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1. Introduetion

In this paper we propose to show how the method of dual extremal
problems can be applied to problems involving analytic functions which
satisfy interior side-conditions. The extremal problems we study have
their origins in the classical problems of Carleman-Milloux and Pick-
Nevanlinna.

The Carleman-Milloux problem for analytic functions is concerned with
the family

C={f€AWU): Ifz)) =1 on U, |f(z)) =0 on E}.

Here U denotes the unit disk, J is a positive constant 0 < 6 <1, and
E is a path which runs from 0 to 1, say. Let 2, € U — E. The set
{f(z) : f €€} will then be a closed disk |w| <23 . Functions F €€
which satisfy |F(z,)] = M are called extremal functions. The problem
is to describe the extremal functions F and to calculate M .

A potential-theoretic approach to this problem can be found in [20,
p. 112]. However, since the extremal functions obtained in this way are
not single-valued, this approach gives only partial results. The complete
solution was given by Heins [13] in 1945.

The Pick-Nevanlinna interpolation problem, on the other hand, is
concerned with the family

C={fEAU): fRI =1 on U, f&) = ay, ..., fE) = au},

where & ,..., &, are distinct points in U and the a; are complex num-
bers. We assume that 20 € U — {&,..., &} and let W = {f(z,) : f € C}.
The set 1, which may well be empty, is closed and convex. The extremal
functions F € C are those which satisfy F(z) €W . One would like
to describe, for example, those extremal functions which satisfy Re F(z) =
M = maximum . The classical treatment of this problem can be found
in [21] and [24, pp. 281—309].

If one tries to extend these classical developments to multiply-connected
domains, difficulties soon appear and it quickly becomes apparent that

Some abbreviations: € = complex plane, R = real line, iff = if and only if,
wlog = without loss of generality.
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new ideas are called for. In the case of the Pick-Nevanlinna problem, we
may refer to [7, pp. 256—32] and [12].

Now, as is well-known, many extremal problems on multiply-connected
domains can be formulated as dual extremal problems. This was first
proved by Garabedian [7] for the Schwarz lemma and has since been the
subject of numerous papers (e.g. [15]).

The obvious question is thus whether problems with interior side-
conditions can be formulated as dual extremal problems. Very little was
known about this until around 1963, when Havinson [9] found a dual
extremal problem for the general Carleman-Milloux problem. Very re-
cently, Gamelin [6] showed how the general Pick-Nevanlinna problem
can be transformed into a dual extremal problem. Both of these develop-
ments require a certain amount of abstract functional analysis.

The method we shall explain here is applicable to quite general linear
extremal problems with interior side-conditions and is, moreover, entirely
classical in nature. Our work therefore both complements and extends
results found in [6] and [9].

It will be seen that our method consists of essentially three parts:
(a) the study of the minimum problem by variational methods; (b) re-
duction to simpler extremal problems; and (c) approximation.

For purposes of illustration, it will suffice to work in a situation of
moderate generality. The techniques we use apply much more generally:
some of the possible generalizations are indicated at the end, in section 9.

Finally, it is a pleasure for me to thank Professors L. Ahlfors, H. Roy-
den, and M. Schiffer for a number of very interesting discussions about
extremal problems. Most of the work described in this paper was done
at Stanford University.

2. Statement of the problem

We begin with the following list of assumptions:

(i) D is aplane domain with analytic boundary 0D and connectivity
p, 1=p <o

(i) E=E,U...UE,, where the E; are mutually disjoint com-
pact subsets of D ;

(iii) K is a compact subset of D ;

(iv) 4 is a totally finite complex Borel measure on K ;

(v) %[h]:/hdl for h€C(K);
K
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(vi) k(z) is the Cauchy transform
1 1
W) — g | g 420

7 2 —t
K

(vil) ar €C, 6 =0 for 1 =k <m;
(viii) each component of € — E intersects 0D ;
(ix) we write
€= {f€AD):|f(z)) =1 on D, |f(z)—a| = 6 on Ei}.

A few words regarding the notation: (a) an analytic Jordan curve
necessarily admits a parametric representation &=~§&(z), 02 <1,
in which &(¢) is analytic, has period 1, and is schlicht (mod 1) on some
strip Im(#)] <#; (b) A(D) denotes the family of single-valued analytic
functions on D; (¢) C(K) denotes the family of continuous functions
on K.

We might also mention that condition (viii) ensures that the various
conditions [f(z)—ax] =< 6 do not interfere with each other (under the
maximum modulus principle).

Fundamental problem. Assume that € is non-void and let M =
sup Re £ (f) over all f€¢. We want to describe the extremal func-
tions F € ¢ which satisfy Re £ (F) = M .

Of course, since ¢ is a normal family, the existence of such F € €
is guaranteed.

By choosing (a) @ =0, 6 =06 and (b) =0, E,={&} we
obtain extremal problems of Carleman-Milloux and Pick-Nevanlinna type,
respectively. The case (¢) ar =0, ox =0, E,= {&} is much like the
Schwarz lemma and will be called an ordinary linear extremal problem
(see [15]).

3. Some preliminary remarks

In our development, we shall make implicit use of the non-tangential
boundary values of analytic functions of class AB(D) and H,;(D). The
classes 4AB(D) and H,(D) are defined as follows:

AB(D) = {f€ A(D): f is bounded on D} ;
H\(D) = {f€ A(D) : |f] has a harmonic majorant on D} .
When D = U, H,(D) reduces to the well-known Hardy H, class; in

this regard, see also [14]. The properties we use are classical for p =1
and straightforward extensions when 2 < p < oo. We may refer to [8],
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[10], and [22]. Note too that, since D was assumed to be analytic, H,(D)
coincides with the Smirnow class FE;(D). Lastly, we shall frequently
use the common notation |[f]| = sup [f(z)], when f€ AB(D).

The following three results will prove particularly useful. It is con-
venient to let D, be the subdomain of D which is bounded by the curves
§=1{&@x +1¢), e>0.

Lemma 1. There exists a positive function C(¢) such that C(¢) -1
as ¢—>0 and

f 9)] 12 = Cle) f 9(8)] 1€
oD oD

for all g € H(D) .

