ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

587

BIHARMONIC MEASURE

BY

LEO SARIO

HELSINKI 1974
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1975.587


koskenoj
Typewritten text
doi:10.5186/aasfm.1975.587


Copyright © 1974 by
Academia Scientiarum Fennica
ISSN 0066-1953
ISBXN 951-41-0201-0

Communicated 11 March 1974

KESKUSKIRJAPAINO
HELSINKI 1974



Biharmonic measure

The harmonic Green’s function ¢ is known to exist on a Riemannian
manifold R if and only if the harmonic measure « of the ideal boundary
f does not reduce to a constant. This measure iz a harmonic function on
the complement S, = R — R, of the closure of a regular region R, with
essentially the boundary values 1 on R, and 0 on . The biharmonic
Green’s function y on R, with »boundary values» y = 4y =0 on f,
exists if and only if o € L3(S,) [22]. In the present paper we ask: can a
nonharmonic biharmonic function be introduced on S, with the property
that its nondegeneracy characterizes the existence of 7y, in analogy with
the nondegeneracy of o characterizing the existence of g? We shall
show that this is possible. The function, which we will call the biharmonic
measure o of B, is the limit of biharmonic functions ¢, on subregions
Sy N 2 of S, with the © regular subregions of R containing R, In
contrast with approximating harmonic measures o, with o, =1 on
0R,, ®wo=0 on 02, the function ¢, with Ao, = v, vanishes on
the entire boundary of S,N 2, and spans S, N 2 like an arc shaped
bridge. As 2 increases, the height of this arch o, increases, and its limit
¢ as 2 exhausts R is either an arch spanning S, or else the constant
. We shall show that the finiteness of ¢ is independent of the choice of
S,. and we can therefore introduce the class 0. of Riemannian manifolds
with boundaries of infinite biharmonic measure.

We first explore O in its own right. For radial spaces, which play
a central role in biharmonic classification theory, we decompose o into its
biharmonic, harmonic. quasiharmonic, and constant components. The
biharmonic type of R can then be easily tested. In particular, ¢ << oc
if both the biharmonic and harmonic components of ¢ tend to zero as
one approaches . We use this test to determine the type of a number
of fundamental manifolds used in biharmonic classification theory. E.g.,
for the Poincaré .V-ball
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MOS Classification 31B30.
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BY={x=(@',...,2%),lz|=r,r<1,ds= (1 —12)*|dz|,~ € R}
we obtain the following complete characterizations:
x < —3/2, N=2,
BY€Oy<= Jag¢(—3,1), N=3,
o> (N—2)1, N>3.

After this study of o we establish its characteristic property in our
original problem:

O, =0,,

where O, is the class of Riemannian manifolds which do not carry the
biharmonic Green’s function yp. In particular, the above values of «
exclude » on the Poincaré ball B..

The role of O. in general biharmonic classification theory will be
discussed in another context.

1. The Laplace-Beltrami operator | = do — od gives the class H of
harmonic functions A, 4h = 0, and the class H2? of nonharmonic bi-
harmonic functions w , A%w = 0, Au = 0. Let R,, £ be regular subregions
of R, with R,C Q, and set S, = R — R,, « = 0R,, B, = 0Q. Take
0w, €08, N Q), 0, €HIS, NQ), wy|x =1, wylp,=0. The directed
limit & = lim,,_z®, is the harmonic measure on S, of the ideal boundary
B of R.

We introduce:

Definition. The directed limit

c=limag,,
2—R
where

0, €CS,N2)NHAS,N D). 6, =0,. 6,7 =0,8,=0,

is the biharmonic measure of the ideal boundary p of the Riemannian mani-
fold R.

The limit always exists. In fact. if g5 o(x,y) is the harmonic Green’s
function on S, N 2 with pole y, then

oolr) = f Is,nol® s Y)oo(y)dy ,

5,Nn0

with dy the Riemannian volume element at y. Since both gg ., and
g increase with 0, so does o,, and the limit ¢ exists, finite or infinite,
at every x € S,. We shall show in No. 7 that the finiteness is independent
of  and of 8.
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2. We first study the biharmonic measure ¢ on radial spaces, e.g.,
the N-space and the N-ball, each endowed with a radial metric
ds = Mr)dx,, r= |x|. We choose R,= {r <ry, S;={r>ry

Let @ bz the class of quasiharmonic functions ¢, defined by Adq = 1.
The space of all radial biharmonic functions u(r) ., A2u(r) = 0, is generated
by four functions: any wuy(r) € H2 — @, Aduy(r). any ¢,(r) € ¢, and the
constant 1. Thus every wu(r) has a decomposition

u(r) = auy(r) + bAwuy(r) + cqo(r) + d .

which depends on the choice of u, and ¢, In particular. if the biharmonic
measure

is finite, it has such a decomposition, and o(x)—>0 as x—f.

