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1. Introiluction

fn this påper we propose to show how the method of dual extremal
problems can be applied to problems involving analy,tic functions which
satisfy interior side-conditions. The extremal problems we study have
their origins in the classical problems of Carleman-l\filloux and Pick-
Nevanlinna.

The Carleman-Milloux problem for analgtic functi,ons is concerned with
the family

'€:{f eAg): lf(z)l<t on U,lf@l<ö on.E}.

Here tr denotestheunitdisk, ä isapositiveconstant 0<ö<I, and.

E is a path which runs from 0 to I, say. Let zre a - E . The set

{f(zo):f e'€\ will then be a closeddisk lwl<M. Functions IeQ.
which satisfy l?(zo)l: l'[ are called extremal functions. The problem
is to describe the extremal functions -F and to calctilate M .

A potential-theoretic approach to this problem can be found in [20,
p. f f2]. Hon-ever, since the extremal functions obtained in this way are
not single-valued, this approach gives only partial results. The complete
solution was given b), Heins [l3] in 19a5.

The Pick-Nevanlinna interpolation problem, on the other hand, is
concerned. with the family

<: {feAg):lf@)l ( I on U , f(t,,): aL,...,ft€*1 : a^},

where €r, . . . , [^ are distinct points in U and the a* are complex num-
bers. We assume thal zoea - {6r, . . . ,6-} and let W : {f(zå:f eA}.
The set I7 , rvhich may well be empty, is elosed and convex. The extremal
functions I e'C are those which satisfy l(zo)e 0W . One would like
to describe, for example, those extremal functions which satisfy Re -F (zo) :
.4/ : maximum. The classical treatment of this problem can be found.
in [21] and. 124, pp. 28r-3091.

If one tries to extend these classical developments to multiply-connected.
domains, difficulties soon appear and it quickly becomes apparent that

Somo abbroviations: C : complex pla,ne, R : rsal line, iff : if and only if,
wlog : without loss of generality.
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new ideas are called for. In the case of the Pick-Nevanlinna problem, we

may refer to [7, pp. 25-32f and [f 2].

Now, as is well-known, marly extremal problems on multiply-connected
domains can be formulated as dual extremal problems. This rvas first
proved by Garabedian [7] for the Schwarz lemma and has since been the
subject of numerous papers (e.g. [15]).

The obvious question is thus whether problems with interior side-

conditions can be formulated as dual extremal problems. Very little rvas

known about this until around 1963, when Havinson [9] found a dual

extremal problem for the general Carleman-Milloux problem. Very re-

cently, Gamelin [6] showed. how the general Pick-Nevanlinna problem

can be transformed into a dual extremal problem. Both of these develop-

ments require a certain amount of abstract, functional analysis.

Tlne method, we shall explain here is applicable to quite general linear
extremal problems u'ith interior side-conclitions and is, moreot'er, entirely
classical in nature. Oru rrork therefore both cornplements and extends

results found. in [6] and l9l.
It will be seen that our method consists of essentially three parts:

(a) the study of the minimum problem by variational methods; (b) re-

duction to simpler extremal problems; and. (c) approximation.
X'or purposes of illustration, it will suffice to work in a situation of

moderate generality. The techniques we use apply much more generally:

some of the possible generalizations are ind.icated at the end, in section 9.

X'inally, it is a pleasure for me to thank Professors L. Ahlfors, H. Roy-
den, and M. schiffer for a number of very interesting discussions about
extremal problems. trfost of the l-ork clescribed. in this papel s'as done

at Stanford. University.

2. Statement of the Problem

We begin with the follos-ing list of assumptions:

(i) D is a plane domain x'ith analltic boundary 0D and' connectivity
g, l3p < co;

(ii) E : EtU . . . U E*, where Lhe Er are mutuall;- clisjoint com-

pact subsets of D;
(iii) -l( is a compact subset of D;
(iv) å is a totally finite complex Borel measure on K;

I nat(v) 1lr4: for heO6);
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(vi) k(z) is the Cauchy transform

Lfl
k(z): r",t J z-td)'(t);

K

(vii) aue C, ö*20 for l<l§{m;
(viii) each component, of C - .E intersects 0D;
(i*) we write

1: {f e A@): lf@)l ( 1 on D , lf(z)-ar"l ( ör on E*} .

A few words regarding the notation: (a) an analytic Jordan curve
necessarily admits a parametric representation t:t(r), 0(r(1,
in rvhich 6(l) is analytic, has period l, and is schlicht (mod l) on some
strip llm(t)l < ? ; (b) -4(D) denotes the family of single-valued analytic
functions on D ; (c) C(K) denotes the family of continuous functions
on K.

We might also mention that condition (viii) ensures that the various
conditions lf(z)-axl { ö* do not interfere u'ith each other (under the
maximum modulus principle).

Fundamental problem. Assume that € is non-void and let M :
sup Re 7 1/; over all f eA . We want to describe the extremal func-
tions -t'€ € s,hich satisfy Re*, (I) : M .

Of course, since '€ is a normal family, the existence of such I e'€
is guaranteed.

By choosing (a) cnp: Q, dn : ä and (b) är : 0 , 8,": {€r} \ye
obtain extremal problems of Carleman-I[illoux and Pick-]ievanlinna type,
respectively. The case (c) an : 0, dr : 0 , .Ur, : {6r} is much like the
Schrvarz lemma and will be called an ordinary linear ertremal problem
(see l15l).

3. Some preliminary remarks

In our development, rve shall make implicit use of the non-tangential
boundary values of analltic functions of class AB(D) and är(D) . The
classes AB(D) and I/r(D) are clefined as follows:

AB(D): {"f € A(D) : f is bounded on D} ;

Hr(D) : {f e A(D) : l/l has a harmonic majorant on D} .

When D : U , Hr(D) reduces to the well-known Hardy .I/, class; in
this regard, see also [14]. The properties we use are classical for p: 1

and straightforward extensions when 2 { p < oo . We may refer to [8],
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[0], and [22]. Note too that, since D was assumed to be analytic, Hr(D)
coincid.es with the Smirnow class Er(D). Lastly, we shall frequently
use the common notation ll/ll : sup l/(z)l , when leAB@).