Proof (sketch). For z = &(x 4 ic) €0D,, we define the reflection
z* = &(x — t¢) . Then, for g € H,(D),

1 1 1
9(2)=§£fg(t) [t_z — t_z*J dt

oD
1 1 1
6/ l9(=)1 Idz| éﬁf lg(®)| Lf’} 71 z*_t\ ldzl}ldtl-
D, oD D,

We claim that

o 1/‘L 1 1 {d
(8)=,s:£, 2na iz—t_z*——t“zl
D,

does the job. In fact, we need only check that lim C(¢) = 1. But this

>0

is easy, since 0D is analytic and the integral behaves like a Poisson
integral. []

Lemma 2. Let f.(z) be a pointwise convergent sequence of H,(D)
functions whose limit function is f(z) . Suppose further that the boundary
integrals f op Wfn(8)] |dé| remain bounded. Then, f(z) € H,(D) and

n—>o
oD

f FE) 18] < lim inf [ 1f(@) 148 -
oD

Proof (sketch). By the Cauchy integral formula, the f.(z) are uniformly
bounded on D compacta. It follows that f(z) € 4(D) and that the con-
vergence is uniform on every D,. By Lemma 1,
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f @1zl =Tim [ 1)) 1de] < O(e) lim inf [ 1£,(8)] | d&]

n—>o n—>o

oD, ap

for each e > 0. The lemma follows at once, since H,(D)= E(D). []

Lemma 3. Let A(£) belong to L,(D) or L,(0D), respectively. A
necessary and sufficient condition for A(£) to coincide with the boundary
value of a function in H;(D) or AB(D), respectively, is that

f FEMEE =
oD

Proof (sketch). The necessity is clear. To prove the sufficiency, we simply
study

for every f€ A(DUAD).

e~ L [ 6

m E—z

dé.
For z€0D,, clearly H(z*)=0. Therefore, for z near 0D,

H ——1—~/‘hﬁ [ ! ! ]d
(Z)=2m'6D (<) E—z E—2* 5

Since 9D is analytic, this integral behaves like a Poisson integral and

JIE:CEAED f Ih(E)] 18]
oD

as in the proof of Lemma 1. See also [22, pp. 144—145]. []

4, Ordinary linear extremal problems

According to the definition in section 2, we now have
—{fEAD):f)| =1 on D, f&)=...=f() =0}
and M = sup Re Eﬁ(f) =sup |£(f)] for f€€. To see how the dual

extremal problem arises in this case, we observe that

Re <£(f) = Re f F(Ek(E)dE = Re f FE) T — o — g] dé
oD

= [ lh—o—gli
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where f€C, ¢ €H/(D), and o has the form (273)-1 Z we(z — &)1
e €C. Therefore,

b

M =< M, = inf ke — o — ¢| |d&].
[2")
ap

The following well-known result then holds.
Theorem 1. Assume that M # 0. Then:

(i) M = M, and M, is actually a minimum, that is, M, is assumed
for some pair (w,, ¢p);

(ii) the extremal function F € € is unique: L(F) = M ;
(iii) @4(2) remains analytic across aD ;

(iv) F(z) (k — wy — @) is analytic across 9D, F(k — oy — ¢o)dz =0
on 0D ;

(v) for each component I' of 0D, there are exactly two possibilities:
(1) ¥ =¢y+ w, near I', F analytic across 0D, |[F|=1 on
r;
(2) ¥ =@y + w, near I', with nothing asserted about F .

Proof. A proof of this result can be found in [15, pp. 94—99] or [19].
These proofs employ the Hahn-Banach theorem, however. To avoid this,
one can proceed as follows.

It will suffice to prove that M = M,, since the rest then follows in
an entirely classical fashion. See [15, pp. 96—99] and Lemmas 1, 2

Suppose first that K is a finite set. Let us write

Io, g = [ —0—glld8, Toy, )=,

and A=k —w,—¢,. Using My=DM > 0, the fact that k(z) is
now a rational function, and the Lusin-Riesz-Priwalow theorem [22, p
212], we can assume wlog that A(&) 20, © everv\\hele on 0D.

Define U, ={£€0D:|A&)|>7r}, V.,={£€0D: A <r}, and
T(r)=1[r +m(V,)]r for r> 0. Of course, by measure theor;,

lim m(V,) = 0.

r—>0

Choose any h € A(DU D) and consider complex numbers ¢ such
that [t| = T(r). We want to analyze the condition

I[wo’% + th] - I[wo > %] 2 0
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as 7—0. Using the obvious inequality [4| — |th| < |4 — th| < |A| + |th] ,
we readily check that

I[IAI[

On U,, however,

1—§I—dum+owmmungm

so that

ol o

Substitution of this estimate yields

o
O[T (r)ym(V,)] — Re[tfk% IdSI} +0[ (:)J >0.

Upon writing ¢ = T'(r)e”, we find that
. 4] T(r)
O[m(V,)] — Re |gi® / h a |d&| | + O — =0,
Ul'

for cach value of 6 as r— 0. It follows then that
|4]
h(&) T |dé| =0, h€ A(DUID).

By Lemma 3 and its proof, we deduce that
F(&A&)dE = |A(&)] |dE] a.e.

for some F € AB(D), |F(z)] =<1. Moreover, if we repeat the above
argument with /A(z) replaced by (z — &)1, we immediately see that

| F(é)
A'=f5?%
oD

whence F(&) = 0. That is, F €C. By construction, <L(F) = J,.
Thus M = M,, as required.

To prove M = M, in the general case, we shall use approximation
We fix any small %> 0 and let ¢ = 9D, . Then, <[f]= / c 2)dz
for all f€ AB(D). We next partition C into N small pieces C’ 80
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that, on each piece, the total variation of any f€ AB(D) is = ellf]|.
Choose points 2z, €C,, 1 =« =N, and define a discrete measure »
by means of

viz} = [ kt)dt.
/

In an obvious notation, let <£, be the linear functional represented by
v, .
We have already proved that Theorem 1 holds whenever K is finite.
We may therefore determine dual extremal data F,, k , o,, ¢., M,

for <£, over €. It is important to observe here that
) — LD = el [ o1, e ABD).
c

A simple normal families argument then shows that M, —M as ¢—0.
Since M, = fap |k, — w, — @,| |dz| , it follows that

M0§M8+f1kg—k1|dz|.

oD

However, it is easily checked that k. (z) = k(z) along 8D . Therefore

&

My, < M and the proof is complete. []

Remark 1. It should be noted that in (iii)—(v) any minimizing pair
(¢ w,) can be used. We also observe that since M = M, =0, it fol-
lows that % == @, + @, so that possibility (1) in item (v) must hold
at least once.