Testing of the finiteness of ¢ is facilitated by the following simple
criterion:

Lemma. If every radial w € H*> on S, is unbounded, then the biharmonic
measure o is infinite. If there exists a function wuy(r) € H* — @ with
Ug(r) =0, Aug(r)—>0 as x—p3, then o << 0.

Proof. The first part of the Lemma is clear, since Ao = o entails
o € H2 If wuy(r)—0, Auy(r)—>0 as x—f for some u, € H2 — @, then
a = 1]/Auy(ry) gives A(awy) = o, and b = — auy(ry)/Auy(r,) provides us
with the function ¢ = awu, + bAdu, which has all the properties required
of the biharmonic measure.

3. For our first radial space we take the Euclidean N-space E. The
typs distinction is here fascinatingly simple:

Theorem 1. The ideal boundary of E~ has a finite biharmonic measure
if and only if N > 4.

Proof. Let us first construct ¢ for N > 4 by means of the definition
o = lim, o, Choose r,=1, o>1, Q={r <o}, and write o,
for o,. For the decomposition )

o, = a,uy(r) — brl wo(r) = ¢,qo(r) + dg
we take

o, =ay "t — by — et d,,
where we have absorbed in b, the constant [2(N — 4)]7 from Ay ! =
2(N — 4)~>7% and in ¢, the constant — (2N)7! from .Ir* = — 2.
By the definition of G,
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~1

]a,(l)zag—}—bg—q—cy—!—dgzo,

o.(0) =a,o Nt LD oV c,0® +d, =0,

o\& ) o
Ao, (1) = 2(N — 4)a, — 2N¢, =1,
Ao (o) = 2(N — 4)((‘_,9*’\*2 — 2N¢, =0

From the third and fourth equations we obtain

a, = [2(N — 4)(1 — o >3]

¢, = o " TR2N(L — o7V

If a,b,c,d are the limits of a,,b,,c,.d, as o— =, then
a= 2N —4)], ¢c=0.

The first and second equations above then give

b=1lim{— (L —o ) a,(1 —o " ") —c(l — )] =—[2(LN =4,

o d=1lim[— (a, b, —c)]=0.
Thus we have the explicit expression
olr) = [2(N — 47— Y

for the biharmonic measure of the ideal boundary of EY for N > 4.

4. We now deduce the same result for .\ > 4 using the Lemma and
its proof. For wy(r) = r "%, uy(r) = 2(N — 4~ "2 we have
@ = [2N — 9 b= — 2N — 4]
and for 7, = 1 the function ¢ = «u, — b lu, is the biharmonic measure

[2(N — )] 2™ — ),
To prove that ¢ = = for N < 4. we use the representation for ¢ << =

artlogr —blogr —er* —d, N =2,
o(r) = ar +br7t —er2—d. N =3,
Ialog'rfbr‘zécr'l—rl. N =1,
For N = 2, this is unbounded unless @« = = ¢ = 0. and ¢ is constant.
For N = 3 or 4, it is unbounded unless @« = ¢ = 0 and ¢ is harmonic.

However, by Ao = o, ¢ cannot be harmonic. a contradiction. The proof
of Theorem 1 is complete.

5. Can the biharmonic measure of the ideal boundary of E" be made
finite even for N << 4 if we »shrink» or »expand» the boundary by replacing



~1

LeEo Sario

the Euclidean metric ds = |dx| by the metric (1 + 7?)*|dx|, with « a
sufficiently small or large constant? Denote the resulting space by R..
The answer is perhaps somewhat unexpected:

Theorem 2. The biharmonic measure o of the ideal boundary of R, is
infinite for all x if N < 4. For N >4, o is infinite if and only if
x < —1

Proof. An explicit construction of ¢ as the limit of ¢,, as in No. 3,
is now not possible, and we make use of the Lemma. We know that ¢
has the form

o(r) = auy(r) + bluy(r) + cqy(r) + d .
First we shall find bounded functions w,, du, for N > 4. Choose again
Sy = {r > 1}. For h(r) € H(S,),
ARfr) = — =L 4 2L O] = 0,

r r

h(r) = ¢ f PV ) e f pm NN gy

{ a + b~ (=AH2) 3f N — 2 and

3
[N

o=

a-+blogr if N=2 or x= —

Thus h(r) belongs to the family B of bounded functions if and only if
N >2,x> — % an assumption we shall make for the present. Here
and later we disregard irrelevant multiplicative and additive constants,
and we choose an h, with

kO(T) NT~(N—2)(1+20¢) ,

which —0 as r—> o if N>2,x> — L.
For Au(r) = hy(r), we obtain

[P 1 = )N ()]~

Accordingly, in view of \ = — 1. we have [] ~ *. and. again by
virtue of « % — 1, we can take u, with