The following three results will prove particularly useful. It is con-
venient tolet D" be the subdomain of D which is bounded. by the curves

€:E(r*de), e>0.
Lemma 1. There exists a positive function C(u) such that C(e)+ f

as a->0 and

I w@)t tdzt

oDu

D).

ch). tr'or z - €(n * ir) e AD,, we define the reflection
. Then, for g e Hr@) ,

s(z):*l sa)l* *)"
OD

r r I r I r I I I
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does the job. In fact, we need only check that lim C(e) : I . But this

is easy, since AD is analSrtic and the integral behaves like a Poisson
integral. I

Lemma 2. Let f"(z) be a poiltu'ise convergent sequence of Er(D)
functions whose limit function is /(z) . Suppose further that the boundary
integrals |orlf"G)l ld§l remain bounded. Then, f@)eHr@) and

I vot ld€l =lim 
inr S ,r"16Y @€l'Jn+eJOD AD

Proof(sketch). By the Cauchy integral formula, l}re f"(z) are uniformly
bounded on D compacta. It follows thaf f@) e A@) and that the con-
vergence is uniform on every D". By Lemma 1,
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rrf
I lf@)l ld,zl : ti* / lf"(z)l ld,zl < C(r) lim inf I ll"@l ldEl

J o*al - D+@ J
,Du 0D" aD

for each e ) 0 . The lemma follows at once, since är(D) : Ar(D) . n
Lemma 8.Let h([) belong to LL@D) or L*(?D), respectively. A

necessa,ry and sufficient condition for ä(6) to coincide with the boundary
value of a function in Hr(D) or AB(D), respectively, is that

I f@n@ae : o

i"
for every f e AQ U Aq .

Proof(sketch). The necessity is clear. To prove the sufficiency, we simply
study

1 f h(&\H("):r"tJ E-zd€'
OD

For a e OD" , clearly H(z*) :0 . Therefore, for z neat 0D ,

I r l.r I ]H(z):r"tJ n@Le _"- E_Z.)d€.
OD

since 0D is anal5rtic, this integral behaves like a Poisson integral and

I wr"y @,zt < c(e) [ pgll ptt
JJ

0D" 0D

as in the proof of Lemma l. See also 122, pp. L44-145]. tr

4. Ortlinary linear extremal problems

According to the definition in section 2, we now have

Q:{feA@):i/(z)l <l on D,l(€r):...:/(6-) :0}
and *l/ : sup Re Z1l1 : sup lz(f)l for f e Q . To see how the dual

extremal problem arises in this case, rve observe that

Re711; :11u I tfllrrtlof :Re f roltc-r-e]d,€JJ
OD OD

rr

-J
OD
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where f eQ , 9 e Hr@), and ar has the form (2ni,)a 2 po(" - fu)-r,
p*e0. Therefore, o:t

M ! Mo: inf I W -at - Elld€..-,, 
UJ,

The following well-known result then holds.

Theorem 1. Assume that M t'0. Then:

(i) M : Mo and Mo is actually a minimum, that is, Mo is assumed
for some pair (aro , go) )

(ii) the extremal function n eV. is unique: *111 : lr,1 ,

(iii) go(z) remains analytic across 0D ;

(iv) .E,(z) (k-*o-go) is analy"tic across 0D, l(k-@o-q)d220
on 0D;

(") for each component I of 0D, there are exactly tu,o possibrlities:
(l) ft+go*oto near f , X analy'ticacross 0D,l.F,l :1on

T;
(2) k : gs f aro near J-, with nothing asserted about .E' .

Proof. A proof of this result can be found in [5, pp. 9a-99] or [f 9].
These proofs employ the Hahn-Banach theorem, however. To avoid this,
one can proceed as follows.

It will suffice to prove that II - Mo, since the rest then follorvs in
an entirely classical fashion. See [15, pp. 96-99] and Lemmas 1, 2.

Suppose first that K is a finite set. Let us write

Il*,v|: I W-0)-vlld,€l , Il*o,Vof :Mo,
,t,

and A:k-@o-go. Using Mo2M>0, the fact that k(z) is
now a rational function, and the Lusin-Riesz-Priwalow theorem 122, p.
2121, we ca,n assume wlog that A(i) I 0 , a everyrvhere ot1 0D .

Define U,: {Ee 0D:lA(€)l> r), T,,:{€ e 0D: r,4(§)i ( r}, and
T(r) : lr * m(Y,)lr for r > O . Of course, b1, measure theory,

fun m(V,):0.

Choose any h e A@ U AD) and consider complex numbers t such
that ltl : T(r). We want to analyze the condition

Ilro , go + thl -.I[«ro , 9o] ] 0
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1

1l lct€l + olr(r)m(v,)1 > o.

rnas r + 0 . Using the obvious
\r'e readily check thab

I vtLlr ':
ur

On fJ, , however,

for eaclr. value of A as r --> 0 . It follows then that

f lAt
J h,(€) i 1d€l- o, h e A@ u oD).

0o

i,ql vt -\ r
so that

Substitution of this estimate yields

otre)nl(v,)t R"[ , | ^2 ldst] * ,\ry]> o .tr,
I)pon rvriting t - T (r)et' , \\re fincl that

otnt(v,)t Re 
ln, { r2 1d€t] * of:ry1 }0,

Ir

Bv Lemma 3 and its proof, rve deduce that

I(t)A(t)d€ : lA(€)l ld€l a,e.

for some F e AB@) , lT(z)l t l. Moreover, if we repeat the abor.e
argument rvith h(z) replaced. by (z - €*)-1, we immediately see that

o: | åffw,t:[ {*uuOD OD

n.hence .F,(f,,) : 0 . That is, E e'C. By construction, 4(jr,) : Mo.
Thus J/ - lllo, as required.

To prove lll : Mo in the general case, we shall use approximation.
Wefixanysmall ry)O andlet C:0D,. Then, 91ff1:["ft4t@ya,
for all f e AB@). We next partition C into .l[ small pieces Co so
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that, on each piece, the total variation of any f eAB@) is < ell/ll.
Choose points zoe Co, I ( a ( -l[, and define a discrete me&sure ,,

by means of
f

y {zo} : I k(t)dt .