Remark 2. The proof given above for Theorem 1 was motivated in part
by Carleson [3, pp. 78—82].

5. Extremal problems with side-conditions

We now consider the general problem posed in section 2. To discover
the appropriate dual extremal problem, we observe that:

Re L(f) = Re [ f(2)k(z)dz =Re [ f(k — o, — ¢)dz + Re [ fdu
a'p[ abf i[

< f b — o, — gl 1d2] + Re {a,u(B.)} + 6,1 |(E,)
oD
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for each f€ €, where u is a totally finite complex Borel measure on
E, 9€H(D), and o,(2) denotes the Cauchy transform

1 1
w,(2) = 2—mf — du(t) .

E

Note too that we use the Einstein summation convention over the re-
peated indices o« . It follows then that

M= M, = inf [ [ e, — gl a1+ Re B + 8,10 |

usp
oD

These inequalities will lead to a dual extremal problem provided that
M = M, and that M, is actually assumed for some pair (7,P). In
that case, one can clearly start reading off properties of the extremal
functions F € €. For example, F(k — o, — P)dz = |k — o, — D| |dz|
along 0D .

We intend to prove the following two fundamental theorems in this
section. In stating them, we shall call € non-trivial iff cardinal (€¢) = 2.
Similarly, € is called trivial iff cardinal (€) =1.

Theorem 2. Assume that “C is non-trivial. Every minimizing sequence
(ttn ;¢n) for problem M, is then bounded. That is, |u.| (E) and
f op/@n(2)] 1dz| remain bounded when n— oo.

Theorem 3. If € is non-trivial, then M = M, and M, is actually
a minimum. When € is trivial, M = M, still holds, but 3, need not
be a minimum.

Proof (Theorem 2). Let (un ,p.) be a minimizing sequence for problem

M, . Suppose that | = |us|(E) — oo as n— oo. Then,
ok « n | o
f S S ]dz|—]—Re{aa‘li(——)}
Tl Tl Tl Il
|;un](Eoc)
6,—— — —0.
%

We now apply the selection theorem to the totally bounded measures

Un )™ on K. Therefore, wlog,

pn W*
—

lwall

where 7 is a totally finite complex Borel measure on E . Furthermore,
wlog,
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£

| w?
L pn | w* Q.
[l |
where () is a probability measure on £ . It follows that

n=Q.

*
Note: The notation 4, — ¢ is used to denote weak-star convergence,

which is to say that
f fdin — f fdi
E E

for every f€C(E). To prove the assertion || =, one recalls the
definition of |n| asin [18, pp. 308—309] and first checks that |n|(F) < Q(F)
for compact sets F .

By the w* convergence, clearly

near 9D . By a normal families argument and Lemma 2, wlog

pa(2)
(] = 7=

on D compacta, ¢, € H,(D). Moreover, by means of a simple extension
of Lemma 2, we see that

IA

[ | — o, — .| 2] + Re {am(B.)} + 8, Q) = 0.
oD

Hence,

f | =, — gl 1d2] + Re {agn(E.)} + 8.lnl(E) = 0.

oD

We claim that |5 = |5|(E) == 0. If not, then

f ] lde] - 6. QE) < 0.
oD

Hence, 6,QE,) =0, 1=a=m. But, 1=0Q%FE)+ ...+ QE,).
Suppose then that Q(E,) # 0. Therefore J; =0 and E; must be a
finite set (since “C is non-trivial). But, then, |#| = @ on E; and we have
a contradiction.

We next study the ordinary linear extremal problem
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sup j/fdn] = M(n)

for f€AB(D), |f(z)] =1. We claim that M(n) £ 0. To prove this,
we suppose first that #(E;) = ... = y(Bn) = 0, but |y|(E,) # 0. There-
fore,

f 0, - gl lde] + 8,nl(E) =0 .

Hence, d; =0 and E; is a finite set (since € is non-trivial). By virtue
of assumption (viii) in section 2, E is a Runge set for AB(D) functions;
see [24, p. 15]. We may thus find functions f € 4B(D) which approximate
Oon E—E; and |dn|(dn)~* on the finite set Ej;. Note here that [5|(E,) =
D e g; In(@)| . For such functions f, clearly f g Jdn # 0. Hence M(n) #0.

On the other hand, suppose that we have 7(E,) # 0 for some 8. We
can then find f € AB(D) which approximate 0 on E—E, and 1 on .
Again, fEfdn #0, and M(n) #0.

Now, choose any f€ AB(D), |f(z)) = 1. Then,

Re [ fi— o)z + Re (ag(B)} + 8,Inl(E,)

oD

— Re / f— o, — p.)dz + Re {am(B)} + 8,1nl(E,)

= f | — 0, — g.] 1d2] - Re {am(E)} + 6,n)(E,)

oD
=0.

On the other hand, suppose that f € €. Then,

Re/f—w )0z + Re {a(B,)} + 8,1n1(E.)

— _Re f fin + Re {a,n(B)} + 5,In|(E,)

=0.

Thus, for every f€C,

Reff(— o, — p.)z — f |~ w, — .| I,
D

oD
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so that f(— o, — ¢,)dz = |o, + ¢,| |dz| along 0D . Since M(n) # 0,
we must have o, + ¢, = 0 along 0D . Using the Lusin-Riesz-Priwalow
theorem, we quickly deduce that € is trivial. Contradiction.

It follows finally that |ju.]| must be bounded whenever

[ =, — gl o]+ Re {agn B} + 8,105 —~ Uy

oD

The boundedness of f ap!Pr(2)| ldz| is now immediate. []

Proof(Theorem 3). Let us first check that M, is actually a minimum
when € is non-trivial. To do so, choose any minimizing sequence (fin, @n)
for problem M, and apply Theorem 2. We may therefore assume wlog

* *®
that  u» %L‘u |l “.Q, and that o, =Z® on D compacta,
@ € H (D). We know too that |u| =@ . By a simple extension of Lemma
2, we see that

f k — o, — @] |dz] + Re {au(B,)} + 6,Q(E,) < M,
oD

whence

[ b= 0, — 01 1@ + Re (0,u(E)} + 0Jul(B) = My
oD

It follows at once that M, is a minimum.