Up(r) ~ r T hi=R
This —0 as r— oo if — 2(N — 4)x < N — 4. which in turn, under
our assumption « > — %, holds if and only if N > 4. By the Lemma,

we conclude that ¢ < oo if N >4,x> — 1

In the discussion of the case ¢ = oo, the nonuniqueness of the
generators wu,, Au,, q, (and 1) makes it necessary to consider the un-
boundedness of all four components of o(r) € H2. For Aq(r) =1, we

obtain
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[P )T ()] YT

and therefore

, 7.1~I—40( ) X ¢ - % s
q(r) ~y 1
rllogr, x = — 3.
We choose
7‘2+41 s A :: — % .
Qo(r) ~
(logr)2, ~= —1%.

For N =2 and any «, hy(r) ~logr, and w'(r) satisfies
[r'(r)] ~r ¥ logr, [] ~r **logr, u'(r) ~r**logr,

so that we can take

() {7‘2+4a10g7',ﬁ\;é—%—’
uy(r) ~
’ (logr?. = —}.
Therefore,
ar P log r — blogr — e —d, A= — %
G(T)N{
a(logr)?+blogr+d, N= 1

By virtue of Ao =, we have a # 0,b # 0, hence o0 ¢ B, and ¢ = .
For N=3,x # — 3%

Bo(r) ~r= 172 ag(r) ~ TR go(r) ~
Since @ = 0 and hence b == 0. we have o € B, hence o= .
For N=3.,x= — % ,ho(r) ~logr and
(P21 -~ )~ ()] ~ 21 — )" Flog r ~rtlogr,

[1 ~ (log r)?, u’(r) ~ Y (log r)?. uylr) ~ (log r).

Since qo( ) (10g 7‘) \\e have o(r) ~ (lOg "3 ¢ B, hence ¢ = x.
FOI‘ _L* 4 )X ;:‘: o 7 . ho(r) ~ ’,—2—43.

[P+ 72 ()] ~ '~ ') ~r7h . u(r) ~log r.

In view of q,(r) ~r***, o(r) gcrows at least as rapidly as logr, hence
6= .
For N =4,0 = — 3%, hy(r) ~logr.

[Pl + )/ (r)] ~rtlogr, u'(r) ~r~t(logr)?. uyr) ~ (log7r)®.

Since ¢y(r) ~ (logr)?, we have o(r) ~ (logr)*€ B, hence o= . We
have proved that ¢ = oo for N <4, all .
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For N>4,0 < —1

ko(r) ~ (Y22 . u(r) ~ (V= 9)(1+20) , 90(7‘) ~ 2
Therefore, o ~ %, with
B =min [— (N — 2)(1 -+ 2v), — (N — 4)(1 - 2x)] .
The two quantities are both positive for »« < — 1, so that o € B, hence
o= oo.
For N >4, 0= —1 ) ~logr,

[PV YL A 22) "D ()]~ tlog v, ' (r) ~ Y (log 1), uo(r) ~ (log 7)3,

and gy(r) ~ (log 7)2. Consequently o(r) ~ (log7)? ¢ B, and o = oo.
We have shown that 0 = o for N >4,0 < — L. The proof of
Theorem 2 is complete.

6. Next we consider the Poincaré N-ball By, which plays an important
role in general biharmonic classification theory. By definition,
BY={a=(,....,2Y), 2 =r,r<1.ds— (I —r3)*dr, ,x € R}

We shall give a complete characterization of the finiteness of o:
Theorem 3. T'he bikarmonic measure of the ideal boundary of the Poincaré
ball B is finite if and only if
’(x>—3/2, N =2,
x€(—3,1), N=3,
loc<(N—2)‘1, N > 3.
Proof. For h(r) € H,
Ah(r) = — r= Y1 — 22~ 11— )0 (1)) = 0,
and we choose
logr ~1—7r, N =2, anyv a,
(1 — 7)==l N =2 = (V2
' log(1—7), N >2, v= (X — 21,

ho(r) ~

For Au(r) = hy(r),

[P = )]~ (1 ) ()

w'(r) ~ (1 — 7)== f (1 — 7)™ Ry (r)dr .
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Fore N = 2,

Uy(r) fo(l—

we take

/(1 — )2y~ (1 — )T x £ — 1,
— 3/2,

r

3)2"‘+1d8d7‘ ~ flog (I —7)dr ~ (1 —r)log (1 —7),

x=—1,

r

f(l — ) dr ~log (1 —r),n = — 3/2.