!"

In an obvious notation, let 4" be the linear functional represented by
lu'

TVe have already proved that Theorem I holds whenever K is finite.
'W'e may therefore d.etermine dual extremal data I", ku, o)" , 9", Mu

for 4 " over Q. It is important to observe here that

t*"ff)-&tf»<ell/ll Iw$)ttu,l , le AB(D).
I

A simple normal families argument then shows t'hat M"---> M as e -+ 0 .

Since J7l": Iuolku-t"-E"lldzl, it follows that

fMolM"+ J lk"-klld'zl.
AD

However, it is easily checked that k,(z):lk(z) along AD - Therefore

Mol M and the proof is comPlete. I
Remarlc.z. It should be noted that in (iii)-(v) any minimizing pair

(go,oh) can be used. We also observe that since .L/ : XIo + 0, it fol-

Iows that k # vo * «ro , so that possibility (r) in item (r,) must hold

at, least once.
Rem,ark 2. The proof given above for Theorem I was motivated in part

by Carleson [3, pP. 78-82]'

the

5. Extremal problems with side-conditions

We now consider the general problem posecl in section 2. To discover

appropriate dual extremal problem, we observe that:

f r f .-
Re 41f1: Re / f(z)k(z)d,z: Re I f@ - a,, - q)dz a ne I lduJ""' J- J

ODODE

f

= J lk - @, - ql ldzl f Be {a*pr(E")} + ö"lpl@")
OD
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for each I eA, where p, is a totally finite complex Bore1 measure on
E , g e Hr(D) , and ar(z) denotes the Cauchy transform

I
c» *(z) - Z"i

13

{

I
z - t dP(t)

Note too that we use the Einstein summation convention over the re-
peated indices a. . It follows then that

M ! Mo: r#lt W - o)u - vl ldzl+ Re {ao p@*)} + ö*lpl@*)

OD

These inequalities will lead to a dual extremal problem provided that
M : Mo and that Mo is actually assumed for some pair (q ,@) . fn
that case, one can clearly start reading off properties of the extremal
functions I eA.. X'or example, I(k - a», - @)d,z: lk - a, - @l ld'zl

along 0D.
We intend to prove the following two fundamental theorems in this

section. In stating them, we shall call Q non-triai,al iff cardinal (A) >- 2 .

Similarly, € is called tri,uial iff cardinal (€) : t .

2. Assume that A is non-trivial. Every minimizingsequence
problem Mo is then bounded. That is, lt "l (E) and.

remain bounded when r?, + co .

Theorem 8.If. '€. is non-trivial, then M : Mo and. Mo is actually
a minimum. When € is trivial, M : JIlo still holds, btfi Mo need not
be a minimum.

Proof (Theorem 2). Let Qt, ,g) be a minimizing sequence for problem
Mo. Suppose that ]p,li : lp"i(E)'-- a as n ---> @. Then,

Theorem

Q,t" ,p") for

I uolv"Q)l idzl

{''t k

J '' 'un: 
-

dD å, ffi,\to,r +Re {.-+#}
lu"l(Ei 

_+ o .+ '" il P*ll

We now ,pply the selection theorem to the totally bounded measures

p"l,ltt"tl-L on E. Therefore, rvlog,

Pn U)'n

llp.ll 
*'t 

'

where 2 is a totally finite complex Borel measure on E. Furthermore,
wlog,
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It"l w*

ffi1-8'
where @ is a probability measure on E. ft follows that

lrtl 5Q.
Note: Thenotation i" 4 f, ,rused. to denote'neak-star conyergence,

which is to say that

I to,. .-- [ tuo

for every f e C@). To prove the assertion l"ll 5 Q, one recalls the
definition of lrTl as in [I8, pp. 308-309] and first checks thaf P1l@) < Q@)
for compact sets .F, .

By the eo* convergeuce, clearly

0)lrn +

111,51 
-; o'"

near 0D. By * normal families argument and Lemma 2, t-log

o^k\
;-\ 3 p*@)
1 fi"ll

on D compacta, g. e Hr(D). lforeover, by means of a simple extension
of Lemma 2, rve see that

f
, I - (,),,- E*l ldzl * Re {ant1(Eo)} + ö" Q@") < 0 .

J''t
OD

Ilence,

r
I I - @,, - V*l ldzl * R'e {a*r1(8")) * ö"lrll@") S O .

J
OD

We claim that 1,1.7]',: pltt(E) r 0 . If not, then

f
J lp.l ldzl + ä" 8(8") < o .

OD

Hence, öoQ(Eo):0, I (a 3m. But, 1:Q(Er)+... +Q@Å.
Suppose then that 8@p) + 0 . Therefore öp : 0 and Ep must be a
finite set (since € is non-trivial). But, then, l4l : Q on Eu and"lr,e have
a contradiction.

We next study the ordinary linear extremal problem
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for /eAB@), lf@)l <1. We claim that M(q)+0. Toprovethis,
we suppose first that rt@r) :. . . E 4(E^) : 0, but lql@il I 0. There-
fore,

Ilence, dp : 0 and Eu is a finite set (since € is non-trivial). By virtue
of assumption (viii) in section 2, E is a Runge set for AB(D) functions;
see 124, p. l5l. We may thus find functions f e AB@) which approximate
0on E-Eu and, ldtll@,q)-l on thefinite set Eu. Noteherethat ltll@u):
),rrBlrt@)l. n'orsuchfunctions f , clearly Irfaq I0. Hence M(rt)+o.

On the other hand, suppose that we have q(EB) l0 for some p. W'e
can then find / e AB@) which approximate 0 on E-Ep ancl I on .Ou .

Again, f ,f dn + o , and M(ri l0 .

Now, choose any f e AB@), lf@)l < t . Then,

Thus, for eYery f e'€ ,

sup l{ r d,l

r
J l*,, + v*l ldzl +- ö*lrtl@") < o .