We must next show that M = M, whenever € is non-empty. We
shall first prove this in the case where K is finite, K N E = ¢, and €
is non-trivial.

If 2 =0, the result is obvious. Suppose therefore that 1 = 0 and
that (n, @) 1is extremal data for problem M,. We maintain that
k &= w, + @ along 9D . Otherwise, by the Lusin-Riesz-Priwalow theorem
and assumption (viii), we see that k(z) =w, + @ on D — E . Therefore
the rational function k(z) has no poles in K and we deduce that A = 0.
Contradiction.

Let us next define

sup = N,

ff(k — ,)dz
oD ’

for f€ ABD), |f(z)] =<1. We claim that /! = 0. Ifnot, then /=0
and Lemma 3 shows that k£ — w, =q(2) near 0D, with q € AB(D).
Therefore (7 ,q) is extremal data for problem 3, and this contradicts
the preceding paragraph. Hence, Il 7 0.
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Theorem 1 is now applicable to the ordinary linear extremal problem
corresponding to kernel

k=k—o,

and family {f€ ABD):|f(z)) <1 on D}. Let F be the normalized
extremal function. Using remark 1 in section 4, we see that

N = inf b — @l ldzl = | |k — D |dz|
/

@€ Hy(D)
oD

= M, — Re {an(E,)} — d,Inl(E,) .

We also know that F(k — ®)dz = \k — ®@| |dz| along 9D and that @
remains analytic across 0D .

We shall now prove that F € € by variational methods. Choose any
point z, € B;, let ¢ denote the unit point mass at z,, and let @, be
the Cauchy transform of & . Since |-+ fgl(H;) = Inl(Ey) + ], we
see that

f b — o, — ¢ — ty] ldz] + Re {a(E,)} + Re {at}
oD

+ 6o¢|77|(Ea) + 4t = -Mo

for all ¢ € H(D) and ¢ € C. Therefore

inf b — tw, — @l |dz| = I — 8,}t] — Re{ayt}.

@€ H,(D)
oD

Let

CN, = sup

b

/ fle — twy)dz
oD

for f€AB(D), |f(z)] =1. Since N #0, clearly 9, 0 for t—0
and Theorem 1 applies. Let F, be the normalized extremal function. There-
fore

N, = f F(k — twy) dz = M — Re {ayt} — 6, |¢].
oD

Let A, = f o Fk dz. Then |A4,] < MN. Moreover, since extremal

function F is unique, we readily check that F,(z) =< F(z) on D com-
pacta, so that A4, — /. Thus,

2
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|[4: — ¢ Fi(z)] = I — Re {a;t} — &,]¢] ,
|4i* — 2 Re{t Fu(z) A} + O(|t2) = 2 — 29 [Re(ayt) + 8,/t]] + O(t?),
—2Re {t Fi(z)) A} = —2 N [Re(ayt) + 6,]t]] + O(t2) .
Dividing by [t| and letting ¢ = |t] ¢® — 0, we find that
Re {[F(z) — a;]e®} < 6,, 0<60 < 2x.

Hence, |F(z) — a;] < 6, for every z,€E,. Similarly for the other Ej.
It follows at once that F € €.

Let us next see what happens under a more general variation 7 —
7 + to, where o is a totally finite complex Borel measure on R, a com-
pact subset of some E;. We quickly deduce that

f k— o, — ¢ — to,) [dz] + Re {a,n(B,)} + 5.1(E.)

+ Re {a,to(R)} + b,ln - tol(R) — 8, In|(R) = M,
for all ¢ € H,(D). Therefore,

inf b — tw, — ¢| |dz| =9 — Re {asto(R)}

‘PEH1(D)
— 8 [In + tol(R) — Inl(R)] .

Reasoning as before, we find that for ¢ — 0

fflc——tco

— 8 [In + to|(R) — In|(R)] > 0

and we let F, be the extremal function. Once again, F, ZF, A =N,
A, — M. We obtain

]A,_th.da
R

By squaring both sides, it follows that

sup > — Re {a;to(R)}

ifl=1

— 2Re {ff.t f F,da} = — 2 [Re {a;to(R)} + 6, [0 + (0](R) — Inl(R)]

+ O(iP) -

This expression simplifies somewhat if we assume that
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U':'I'IR,

where 7y denotes the restriction of # to R . In that case,
—2Re {th f F.dn} = — 2 [Re{a,tn(R)} + b,ln|(R) {|1 + 1 — 1]
R

+ O(ltP) .
Dividing by [t| and letting ¢ = [|t| ¢®— 0, we find that

— 2Re {Cﬂ ¢ f Fdn} + 29 Re {an(R)e” + 8,ln|(R)e”} = 0,
R

0=0<2n.
Let us temporarily set F = a; + G5 on E; . The preceding inequality

yields
Re {€” d;n|(R)} = Re {ei" / Gﬁdn} ,
R

from which we deduce that G,dy = d,din| on E;.
Finally, then, F € € and

Re <L (F) = Re / F(k — o, — ®)dz + Re {an(E,)} + Re f G, dn
Ex

oD

— [ =0, — B 1@l + Re (n(B)} + 8,00I(E)
oD
=M,.
Therefore My, =< M, so that M = M,.
We have thus proved that M = M, = minimum whenever K is
finite, KN E = ¢, and € is non-trivial.
We next look at the case where we know only that € is non-trivial.
The approximation argument used in the proof of Theorem 1 applies with
trivial modifications. Thus, in obvious notation,

L, (f) — L () = e If] f k()] |de|, € ABD)
C
M) = My(e) = f k, — o, — ] |dz] + Refan.(B,)} + 0n|(H,) :
oD
lim M(e) = M ;

>0

My < M) + f Ik, — k| dz],
oD
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and we conclude that M, < M, whence M,= M .

Let us finally suppose that € is trivial: € = {F}. We define the
family € ={f€ABD):|f|<1+¢e¢ on D, |fe)—al =& +¢ on
E}. Since F(z) +b€€, for |b| <e, the family €, is non-trivial.
Using a trivial magnification, we conclude that M[€]= M[€]. In
addition, a simple normal families argument shows that linO1 M[€]l=M.

Now, H

M[€,] = inf [f (1+¢) |k —w, — ¢| |dz| + Re{e,u(l,)} +
“? top

+ (8, + &) lul(E,) | -

Therefore, M,[€.] = M,. Letting ¢— 0, we see that M = M, . Since
M < M, a priori, we see that M = M, .