For N = 3, we obtain successively

ug(r) ~

For N =4,

u(r) ~

r r

/(1 — r)“"f(l — s)™*dsdr x#1,

r T

f(l—r)—af(1—8)310g(1—s)dsdr, x=1,

f(l—r)*”dr, N£EL,— 1,

r

f(l—-r)3log(1—r)dr, =1,

f(l—r)log(l—r)dr, x=—1,

(1—r)a+3’ 06#1,——1,——3,

(1 —nr*log(l —7r), x=1,

(I —r)3?log(l —r). r»=—1,

log (1 — 1), W= — 3.

f(l — )7 f(l — sy dsdr x#E,

f(l—r)_lf(l—S)QIOg(I—S)dsdr, x=1%,
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’ 1 — 7‘ X ’75 % s T 1 3
NG l—r3log -7, x=1%,
Il—r310g —r), x=—1.
For N > 4,
l f (1 — )= V=2 f (1 — )™ dsdr, v EW 27,
u(r) ~ 1, r
I _/(1 — 7)1 f(l — )V og (1 — s)dsdr , x = (N — 2)7,
[ (1 — T)_(_\‘-«L)af:i , x £ 3N —4)71 (N —2)71, —1,
Jlog 1—r)), x = 3(N —4)7
ug(r) ~1 v v
(1 — N2 oo (1 — 7)), «= (N —2)?
l(l—r)N_llog(l—-r), x=—1.

[P = )] ~ (=)™

’ (l __'r)ilwlf X 7‘—/:—*\7_1
q (r) -~ (N=2) N
(L= log (1 —7), &= — N7,
For N > 2,
(1 — r)?>+2 xF#A =N, —1,
Golr) ~ 1 (1 — )V log (1 — 1), x = — N1,
log (1 — 1), v=—1.
As r—>1,
N =2, anv .
hy(r) — 0 if{ } o
N>2, v < (N —2)1
A\v— 3> - 3123
N = , X > — 3,

2

‘ 3
uy(r)— 0 if N4, any a,

4

;X <3N — 4)7
We conclude by the Lemma that

N=2, x> —3/2,
c<<oo if § N=3, x€(—3,1),
N>3, x<(N—2)1

as claimed.
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In preparation for the case o = oo, we observe that

N=2, no «,

hy ¢ B <
N>2, « > (N —2)1,
N=2, x<—3/2,
N=3, a <—3,
Uy, ¢ B <
N =4, no «,
N >4, « >3 — 41,

Ge€B<=N>2, x < —1.
We have obtained
IN:2, v < — 32,
|N:3. Ng(—3.1).

>3, A > (N — 21,
except that we shall return later to the case N >4, 1 > 3N — 1)L,
Here for N = 2, we have hy€ DB, u,¢ B, with

avy, + blu, € B <

»

(1 — )t 5 < —3/2,
uo(r)fv{
log(1—1r), = —3/2,

whereas

qor) ~ (1 — )73, v < — 3/2,

Thus the rates of growth of u, and ¢, are different for v < — 32, and
we have o € B, hence o = oc as claimed.
For =3, hy¢B, u,€B if x> 1, with

1 —r) x>1,
hy(r) ~
log(1 —7), x=1,
whereas

200+2

Golr) ~ (1 — 1%, «

Y

1.

Thus the rates of growth are different for » > 1. hence ¢ = x. More-
over, hy € B, uy ¢ B for « < — 3, with

[(1_;«)”, A< — 3.

Uy(r) ~

llog(l—r), A= — 3.

whereas

Gr) ~ 1 — )7 A< — 3.
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The rates of growth are different for « < — 3, hence o = oo.
For N =4, hye¢B, u,€B if «>1, with

(1 — )72 x>

[ S

ho(r) ~ {

log(1—1r), «=
whereas
go(r) ~ (L —r)™*, a =4
The rates of growth are different for « > %, hence ¢ = o0.
For N >4, hy€¢B, uy€B if x€[(N —2)7', 3(N — 4)'], with
o { (1 — ) V=25l € (N —2)7, 3(N —4)77),

0 log (1 — 1), = (N — 271,
whereas

Go(r) ~ (L — 1) a €[(N —2)7F, 3N —4)7).