0o

Re | ,*- (o n)dz * Re {ao q@ *)} + ö*lrtl@ *)
OD

OD

Re I ,r- 6,),))dz * Re {ao rt@)} + ö*lrtl@*)

OD

- R" f fdrt* Re {a*rt(E*)}+ ö*lrtl@*)

= f | - r,, V.l ictzl -r- Re {ao q@*)} + ö*lrtl@-)

OD
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so that l(- *, - v)dz: lan * q*l ldzl along 0D . Since M(rl) + o ,

we must have a, * p* * 0 along äD . Using the Lusin-Riesz-Priwalow
theorem, we quickly deduce that' '€ is trivial. Contradiction.

It follows finally that llp,,ll must be bounded whenever

f

J llc - ,r, - q"l ldzl { R'e {a,p,*(E")) + å*lp"l(E*) + Mo .

OD

The boundedness of I urlv"lr)l lil,zl is now immediate. f]
Proof(Theorem 3). Let us first check lhat Mo is actually a minimum

when ? is non-trivial. To do so, choose any minimizing sequence (p", g.)
for problem Mo and apply Theorem 2. We may therefore assume wlog

that u^4.r, lt ^11148, and that E"3@ on D compacta,
O e HL@) . We know too that lpl < Q. By * simple extension of Lemma
2, we see that

r
I ttt - @, - Ol ldzl * Re {a*p,(Eo)) + ö"Q(8") 1 Mo

J
OD

whence

f
I lk - @, - Ol ldzl * Re {a,p(E*)} -f ö"lpl@*) S Mo .

J
OD

It follows at once thab Mo is a minimum.
We must next shorv that ll : XIo whenever ? is non-empty. We

shall first prove this in the case rvhere K is finite, K n E : $, arrd A
is non-trivial.

If ,1, : 0 , the result is obvious. Suppose therefore that ), * 0 and.

that (rt , @) is extremal data for problem Jllo . We maintain that
k * @n f @ along äD . Otherwise, by the Lusin-Riesz-Priwalow theorem
and assumption (viii), we see fhat k(z) : @n * @ on D - .E . Therefore
lhe rati,onal function lc(z) has no poles in K and we deduce that, ). : 0 .

Contradiction.
Let us next define

sup 
I I f@ - ot,,)d,zi : ?1,

OD

for f IAB(D),lf@l <1. Weclaimthat 1l+0.
and Lemma 3 shows that k - @, - q(z) near 0D
Therefore (rl , il is extremal data for problem 7t

If not, then ?7 - O

, with q e AB(D) .

and this contradicts
the precedirg paragraph. I{ence , 'lL +
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Theorem I is now applicable to the ordinary linear extremal-problem
corresponding to kernel

fr:k-a,
and family {leAB@): l/(z)l < I on D). Let I be the normalized
extremal function. Using remark I in section 4, we see that

o:*JXL, I ,, - vt tdzt: I ,U - @ttd,zl

' '0D aD

- Mo - Re {a,r1(8")} - d"lrll(E") .

We also know that IG - (D)d,z : lTc - Al Wzl along 0D and' that @

remains analy"tic across 0D .

We shall now prove that I eQ by variational methods. Choose any
point zo e Er, let eo denote the unit point mass at zs , and let «ro be

the Cauchy transform of ao . Since lq * trol@r) < lql@) + lrl , we

see that

for all V and t

lk

tuol ldzl + Re {oort@ )) * Re {art}

ö*lql@) + örlfl > Mo

C . Therefore

tro - Vl ldzl >11 - ärlfl - Re{arf}

Let

.'1"1, _

for f?AB(D), lf@l <I.
and Theorem I applies. Let
fore

f?t,- J l,(E -to4)d,z>11 -Re
0o

Let, At : { ,o I,fr d,z . Then lA,l < tn 
.

function F is unique, we readily check that
pacta, so that A, + t'l'l- . Thus,

,

I tk-*, v
OD

+

€e Hr(D)

.J#å, I
OD

sup lt fG' - tuid'\,
OD

Since aI + O, clearly 41, + 0 for
l, he the normalized extremal function.

t+0
There-

{*rt) - ä, lf I .

MoreoYer, since extremal

F,(z) 3I(r) on D com-



irti@)2 Mo

Re {auto(R)}

+ Re {auto(R)} + örlr? + toi@)

for all g e Hr@). Therefore,

li{-. f fi t*o-vlldzl>?
q e Hr(D) J
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lA, - t F,(zo)l > c]1" 

- Re {arf} - drlll ,

lA,l2 - 2Re{t X,(z)Ä,} + O(tl\ >''}72 - 211" [Re(crr) * drlrl] + O(tiz) ,

-2 Re {t X,(zo)Ä,} > -z ?2 [Re(arr) * drlrl] + O|tl\ .

Dividing by ltl and letting t : ltl ei" --> O, we find that

Re{[,8(zo) - ar7e"] ( är, 0 < 0 { 2n.

Ifence, l?(zd - arl S ör for every zoe Er. Similarly for the other -Or.
It follows at once t}aat I e Q.

Let us next see what happens under a more general variation n --->

rt * to, where o is a totally finite complex Borel measure on -E , a com-
pact subset of some Eu . We quickly deduce that

r
I lk - @, - I - k»,1 ldzl * Re {a*t1(8,)} * d*lrl(E-)

J
OD

äp

L-

au lln + to!(R) lrti@)l .

Reasoning as before, rve find that for I -> 0

sup
i/l< 1

OD

- aulln I tol(R) - I,il(ä)l > o

and we leb I, be the extremal function. Once again, ?, 
= 

I , lA,l <')l ,
A,-->t)'|.. We obtain

> 1L - Re {auto(R)} aulln + tol(R) lql@)1 .

By squaring both sides, it follows that

- 2Re {u,'! ',ur}> - 
2?r [Re {auto(R)) a öuln I toi@)- Iryt(a)]l

+ oiltlz) .

This expression simplifies somewhat if we assume that

I trU - t*")drl > 1L- Re {auto(R)}

l^, -, { 
?,ito
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o:TR,

rvhere 4o denotes the restriction of q bo R. In that case,

-28,e {n,, ! 
,,or}>- zc)LyRe{artr1(ft)}+ öel,tltrl){ll +,1 -l}l

+ outt\ .