To complete the proof of Theorem 3, we must show that M, need not
be a minimum when € is trivial. This will be done in example E in the
next section. [ ]

6. Further results and examples

In this section, we shall examine a number of essentially straight-
forward consequences of Theorem 3.
We shall use (n,P) to denote any solution of problem M, :

M, = f b — o, — @ |dz] -+ Re{aon(B)} + o, Inl(E.) .
oD

Given such a pair (n, @), it is essential to distinguish the following two
cases:

I k—w,— D=0 near 9D ;

() k —w, — & =0 near dD.
The cases (I) and (IT) are mutually exclusive.

Theorem 4. Suppose that € is non-trivial and that case (I) holds.
Then:

(i) there exists exactly one extremal function F € € for problem M ;

(ii) the two functions @ and F(k — o, — @) can be continued ana-
lytically across 0D ;

(iii) F(k — 0, — P)dz = |k — o, — D| |dz| along 0D ;
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(iv) for each component I' of 9D, there are exactly two possibilities:

(1) k= w, 4+ @ near I', F continues analytically across
0D, and |F| =1 along I';

(2) k=0w, + @ near I', with nothing asserted about F .

Proof. We choose any extremal function F € € and apply Theorem 3.
Therefore

M = Re %(F) = Re/dez Re/FL—w ——@)dz—l—Re/Fdn

oD

= Re | F(k — w, — P)dz + Re{a,n(E,)} + Re{ Gadn}
/ /

< f kb — o, — @] ldz] -+ Re {am(B)} + 0ln|(E,)

=M,=M

where F = a, + G, on E,. It follows at once that F(k — o, — ®)dz =
k — w, — @| |dz| along 0D and that G,y = 6, dly| on E,.

Item (i) is now a consequence of the Lusin-Riesz-Priwalow theorem
applied to Fy(k — o, — @)z = Fy(k — v, — P)dz. And, of course,
item (iii) is clear.

To prove the analyticity of F(k — w, — @), one makes an auxiliary

conformal mapping along 9D, uses properties of the Smirnow class X, ,
~and applies the Schwarz reflection principle for harmonic functions of
Hardy class /4, just as in [15, p. 97].

The arguments for (iv) and the analyticity of @ are exactly like those

given in [15, pp. 97—99]. []

If € is non-empty, then the set W = {Z£(f):f € €} is closed and
convex.

Theorem 5. Suppose that <€ is non-trivial and that W does not
reduce to a point. Case (I) is then valid under each of the following con-
ditions:

(i) k(z) = R(z) near 0D, where R(z) is a rational function whose
poles liein C — E;

(i) KNE =¢ and C— K is connected;
(iii) when all the 6, = 0.
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Proof. Consider case (i) and suppose that case (II) holds. Using analytic
continuation and assumption (viii) in section 2, we see that R(z) =w, -+ @
in D — E . It follows that R(z) has no polesin D and that W = {0},
which is a contradiction.

Suppose next that cases (ii) and (II) both hold. By analytic continua-
tion, k=w,+ @ in D — EUK. But, then, k(z) has a single-valued
analytic continuation to all of D . Once again, W = {0}, which cannot
be.

Suppose finally that all the 8 = 0. Since C is non-trivial, £ is a
finite set. Suppose that case (II) holds. Then, for f€ €,

L) = [~ 0, — Ol + aa(E,) = an(B.)

and we conclude that W is a point. Contradiction. [ ]

Theorem 6. Suppose that € is non-trivial and that problem M has
at least one non-constant extremal function. Then:

(i) extremal measure # is concentrated on JF ;

(ii) |F(z) — ax] = Or a.e. [n] on K, for every extremal function F .

Proof. Recall the first paragraph in the proof of Theorem 4. Therefore,
[F(z)—ar]dy = ddin] on E), for every extremal function F . But, one
can write dn = hdny| with a Borel measurable function %, [k =1.
Item (ii) follows by taking absolute values.

Suppose now that F is a non-constant extremal function. Let E}
denote the interior of E, and assume that [y|(H}) # 0 for some k. By
item (ii), |F(z)—ax] = 0r at least once in E}. Since |F(z)—ar] =< &
on I, the maximum modulus principle implies that |F(z)—ax| = ok,
whence F(z) = constant. From this contradiction, we conclude that 7
is concentrated on 0E . []

Theorem 7. Suppose that problem 13/ does not have a unique extremal
function. Then:

(i) € is non-trivial and case (II) holds;

(ii) extremal measure % is concentrated at a finite number of points
on 0K ;

(iii) <£(f) assumes a very simple form:

L(f) = 2 n@)fa), f€AD).

a€0E
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Proof. Ttem (i) follows from Theorem 4.

To prove (ii), we recall the first paragraph in the proof of Theorem 4.
Let F(z) and F(z) be two distinct extremal functions. Therefore
[F(z)—an)dy = [F(2)—aldn = &dly| on E.. We write dn = hd|y| with
h| =1, andlet T = {z € B: F(z)= F(2)}. Clearly, (F—F)hd|n| =0 on
E—T, so that |n|(E—T)= 0. Therefore, n is concentrated on T,
which is obviously finite. Suppose, however, that 5 were not concentrated
on 0E . Then, by Theorem 6, both F and F reduce to constants and 7'
must actually be empty.

Item (iii) follows at once from case (1I) and (ii). []

We shall now give five examples which illustrate our theorems.

Example A (for case II). To begin with, let D = {1 < |z| < 2},
K={z=38/2}, E={zl=14¢}, ¢>0 small, a =0, 0<d(l+¢)
<1, and

€ ={f€ABD):Ifz) =1 on D, |fz)) =6 on E}.
Define

L(h) = hz)dz , h € C(K).

251

-

An easy estimate shows that [4(f)] = 6(1 + ¢) for every f€ €. Equality
holds for F(z) = 6(1 + &)zt €C. Therefore M = §(1+¢) and F
is an extremal function for problem M .

Observe, however, that |F| 1 along 0D . By Theorem 4, we con-
clude that case (II) holds. It is easy to check that (dn ,®) = (dz/2ni , 0)
gives extremal data for problem M. Finally, Theorem 7 shows that
extremal function F is unique.