Thus the rates of growth are different for x € [(N — 2)7%, 3(N — 4)7),
hence ¢ = oo. Moreover, hy€B. u, ¢ B for x> 3(N — 4)7 with

g(r) ~ (1 — p) 722710y = 3N — 4)71,
(1 — r)y= =3 A > 3N — 4)T,

wUy(r) ~ { log (1 — 7), x = 3N — 4)1,

whereas
Qo(r) ~ (1 — 7y x > 3(N — 4)7.

The rates of growth are all different for x > 3(N — 4)7!, hence ¢ = oc.
The proof of Theorem 3 is herewith complete.

7. We proceed to the proof of the fundamental property of ¢ referred
to in No. 1. Let R Dbe an arbitrarvy Riemannian manifold. R, its regular
subregion, and « a point of S, =R — R,.

Proposition. The finiteness of the bikarmonic measure o(x) on Sy is
independent of R, and of x.

Proof. For any region G, let gg(x . y) be the harmonic Green’s function
on @, with pole y. Denote the harmonic measure on S, by w. The
biharmonic measure on S, and the biharmonic Green’s function on R.
if they exist, are

o5, () = f gs, (2 . yoy)dy ,

S,

y(p,q) = / 9P, NIrY > Oy -

R
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We are to prove:

I If os(x) < o for some S,,x €S8, then y(p,q) << o for any
p.q€ER.

IL If »(p,q) < o for some p,q€R, then og(x) << o for any
SO , X € SO'

Proof of I. Given o5 (v) < oo forsome S,,x €8, chooseany p,q € R
and regular subregions R,, 2 of R with

RyUxUpUgc R CRcCQ.
Set x, = 0R,, &, = 0R,, B, =02, S;=R — R,. and take
e €CRNSH)NHORNS,) ., oprg=1, wy/fo=0.
We shall use the following constants:

My = Min gs noy . ), M, = max Is,nely . ),
Y€ Y€

Myp = Min o, , M,, = maxw,,

oy o

Myp = Min go(y , p) , M;, = maxgy(y. p).
Y€y YEx;

Myg = min go_(.?/ ; Q) > J[4!2 = max 9.@(3/ s Q) >

Y€ Y€
m; =limm,, Mi=lmM,, i=1,2,3,4,
Q>R Q->R

MO, M,

1 myme, ’ 2 mgm, .
We obtain
., o
9oy » P) = P Jsnoly.x) on vy Ug,. hence on QNS ,
10
YA _
grly . p) < — gly . ) on S,
)721
M, _ _
9oy - q) < ” o y) on QNS
M, -
gr(y . 9) < — o(y) on S;.

niy

Therefore,

ng(p,y)gR(y,q)dy: ng(y..p)gR(y,q)dy

Sy S,
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=k /gb y)dy

<k f gs,(x, y)oly)dy < <,
S,

and a fortiori

|
y(p,q) = f gr(P s NIy » Q)dy
R

= (), - f%(p:y)g}a(y,q)dy

~
1

= () — ko, (v) < =

Proof of II. Suppose y(p,q) < oc for some p,q€R. Take any
regular region R, and an z € S, = R — R,. For R,, Q chosen as before,

M, _ _
Is,noly ,x) < - = goly ,p) on «, UpP,, hence on S;N 02,
302
M, .
95y 5 %) = = gr(y . p) on 8.
3
aM,, - ~
wo(y) < o 9oy .q) on vy Up,. hence on S N Q.
10
M, -
o(y) < — gely .q) on ;.
ny

Therefore,

=0, - f gs,(x  y)oly)dy

S,

<Oy ky f 9=y > )Ry, Oy

Sy
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= Cy + ky (Os + f Ir(® s YIrY 5 Q) d?/)
R

= Oy + ky(Cy — (P, q)) < ©.

8. In view of the Proposition, we may introduce the class of Riemannian
manifolds R with ideal boundaries of infinite biharmonic measure

Oc={Ro= %}

The class of Riemannian manifolds which do not carry biharmonic Green’s
functions y is denoted by O, (cf. [22]). Properties I and II of 0 and y»
provide us with our main result:

Theorem 4. O. = O.

As a consequence, e.g. the values of x in Theorem 3 characterize the
Poincaré balls in O,. Moreover, known proparties of O, carry over to
O.. E.g., parabolicity implies o = oo.

The author is indebted to Professor Cecilia Wang for a careful checking
of the manusecript.
A bibliography of recent work in the field is attached.

University of California, Los Angeles
Department of Mathematics
Los Angeles, California 90 024, USA
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