Dividing by lrl and letting t:ltleb-->0, we find that,

- 2 Re {r, "" [ ,ur] * ,']1 Re {aor1(R)eto t ö/r1l@)et'} > 0,t/)
0<0{2n.

Let us temporarily set -E : ap * Gu on Eu. The preceding inequality
yields

Re {ei'äBlzl(a)} 
= 

*" 
{ 

,'" f euar},

from rvhich we deduce that GBclry : öedhl on Eu.
Finally, then, -ä' € € and

Rel(I) : R" I F(k-o,,-@)d.zlRe{a*r1(8")}+ R" I *-0,
0D Ed

I W - @, - @l ldzl * Re {a;1(E*)) * ö*lrll@*)
J
OD

_ 11,[

- 
JLo.

Therefore Mr{M, sothat M:XIo.
We have thus proved that M : Mo: minimum whenever K is

finite, K O E: /, and € is non-trivial.
\Ve next look at the case where we know only that € is non-trivial.

The approximation argument used in the proof of Theorem t applies with
trivial modifications. Thus, in obvious notation,

t*"ff)-4tf|<€ll/ll I traltw,tt, f e AB@);
t"

M(e) : Mo@) : I rf, - ttt, - @"1 ldzl * Re{aor1,(E)} * ö*ln"l(E,) ;

OD

!*ao-M;
Mo ! ilI(r) * [ W" - kl ld,zl ,

J
OD
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and. we conclude that Mo ! M , whence Mo: M .

Let us finally suppose that € is trivial: 'e. : {I}. We define the
family Q":{feAB@):l/l <rf e on D, lf(z)-anl<är*s on
Eo) . Since X(z) * b e'e" for lbl < e , the family A, is non-trivial.
Uri.g a trivial magnification, we conclude that Ml?,): Mol'€"7. Tn

addition, a simple normal families argument shows that lim Mfe"f - M .

Now,

Mol'€
l-r

,l - inf I I (1 * u) lk - a)p- vlldzl * Re{ool@")} +
&,9 LJ

OD

+(ö"*e)

Therefore, MolA] 2 Mr. Letting e -> 0 , we see thab M 2 Mo. Since
M { Mo a priori, we see lhat M - l[o.

To complete the proof of Theorem 3, we must show that JIlo need not
be a minimum when € is trivial. This will be done in example E inlhe
next section. tr

6. Further results anil examples

In this section, we shall examine a number of essentially straight-
forward consequences of Theorem 3.

We shall use (4 ,@) to denote amy sollution of problem Mo z

Mo: f lk - *, @l ldzl * Re{ eoyt@*)} + öo lrtl@*)-uJ'
OD

tutwl

Given such a pair
CASES:

(I) f - a),1

(II) f - o,l

The cases (I) and. (II) are mutually exclusive.

Theorem 4. Suppose that € is non-trivral and that case (I) holds.
Then:

(i) there exists exactly one extremal function X eA for problem ll4;
(iil the two functions @ and I(k - @, - @) can be continued ana-

lybically across 0D;
(iii) .F(e - @, - @)il,z: lk - @, - Ol ld,zl along 0D ;

(rl , @) , ib is essential to distinguish the followirg two

@ +0 near 0D;

@-0 near 0D.
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(iv) for each component l- of 0D, there are exactly two possibilities:

(l) f + a, * @ near -l', -E' continues anal;4ically across
0D, and l,Fl: I along J';

(2) k: a, * (D near f , with nothing asserted about .E' .

Proof. We choose any extremal function I eQ. and apply Theorem 3.

Therefore

M :l.,e%1t1 :a" I mra" :n" I ttk - r, - @)d,z* R. f p a,
J

ODODE

: n" { tfk - *, - @)d,z { Re{ag(u,)} + R" U -nrl
0D Ed

-J
OD

_7,r _Tt
- 

ltto 
- 

J/,

where n : ao f G, on Eo . TL follows at once Lhab X(k - @, - @)d,z :
lk - *, - @l ld,zl along AD and that G,il,r1 : ö,il,lr1l on Eo.

Item (i) is now a consequence of the Lusin-Riesz-Priwalow theorem
applied to nr(k - a, - @)d,z: Iz(lc - @, - rD)ilz . And, of course,
item (iii) is clear.

To prove the analyticity of n@-*r- @), one makes an auxiliary
conformal mapping along 0D, uses properties of the Smirnow class .8, ,

and applies the Schwarz reflection principle for harmona'c functions of
Hardy class Bt, jrtsl as in [15, p. 97].

The arguments for (iv) and the analyticity of (D are exactly like those
given in [5, pp. 97-99]. tr

If A is non-empty, then the set W:{4(f):f e'€} is closed and
convex.

Theorem 5. Suppose that L is non-trivial and that W does not
reduce to a point. Case (I) is then valid under each of the following con-
ditions:

(i) k(z): R(z) near äD , where .B(z) is a rational function whose
polesliein C-E;

(ii) KnE:/ and C-K isconnected;

(iii) when all the är : 0 .

2L
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Proof . Consider case (i) and suppose that case (II) holds. Using analytic
continuation and assumption (viii) in section 2, we see fhat R(z) : a, * (D

in D-E.It followsbhat R(z) hasnopolesin D andlhat W:{0},
which is a contradiction.

Suppose next that cases (ii) and (II) both hold. By anal5,,tic continua-
tion, ft:@r*@ in D-EUK. But,Lhen, k(z) has asingle-valued
analytic continuation to all of D . Once again, W : {0} , rvhich cannot
be.

Suppose finatly that all the dr : 0 . Since € is non-trivial, ,E' is a
finite set. Suppose that case (II) holds. Then, for f e'€ ,

4ff)

and we conclud.e that Ty is a point. Contradiction. E

Theorem 6. Suppose that A. is non-trivial and that problem M has
at least one non-constant, extremal function. Then:

(i) extremal measure 4 is concenttated, on 0E ;

(ii) l-F'(z) - arl: är a.e. [rl] on Eu for every extremal function X .