Example B (for case I). Let D ={1 <lz| <3}, E={2}, K=
{le] = 3/2},

C={f€4BD):|f) =1 on D, f(2)=1/2}

and

By a trivial deformation of path K, clearly Re 4(f) < |(f)| =1 for
f€€. Equality holds for F(z) =2"1€C. Therefore M =1 and F
is an extremal function for problem M .

By means of Theorem 5, case (I) must hold. Using Theorem 4, we im-
mediately conclude that F is unique and that k =w, 4 @ along |z| = 3.
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Moreover, we easily check that (n,®P) = (0,0) gives extremal data for
dual problem M, .

Example C (for non-uniqueness). Let D = {|z| <1}, K = {[z| =1 — ¢},
e> 0 small, £ = {1/2}, and

1 h(z)
%(h) —2;@ "z—_ 1/2 dz .
K

Choose any 0 <a < 1/4 andlet 6 = 1/4 — a. We easily check that the
functions F,(z) = 2/2 and F,(z) = 22 are both in ¢ and are extremal
functions for problem M (M = 1/4).

It is thus apparent that Theorem 7 applies. For extremal data (n,®)
we can take (e,,0), where ¢, denotes the unit mass at {1/2}.

Example D (for Theorem 6). Let D = {[z| <1}, E = {|z| =1/3},
K = {|z| = 1/2},

— {(f€ABD): |fx) =1 on D, |fx) =1/3 on E},

1¢
hy =3
K

Clearly F(z) = 1/3 is in “C and is extremal for problem M (M = 1/3).

However, we can take (n,®) = (¢ ,0), where g, is the unit mass
at {0}. Thus, the existence of non-constant extremal functions is essential
in Theorem 6.

Example E (for M, = minimum). Let D = {|z] <1}, E ={lz| =1/3},
K=1{z}, 1<lp <%, a=06=0, and <£(h) =h(z). Clearly
¢ = {0} . Using Theorem 3, we know that M = M, = 0. However, M,
is not a minimum. If it were, then

0= [ lh—0,— 0 &I,

and

and we could conclude that k=, + @ near 9D . Therefore,

1 1

21 2 — 2,

=0, +9, F<lz<1,

which is impossible.

7. Further discussion of Carleman-Milloux problems

In this section, we shall give some indication of how Carleman-Milloux
type problems can be handled when E is allowed to intersect 0D . This
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is the case, for example, in the classical Carleman-Milloux problem.

We shall be content to study the following situation. We assume that
E is a Jordan arc contained entirely within D, except for the terminal
point, which lies on 9D . Further, assume that K NE = ¢ and that
C — K is connected. Let 0 < ¢ <1 and define

={f€ABD):|f(z)) =1 on D, [f(z)] =06 on E}.
To avoid the trivial case, assume finally that
M = sup Re L£(f) = sup |£L (f)] 20, fE€E.

Let E, be an increasing sequence of compact subarcs of E such that
UE,=END. We can then legitimately consider the extremal problem
for < over C¢., where

C.={f€ABD):|fz)] =1 on D, |f(z)] =4 on E.}.

Using Theorems 4 and 5, we determine the usual extremal data
M"; Fn, wn, an, 7]73 SOthat

M,=<<L n)—f]k—w,,——@n][dz'—l—é Nall s
oD
where o, = o, and [\g.|= (. (En). It is convenient to write
S, =ow, - @, .

We know that both F, and 8. continue analytically across 0D, while
|[F.l =1 and F.(k — Su)dz = |k — 8.| |dz| along 0D . It is simple to
check that M,-—> M monotonically as n— oo .

Suppose now that D; is a smoothly bounded Jordan domain such
that K ED, ED,UdD, ED — E. It is convenient to define

In[f](2=2—mff§_z QFcszf—Z

oD,
f
2m

for f€AB(D) and z2€Z, Z= C—E—D,—0D,—0D.
A simple computation shows that:

k— 1
@) B = 57 e t—f_—dz<t)+

2m./ e
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k) — Su2)], 2€ZN0 D
b I, —
(b) 1) { ' o

Formula (b) shows that we can represent f(z) [k(z) — S.(z)] as a sort of
Poisson integral, at least near 0D — E ; namely,

(¢) f() [k(z) — Sa(2)] = Lu[f1(z) — L.[f] (%),

where z* is simply the reflection of z in 9D .
Using the formulas for I,[1](z) and the fact that

fm—&ww§ML
oD

we quickly deduce that the functions S.(z) are uniformly bounded on
D —EUD;U0JD; compacta. We may therefore assume wlog that

Fo(z) ZF, () on D compacta;
Su(z) Z8,() on D— E compacta.

Moreover, since || = M;6~1, we may also assume that

£
n v, n on K.
Note that % may well be concentrated at E N oD .

We must next study #, and S, in the neighborhood of an arbitrary
point P €90D — E . To do so, we choose neighborhoods A, S dD of P
so that

A> A4, >4, > 4, > P

in an obvious way. Since the problem is now local in nature, we may (as
is easily checked) assume wlog that 4 E R with D situated above A.

By use of representation (c) above and writing z = u + v, we readily
obtain:

Fulk — 8,
@G — S = 7 [ ((——1;2 ds + 0(v)

T r— )
A
for z€D mnear A,, uniformly in =.

By the Schwarz reflection principle, the functions F.(k — S,.) are
all analytic in a fixed rectangular neighborhood R; of 4;. By means
of the above integral representation and the bound on f Nk — Sal |dz],
we find that

ffmwm@—&wwwgq

R,ND
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independently of n. We let R, NdD = (z;,2,) ER and introduce
polar coordinates z = ax; 4+ r¢”, j=1,2. Then wlog

R
f/ \Fol 1k — S| rdrdo < C, |
0

I
where I =[;n, $n] and R depends only on R,. It follows that
R

min f Bl 1k — Sal rdr < C,,
6€
0

independently of #». By means of the Cauchy formula and the Schwarz
reflection principle, we easily see that the functions

Tk — 8,) (2 — 2) (2 — =)

are uniformly bounded in a fixed rectangular neighborhood R, of 4, .
A similar argument using k — S, in place of F.(k — S,) leads to
the estimate

