{Γ} (cf. [22]). Properties I and II of σ and γ provide us with our main result:

Theorem 4. $O_{\Sigma} = O_{T}$.

As a consequence, e.g. the values of α in Theorem 3 characterize the Poincaré balls in O_{Γ} . Moreover, known properties of O_{Γ} carry over to O_{Σ} . E.g., parabolicity implies $\sigma = \infty$.

The author is indebted to Professor Cecilia Wang for a careful checking of the manuscript.

A bibliography of recent work in the field is attached.

University of California, Los Angeles Department of Mathematics Los Angeles, California 90 024, USA

References

- [1] Chung, L., and Sario, L.: Harmonic L^p functions and quasiharmonic degeneracy, (to appear).
- [2] ->- ->- Harmonic and quasiharmonic degeneracy of Riemannian manifolds, Tôhoku Math. J., (to appear).
- [3] ->- ->- and Wang, C.: Riemannian manifolds with bounded Dirichlet finite polyharmonic functions. Ann. Scuola Norm. Sup. Pisa, (to appear).
- [4] -»- -»- Quasiharmonic L^p functions on Riemannian manifolds,
 Ann. Scuola Norm. Sup. Pisa, (to appear).
- [5] HADA, D., SARIO, L., and WANG, C.: Dirichlet finite biharmonic functions on the Poincaré N-ball. - J. Reine Angew. Math., (to appear).
- [6] --> --> --> N-manifolds carrying bounded but no Dirichlet finite harmonic functions. Nagoya Math. J. 54 (1974), 1-6.
- [7] --> --> -- Bounded biharmonic functions on the Poincaré N-ball. -- Kōdai Math. Sem. Rep., (to appear).
- [8] Kwon, Y. K., Sario, L. and Walsh, B.: Behavior of biharmonic functions on Wiener's and Royden's compactifications. - Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226.
- [9] MIRSKY, N., SARIO, L., and WANG, C.: Bounded polyharmonic functions and the dimension of the manifold. - J. Math. Kyoto Univ. 13 (1973), 529-535.
- [10] Nakai, M., and Sario, L.: Completeness and function-theoretic degeneracy of Riemannian spaces. - Proc. Nat. Acad. Sci. 57 (1967), 29-31.
- [11] --> -- Biharmonic classification of Riemannian manifolds. Bull. Amer. Math. Soc. 77 (1971), 432-436.
- [12] --- --- Quasiharmonic classification of Riemannian manifolds. Proc. Amer. Math. Soc. 31 (1972), 165-169.
- [13] ->- ->- Dirichlet finite biharmonic functions with Dirichlet finite Laplacians. Math. Z. 122 (1971), 203-216.
- [14] ->- ->- A property of biharmonic functions with Dirichlet finite Laplacians. Math. Scand. 29 (1971), 307-316.
- [15] -->- Existence of Dirichlet finite biharmonic functions. Ann. Acad. Sci. Fenn. A. I. 532 (1973), 1-33.
- [16] --- --- Existence of bounded biharmonic functions. J. Reine Angew. Math. 259 (1973), 147-156.
- [17] ->- ->- Existence of bounded Dirichlet finite biharmonic functions. Ann. Acad. Sci. Fenn. A. I. 505 (1972), 1-12.
- [18] ->- ->- Biharmonic functions on Riemannian manifolds. Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335.

- [19] Sario, L.: Biharmonic and quasiharmonic functions on Riemannian manifolds. Duplicated lecture notes 1968-70, University of California, Los Angeles.
- [20] —»— Quasiharmonic degeneracy of Riemannian N-manifolds. Kōdai Math. Sem. Rep., (to appear).
- [21] ->- Completeness and existence of bounded biharmonic functions on a Riemannian manifold. Ann. Inst. Fourier (Grenoble), (to appear).
- [22] ->- A criterion for the existence of biharmonic Green's functions, (to appear).
- [23] ->- Biharmonic measure. Ann. Acad. Sci. Fenn., (to appear).
- [24] -> Biharmonic Green's functions and harmonic degeneracy. J. Math. Kyoto Univ., (to appear).
- [25] ->- and Nakai, M., Classification Theory of Riemann Surfaces. Springer-Verlag, 1970, 446 pp.
- [26] Wang, C.: The class of (p, q)-biharmonic functions. Pacific J. Math. 41 (1972), 799—808.
- [27] ->- ->- Counterexamples in the biharmonic classification of Riemannian 2-manifolds. Pacific J. Math. 50 (1974), 159-164.
- [28] ->- ->- Generators of the space of bounded biharmonic functions. Math. Z. 127 (1972), 273-280.
- [29] —»— —»— Quasiharmonic functions on the Poincaré N-ball. Rend. Mat. (4) 6 (1973), 1-14.
- [31] ->- ->- Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball. Pacific J. Math. 48 (1973), 267-274.
- [32] —»— —»— Negative quasiharmonic functions. Tôhoku Math. J. 26 (1974), 85-93.
- [33] ->- ->- Radial quasiharmonic functions. Pacific J. Math. 46 (1973), 515-522.
- [34] ->- ->- Parabolicity and existence of bounded biharmonic functions. Comm. Math. Helv. 47 (1972), 341-347.
- [35] --- Positive harmonic functions and biharmonic degeneracy. Bull. Amer. Math. Soc. 79 (1973), 182-187.
- [36] ->- Parabolicity and existence of Dirichlet finite biharmonic functions.
 J. London Math. Soc. (2) 8 (1974), 145-148.
- [37] ->- -- Harmonic and biharmonic degeneracy. Kōdai Math. Sem. Rep. 25 (1973), 392-396.
- [38] = = Harmonic L^p -functions on Riemannian manifolds. Kōdai Math. Sem. Rep., (to appear).
- [39] ->- ->- and Range, M.: Biharmonic projection and decomposition. Ann. Acad. Sci. Fenn. A. I. 494 (1971), 1-14.
- [40] WANG, C. and SARIO, L.: Polyharmonic classification of Riemannian manifolds. -J. Math. Kyoto Univ. 12 (1972), 129-140.