Proof. Recall the first paragraph in the proof of Theorem 4. Therefore,

lT(z)-a*ld,q : önd,iql on Eu for every extremal function -F . But, one
can write dq : hditl t'ith a Borel measurable function h , lhl : I .

Item (ii) follou,s by taking absolute values.
Suppose norv that -F is a non-constant extremal function. Lef Ef;

denote the interior of Eo and assume fhat lrll@!") t' 0 for some k . By
item (ii), l?(z)-axl : il at least once in EX. Since p(z)-at"l ! ö*

on il*, the maximum modulus principle implies that lP(z)-ael: öx,
whence I(z): constant. n'rom this contradiction, we conclude that rt

is concentrated on 0E . Z

: 
{r,n

dD

Theorem 7. Suppose that
function. Then:

(i) '€. is non-trivial and

(ii) extremal measure rl

on 0E;

problern ^JI does not have a, ur1iqlle extremal

case (II) holds

is concentrated at a finite rlrlmber of points

(iii) Zff) assumes a very simple form:

*(f) :,ä, q@)f(a), f e A@)
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Proof.Item (i) follows from Theorem 4.

To prove (ii), w3 recall the first paragraph in the proof of Theorem 4.

Let I(") and_ "F(z) be two distinct extremal functions. Therefore

W(z)-anldq : lP(z)-atld'q : öhd'lql oy En. We write d,r1 : hd,lrll with
lhl:I, andlet f :{ze E:I(z):f@)}. Clearly, (I-I)hd,l/tl:0 on
E-T, so that lrll@-?) : 0 . Therefore, 14 is concentrated on f ,

which is obviously finite. Suppose, however, lhat' q were not, concentrated
on 08. Then, by Theorem 6, both -F and -F reduce to constants and ?
must actually be empty.

Item (iii) follows at once from case (II) and (ii). tr
We shall now give five examples which illustrate our theorems.
Erample A (for case II). To bogin with, let D : {1 < lzl < 2} ,

K:{lzl:312}, E:{lzl:1*e}t E}0 small, a:0, 0(d(I}e)
( I, and

Define

I
:t(h) _ 

2*,i
lr(z)clz , lb e OU{)

It (z)dz

!
An eas;, estimate shows t]nat l=Z(f)l < d(I f e) for every /€ €. Equality
holds for F(r): d(I +e)z-re'€. Therefore M:ö(l*e) and I
is an extremal function for problem Jl[.

Observe, however, that, lTl + t along 0D. By Theorem 4, we con-
clude that case (II) holds. It is easy to check that (d,r1 ,(D) : (d,zl2ni, , 0)

gives extremal data for problem Mo . n'inally, Theorem 7 shon s that
extremal function Jl is unique.

Erample B (for case I). Let D:{L <lal <3}, E:{2}, I{:
{lzl : 3i2} ,

'€-{f e AB@):lf@l <I on D, f(2):Ll2}
and

L

=L 
(lt) - z*i,

I

P;
Byatrivia1deformationofpathK,c1ear1yRe=81f1<
f e'e. Equality holds for ?(r) - z-r 6'e. 'Iherefore M - I
is an extremal filnction for problern lf .

By means of Theorem 5, case (I) must hold. IIsing Theorem
med.iately conclud.e that E is unique and that O - cort + @ along

and E

4, we im-
lzl: 3.
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Moreover, we easily check that (4 ,@) : (0,0) gives extremal data for
dual problem Mo.

Erample C (fornon-uniqueness). Let D: {lzl <l), K: {lzl: I - e},
e)0 small, E:{ll2), and

I
CU /L\-4\,/ ) - 2"i

h(z)

z - Ll' c{'z

h(z)

!
Choose any 0 { a I ll4 andlet ö : U4 -a. We easily checkthat the
functions nr@) : 712 and. Ir(z) : z2 are both in '€ a1,d are extremal
functions for problem l)[ (tul : ll4) .

It is thus apparent that Theorem 7 applies. X'or extremal data (r1 ,lD)
we carr take (er,, ,0) , where e1,, denotes the unit mass at tll2) .

Eruample D (for Theorem 6). Let D:{lzl <I}, E:{lzl <f/3},
K : {lzl: rl2} ,

v.-{f eAB@):lf@l <1 on D,lf@)l <tl} on E},
and

I
*-(t ) - zri

Clearly I(") : f i 3 is in '( and is extremal for problem M (]W : 1/3) .

However, we can take (T ,@) : (ro , 0) , where eo is the unit mass
at {0}. Thus, the existence of non-constant extremal functions is essential
in Theorem 6.

Erample E (for Mo+minimum). Let D: {lzl <l}, E:{lr1< 1/3},
K:{z}, *<l"ol<2, a:ö:0, and 4(D:h(?o). Clearly
€ : {0} . Using Theorem 3, we know that M : Mo: 0. However, Mo
is not a minimum. If it were, then

fo: J lk-*,-@lld,zl,
OD

and we could conclude that k - r,t,, | @ near 0D . Therefore,

I

2",i

which is impossible.

7. Further discussion of Carleman-Milloux problems

In this section, we shall give some indication of how Carleman-Milloux
type problems can be handled when .E is allowed. to intersect 0D. This

{

A?uo
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is the case, for example, in the classical Carleman-Milloux problem.
We shall be content to study the following situation. We assume that

E is a Jordan arc contained entirely within D , except for the terminal
point, which lies on AD . X'urther, assume that K n E: { and that
C - K is connected. Let 0 < ä ( I and define

Q:tfeAB@):l/(z)l <1 on D,lf@)l<å on -E).

To avoid the trivial case, assume finally that

J4 : suP P,e*1f1- sup 14 (f)l + 0 , f eQ.

Lel E, be an increasing sequence of compact subarcs of .E such that
l) E^ - E n D. We can then legitimately consider the extremal problem
for 4 over '€,, whero

Q."-{f e AB@):l/(z)l < r on D,lf@)l <ä on E"}.