R
min f ke — Sulrdr < Cj.
6€T
0

Since Fn(k — S.)dx = 0 and |[F,| =1 along 4, two applications of
the Schwarz reflection principle will show that S, € A(R;) and that

k(Z) — Su(®)] = [Fu(z)Plk(z) — Suz)] = [Fu(2)] k(z) — Sa(2)]

for z€ R,ND. The C, estimate now yields one for the integrals
f |k — Salr dr below the segment A S R. It follows at once that the
functions (k — S,) (z — ;) (z — @,) are also uniformly bounded on R, .
A standard normal families argument now shows that both S_ and
F(k—8,) have analytic continuations to all of R,. Moreover, the
following uniform limits hold on R,:
S, =1lm§S,;

n—>-w

F(k—8,) =lm Fuk — S,) .

n—aoo

Recall here that S, and F.(k — S.) are known to be in A(R,).
We shall now prove the following important

Fact: [F ()] =1 a.e. on 4.
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Proof. Suppose not. There must then exist a compact set Q& 43,
m(Q) # 0, on which |F ()| =<1—17, 7> 0. However,

M = <£(F,) = Re f F(k — 8.)dz + Re f F. dy,
En.

oD

< f Pl b — Sl ldz] - O
oD

< f b — S |dz] 4+ Ol = Mo — M .
oD

Therefore, lim fo [l — |F,|] 1k — S.| |[dz| = 0, whence

lim [ [k — S |dz] = 0.
Q
But, 8. =S, on R,. Therefore, fq k. — 8| |[dz| =0 and we see that

k =8, which leads to the contradiction M = 0. []

We can now apply the classical factorization theorem of Szegé-Smirnow
[22, p. 78] to the functions 0 =F_ (k—8,) €A(R,), F, € ABD),
and S, € A(R,). Using the fact, we conclude that F, continues ana-
lytically across A, and that |F_| =1 everywhere along A;. See also
[15, p. 98].

Suppose now that F is any extremal function: <4(F) = M . By re-
peating the proof of the fact, we see that |F(z)] =1 a.e. on 4;. But,
3 (F + F,) is also extremal. Therefore

F +F | =|F|+ |F,|=2 ae. on 4.

This implies that F = F_ a.e. on A;. By the Lusin-Riesz-Priwalow
theorem, we conclude that F =F_ .
We can summarize the preceding results as follows:

Theorem 8 The Carleman-Milloux extremal problem posed above
has a unique solution F . There also exists an analytic function S on
D — E such that:

(i) both F and S continue analytically across 0D — E;

(i) |F|=1 along D —E;

(iii) F(k — S)dz = |k — S| |dz| along 0D — E;

(iv) /OD—E k— S| |dz] = M .

A similar theorem clearly holds whenever E is a compact subset of
C such that D — E is connected. See also [9, pp. 69—71].
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8. Further discussion of Pick-Nevanlinna problems

We shall be concerned here with the following
Problem. Suppose that:

(a) assumptions (i), (iii), (iv), (v), and (vi) of section 2 apply;

(b) E is a sequence of distinct points &. € D tending to &, €0D ;

(¢ KNE=¢ and C— K is connected;

(d) C={f€ABWD):|fz) =1 on D, f(&)=au};

(e) € is non-trivial;

(f) the set W = {<£(f):f € €} does not reduce to a point;

(g) M = sup Re 4(f) over f€C.

We want to describe the extremal functions F € € which satisfy
Re<L (F)=M.

The method we use is quite similar to that of section 7, only somewhat
more difficult. In this context, then, we introduce E.=/{&,..., &},
Co={f€EABDD):|fx)| =1 on D, f(&) =ar for 1 <k <n},

and the extremal data M., Fn., w., Pn, 7. so that

M, = Re 4(F,) = f Ik — 0o — @ul |dz] + O Re {ana(&)} -
k=1
oD

We also introduce S» = w. + @. and the Jordan domain D, . As before,
M, — M monotonically as n— oo .

We now try to extend the argument used in section 7. It is important
to get bounds on f o |k — Sal |dz| and S,(z) . Observe, however, that it

is conceivable that

lim |k — 8.| |dz] = + o0

oD

llm i Re {amn(fk)} = — 0.

n—> k]

To get around this obstacle, we observe that

M, = Re<L(f) = [ 11—\ 1o — Sul i
oD

for every f€ €. Let f; and f, be two distinct functions in €. We can
then write f,=f+¢q, fo=f—¢q with f€C and ¢ == 0. Moreover,
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since [f+ ¢/ =1, we see that |fZ+4 g2 =1. If we now let Q(z) =
3 49(z)?, we find that: (i) Q(z) ==0; (i) Q] =%; (i) Q&) =0; (iv)
If2)] + 1Q(2)] = 1. Hence, for some constant B and all n,

f QI |k — Sa| |dz| = B.
oD

By studying I.[Q](2), we quickly deduce that @S. is uniformly
bounded on D — E — D, — dD; compacta. Using @ = 0 and the maxi-
mum modulus principle, we see that S.(z) is uniformly bounded on D — E
compacta. Therefore, wlog,

F.(z) ZF,(z) on D compacta;
Sa(z) =< S8,(2) on D — E compacta.

We will not worry about the measures #, .
We now study the local behavior of F_, and S, by means of the
neighborhoods

A> A, > Ay, > A; > P€0D — & .

Once again, we assume wlog that 4 S R. Using L[F.Q](z), we find
that
Q) Fule) k) — Sa()] = 2 [ QEk =5 40t o)

T (x — u)® 4 o?

for z € D near 4,;, uniformly in = .

By the Schwarz reflection principle, the functions F.(k— S,) all
continue analytically to some fixed rectangular neighborhood R, of 4,.
By shrinking R; somewhat, we may assume that: (i) R;NdD =
(x,,2,) ER; (ii) the non-tangential limits Q(z;) and @Q(x,) exist and
are both non-zero. It follows that |Q(z)] is bounded away from 0 in the
sectors L1z <arglz —w) <im as z—ai.

The integral representation implies that

ff Q 'F, k— S, dudv < B,

R,ND

independently of 7. By introducing polar coordinates z = a; 4 re”,
we see that wlog

R
/f Q| |Fn| |k — Salrdrdb < By,
I 0

where I = [17, $a] and R is independent of n. It follows that
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R
wmin f Q1 1Fu] [k — Sulr dr < B,
o€
0

independently of 7. By shrinking R somewhat, we may clearly assume
that

R
min f |[Ful [k — Sulrdr < B,
0E€I

0

By the Cauchy formula and the Schwarz reflection principle, we find that
the functions F.(k — S.) (z — 2;) (2 — x,) are uniformly bounded in some
fixed rectangular neighborhood R, of 4, .