Using Theorems 4 and 5, we determine the usual extremal data
Mr, E^, a)o , @^, rlo so that

Mo:21r,1 : I W-a^-@nlldzl*dllrl,il ,

{"
where ,^: @,to and llrl"',ll: lrl"',(8"). It is convenient to write

Bo:o)o+@".

We know that both n. and. §" continue analytically across 0D , while
lT"l: t and X"(lc - B")dz : llc - B"l ld,zl along AD . It is simple to
check thal M"->M monotonically as ?r-> oo.

Suppose now that D, is a smoothly bounded Jordan d.omain such
that K gDL cDlU ADr9.D-8. It is convenient to define

I rf(/c-,S") I rf(k-§")I^1fl@):2niJ" E_" d€-r*,;J" t_"OU
OD OD,

_,- I f lA)
'2ni,J ,-;dn"(t)'

En

for /eAB@) and ze Z, Z:C-E-DL-}DL-0D.
A simple computation shows that:

7 rf(k-5"\ L r ftl(") LUI@): zni J 
'd dt - ,ni J ;= dx(t) +

0Dr

_L I r f(t)
'zni,J t-id'\"(t);

En



(b) I^ffl(z\ -[f(z)ltt(z) -§"(')]' zezi D;/-l o , z€z-D.
Formula (b) shows that we can represent f(z) lk(z) -,S"(z)l as a sort of
Poisson integral, at least near 0D - E ; namely,
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f(r) lk(r) - S"(r)l - I"lfl@ - I,lfl @*) ,

where z* is simply the reflection of z in 0D .

Using the formulas for .I"[f](z) and, the fact that

J lr - S"l lit'zl { Mr,
OD

we quickly deduce that the functions S"(r) are uniformly bounded on
D - E U DLU ADt compacta. \Ye may therefore assume rvlog that

I"(z) ]?-(z) on D cornpacta;

§"(z)38-(z) on D-E compacta.

Moreover, since llrl"ll < Mrö-t, we may also assume that

,r^Y: rt on E .

Note that q rnay well be concentrated ab E n 0D .

We must next study .F,* and §- in the neighborhood of an arbitrary
point P eAD - E . To do so, rr-e choose neighborhoods 1r c.0D of P
so that

A ) Ar> Az> Ar) P

in an obvious wa,y. Since the problem is now local in nature, rve may (as

is easily checked) &ssume wlog that .4 c R with D situated above A.
By use of representation (c) above and writing z : u * ,i,a , we readily

obtain:

(c)

(r-u)2*az dru + O(r)

for ?, e D near Ar, uniforml,v in n .

By the Schwarz reflection principle, the functiorls
all analytic in a fixed rectangular neighborhooil RL of
of the above integral representation ancl tire bouncl on
we find that

? "(k
AL.

[ "tn

- ,S") are
By means

- ,s,,1 ldzl ,

ff
n1n D

lT"(z)l lk(z) - §, (z)ldu du ! C,
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independently of
polar coordinates

u,here I - l**,

0D-(rr,rr) SR and introduce
1 ,2. Then rvlog

'rb . We let,

z-fri*reiu )

R
,l .l

J J tn*t tk

Z'nl and R
R

min f V*l)-, I t

(7tgl. 
at

A, fl
j-

independently of n . By means of the Cauchy formula and the
reflection principle, we easily see that the functions

I "(k - §") (z - rr,) (z - nz)

are uniformly bounded in a fixed rectangular neighborhood Rz
A similar argument using k -,S,, in place of f "(k ,S,)

the estimate

- ,S"l r d,r d0 { Cr,

depends only on BL

lk-S"lrd,r{Cr,

S"lr d,r { C,

It follows that

Schwarz

of Az.
Ieads to

min
oeI lw-

Since -['"(ä-8")d,r20 and l?"l: I along A, two applicationsof
the Schwarz reflection principle will show that /S" €,4(,EJ and that

lk(z) -,S"(ä)l : l?"(z)l2lk(z) - §"(z)l < lF"(z)l lk(z) - S"(z)l

for z e Rrl' D . The Cz estimate now yields one for the integrals

I lk - S,lr d,r below lhe segment .4 -c- R . It follows at once that the
functions (Ä, - B") (z - rr) (z - rr) are also uniformly bounded on .8, .

A standard normal families argument now shows that both §- and
-F*(k - B-) have analytic continuations to all of Rr. Moreover, the
following uniform limits hold on .Er:

§*-lim§'i

") 
:il F*(tc-§,) .Y *(fr - ,S.

Recall here that §, and F "(k - S") are knor,yn to be in A(Rr) .

We shall now prove the followirg important

Fact: lI *(r)l - I a.e. on AB .
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Proof. Soppose not. There
rn (q + 0 , on which lI *(r)l

M -%(t*) - R" I
OD

a=A,,

Therefore,

+If .

, whence

0.

But, §, 
=§- 

on -Br. Therefore, Irlk -S*l ld,zl:0 andweseethat
& : §- , which leads to the contradiction M : O . J

We can now apply the classical factorization theorem of Szegö-Smirnorv

122, p. 781 to the functions 0 +.F'* (fr -,S-) eA(Rz), n*eAB(D),
and §- e A(Rz) . Using the fact, we conclude that, -E - continues ana-

lytically across .4, and that l7- I : I everywhere along ,4., . See also

[15, p. 98].
Suppose now that I is any extremal function: Z1l7 : ng . By re-

peating the proof of the fact, rve see that l.E'(z)l : I a,e. on Ar. But,

* @ + E *) is also extremal. Therefore

l.F, + ?.1 : l7l + ln-l : 2 a.e. on Ar.

This implies that X : I * a.e. on As . By the Lusin-Riesz-Priwalow
theorem, we conclude that ? : I*.

We can summarize the preceding results as follows:

Theorem 8. The Carleman-Ililloux extremal problem posed above

has a unique solution -t' . There also exists an analytic function B on

D-E suchthat,:

(i) both -E and § continue analltically across 0D - E ;

(ii) l.F'l :I along D-E;
(iii) -f'(e - S)ilz: llc - Sl ld,zl along 0D - E ;

(iu) Iuo_r lk -,sl ld,zl < M .