Observe that a similar argument holds when QF.(k — S,) is replaced
by just @k — S.). We thus find that

R
min f ke — Sulrdr < B,.
e€ET

0

As in section 7, the Schwarz reflection principle implies that S, € A(R,)
and that [%(2) — Sa(2)] = [Fa(z)]? [k(2) — 8u(2)| = |Fu(2)] |k(2) — Sa(z)| for
2€R,ND. The B; estimate now leads to one for the integrals
f |k — Salrdr below the segment 4 € R. The functions

(kb —8a) (2 — ) (2 — )

are therefore uniformly bounded on R, .

The usual normal families argument shows that S.(z) =S, (z) and
Fobk—8,) ZF (k—8,) on R,.

The remainder of the argument follows section 7 almost verbatim.
To prove that |F (z)] =1 a.e. on A;, one uses

M, — M = f [1— |F ]k — S |dz] .
oD

It is easily verified that F_ (k — S,) =0 leads to the contradiction
W = {0}.

Our conclusion is as follows:

Theorem 9. The Pick-Nevanlinna problem posed above has a unique
solution F . There also exists a meromorphic function S on D, having
at most simple poles on £, such that:

(i) both F and § continue analytically across 0D — E ;
(i) |F|=1 along D — E;
(iii) F(k — S)dz = |k — 8| |dz| along 0D — E .
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The remark about the poles of S(z) follows from the uniform boundedness
of @S, proved above.

It is also clear that a similar theorem holds for much more general
sets I .

In certain cases, it is possible to prove that the extremal function is
unique with very little work. Suppose, for example, that <£(f) = f(z) ,
where z, = all & . Let F; and F, be two distinct extremal functions:
Re 4(F,) = Re £(F,) = M. We may therefore write F,=1F+ @,
F,=F — @, where F isalsoextremal and @ == 0. Since |[F Q[ =1,
we see that |F2-+ Q2 <1. Forming g¢(z) = Q(z)*/2, we find that:
(i) g=0; (i) llgll =1/2; (i) g() =0; and (iv) [FR) +lg@) =1.
Write ¢(z) = (z — 2)" ¢1(2) with g¢4(2)) # 0 and define

h(z) = F(2) + Re” gy(2) -

For R— 0, one readily proves that % € C (using the maximum modulus
principle). Therefore Re[e” g;(z,)] = 0 and we deduce the contradiction
g1(z,) = 0. This method of proof is due to S. Fisher [4].

9. Generalizations and open problems

The arguments we have used in previous sections can of course be
generalized considerably. It may be of interest to mention a few of these
generalizations explicitly.

We begin by recalling the statement of our problem in section 2. From
this, we see that there are at least six possible directions for generalization:

(a) the restriction |[f(z)] =1;

(b) the restriction |f(z)—ax| = 0k}
(c) the set K;

(d) the linear functional <£ ;

(e) the set E;

(f) the domain D.

Regarding direction (a), it is entirely possible to replace the (boundary)
condition |f(z)] £ 1 by a more general one, such as In[f| =%, where %
is some harmonic function. See [15].

With regard to (b), it is possible to use conditions of the form

14 (f)—ax] = Ok,

where the / are linear functionals (e.g. derivatives). Furthermore, one
can allow @, and & to be functions and can consider other norms (such
as L,). The articles by Havinson [9] and Gamelin [6] are of particular
interest here.
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The restriction that K be a compact subset of D can be relaxed
somewhat. The important thing is that we ultimately obtain a representa-
tion “4(f) = f ./ (?)k(z)dz with a reasonable kernel k(z).

One might also wish to examine non-linear functionals <£. It would
be interesting to see how dual extremal problems fit into the picture.
However, not too much appears to be known about such problems. See
also [5] and [11].

We now turn to direction (e). We have already given some indication
of what happens when E N 4D is nonvoid, at least for Carleman-Milloux
and Pick-Nevanlinna problems. The main point is that the dual extremal
problem of section 5 becomes singular and one is forced to reason by ap-
proximation. It may also be of interest to study the dual function S(z)
more deeply.

Direction (f) is concerned with the domain D itself. One would like
to know what happens to our extremal problems on arbitrary plane domains
D . The situation for ordinary linear extremal problems was investigated
in [15]. Using similar methods, together with those of sections 7 and 8,
we have developed a reasonably complete theory for certain cases, in-
cluding the Carleman-Milloux and Pick-Nevanlinna. In doing so, we use
exhaustions D, 1 D and E, 1 E, where the D, are smoothly bounded
and E, is a compact subset of D,. (These E, have nothing to do with
the old E\.)

In a slightly different direction, one may wish to replace the domain D
by an open Riemann surface W . If W is a smoothly bounded subregion
of a compact surface W,, there seems to be a reasonable theory. See
also [1], [12], and [23]. However, the question of linear extremal problems
on arbitrary open surfaces I, especially those of infinite genus, is rather
poorly understood at present. Compare [15, pp. 117—121].

One obvious problem which has not been mentioned at all in the pre-
ceding sections concerns the uniqueness of the dual extremal data (1, @) .
Information about this problem can be found in [10].

We mention one last area, which seems to be particularly interesting.
This area concerns explicit formulas. As is well-known [7], the solution
of the Schwarz lemma problem can be expressed in terms of the Szegd
kernel function (see also [2, pp. 86—89]). One would like to determine
whether a similar interpretation exists for the solutions of Pick-Nevanlinna
problems. The proper context for such questions appears to be in terms
of the compact surface R formed by doubling D . This stems from the
fact that the differential F(k — o, — ®)dz and the function F actually
live» on R, by virtue of the Schwarz reflection principle. Such methods
lead one to Jacobi inversion problems for integrals of the third kind on
R, as observed by Garabedian [7, pp. 30—31]. See also [16].
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The situation for Carleman-Milloux problems is admittedly less hope-
ful. However, in the classical case, Heins [13] proved that the solution
can be expressed as the quotient of two theta functions. It would be ex-
treme y interesting to fit this representation into some sort of larger frame-
work.]

Harvard University
Department of Mathematics
Cambridge, Mass. 02138, USA
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