A similar theorem clearly holds whenever E is a compact subset of
C such lhat D - E is connected. See also [9, pp. 69-71].

must' then exist a compact set

I *(k - S*)d,z* Re f I * ilrtn
J
En

OD

OD

Iim t lk - s,l ldzl:
n->@ J

a
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8. Further discussion of Piek-Nevanlinna problems

We shall be concerned here with the following

Problem. Suppose that:

(a) assumptions (i), (iii), (iv), (v), and (vi) of section 2 apply;
(b) .E is a, sequence of distinct points €* e D tending 1e §- e 0D ;

(c)KnE:ö and C-K isconnected;

@)'e: {"f € AB(D) : lf(z)l < 1 on D, f(€o) : ar"\ ;

@) A is non-trivial;
(f) the set W:{4(f):f eA} does not reduce to a point;

@) M: sup 8n9/111 over f eA.
We want to describe the extremal functions -F'€ ? which satisfy

P"e./ (I): M .

The method we use is quite similar to that of section 7, only somewhat
more difficult. In this context, then, u.e introduce E" : {il, . . . , €o) ,

Q":{f eAB@):l/(z)l <I on D, f([1"):ap for I<k{n},
and the extremal dala M^, I,, e)^, @o, 4" so that

rI" :Re Z1F,; : I W - ao - @ol ldzl *2ne {anq"(€n)) .

u!" r:i

We also introduce Bo : a,, * @" and the Jordan domain D, . As before,
M,--> M monotonically as zt, --> co .

We now try to extend the argument used in section 7. It is important
to get bounds on lur lk - B"l lil,zl and §"(r). Observe, however, thatit
is conceivable that

fIim I lk - S"l ld,zl: * oo ;o+a J
OD

lim in"1ou4.16r)):-oo.D+a h:I

To get around this obstacle, we observe that

Mo-ReA6'1= I U-ml lk-s^llitzl
OD

for eaery feg. Let l, and /, be two distinct functions in '€. We can
then write h:f *q, fr:f - q with f eA and, q+0. Moreover,
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t q@)', wo find
tf@t +tQ@t <1

By studying I"lQl@), we quickly deduce that QB" is uniformly
boundedon D -E-DL-lDL compacta. Using Q+0 andthemaxi-
mum modulus principle, we see that §"(z) is uniformly bounded. on D - E
compacta. Therefore, wlog,

E"(z) lP*(z) on D compacta;

S"(r) 3§*(z) on D-E compacta.

We will not worry about the measur€s 2Jn .

We now stud.y the local behavior of X * and B- by means of the
neighborhoods

A) Ar) Az) Ar) P e0D - E.

Once again, we &ssume wlog that / c R . Using I"lF"Ql@), we fincl
that

QF"(k - §") dr * O(a)
(r u)2 * uz

for z e D near ,4r, uniformly in z .

By the Schwarz reflection principle, the functions .t,"(f - S") all
continue analytically to some fixed rectangular neighborhood R, of Ar.
By shrinking RL somewhat, we may assume that: (i) RL1AD:
(rr,*r)9F.; (ii) the non-tangential limits Q@) and. Q@r) exist and

are both non-zero. It follows that l0(z)l is bounded. away from 0 in the
sectors f,n < arg(z - r) < f;n as z -> fri, .

The integral representation implies that

I I ,, ',F, 'ik - s*l d,*d,u I B,
RlnD

independenlly of n . By introducing polar coordinates z : fri * re" ,
we see that wlog

lT"l lk -,S,1 r dr d0 I Br,

. Hence, for some constant' B and" all ??, ,

I wt lk -,s,1 ldzt < B .

0o

:{

{i.'
2"1 andwhere I - l|n , R is independent of lb . It follo\vs that
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independently of n . By shrinking .B somewhat, we may clearly assume
that

By the Cauchy formula and the Schwarz reflection principle, we find that
the functions n"(h - ,S") (z - rr) (z - rr) are uniformly bounded in some
fixed rectangular neighborhood R, of Ar.

Observe lhat a similar argument holds rvhen QI"(k - S") is replaced
by just Q@ - §") . We thus find that

R

f

t:,; J lk - §"lr d,r { Bo.

As in section 7, the S"fr*r"ro reflection principle implies that s, e A@L)
and that lk(z) - &(z;1 : lP"(z)lzlk(z) - §"(r)l < l?"(z)llk(z) - S"(z)l for
ze RriD. The Bs estimate non' leads to one for the integrals

I lk - B^lr d,r below the segment .4 
-E 

R . The functions

(k - ,S") (z - rr) (z - rr)

are therefore uniformly bounded on Rr -

The usual normal families argument shows that §"(z) I B_(z) and
I"(k - S") 

= 
-F'*(fr - B-) on Rz.

The remainder of the argument follows section 7 almost verbatim.
To prove that lI *(r)l -- I a,.e. on -/., , one uses

It is easily verified that l*(lc - §-) :0 leads to the contradiction
W : {o}.

Our conclusion is as follon's:

Theorem 9. The Pick-Nevanlinna problem posed above has a unique
solution "F . There also exists a meromorphic function § on D, having
at most simple poles on .8, such that:

(i) both -E and ,S continue analybically &cross 0D - E ;
(ii) l-tr'l : I along 0D - E;
(iii) -f'(/c - S)d,z: llc - Sl ld,zl along 0D - E .

Tå? I wt tl*t tk- §' tr d'r ! B,

TåT i ll*l tk- §,, trd'rS B,'

tr* - tt = f tr lr,*ll lk - ,S,t ldzl.
OD
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The remark about the poles of §(z) follows from the uniform boundedness

of 0S" proved above.
ft is also clear that a similar theorem holds for much more general

sets 7.
In certain cases, it is possible to prove that the extremal function is

unique with very little work. Suppose, for example, that 4(f) : f(zi ,

where zs * all €u . Let -8" and I, be two distinct extremal functions:
B"e:{(nr):ReZ(Iz): M. We may therefore write nr: n * Q ,

Xr:I -Q, where -F isalsoextremaland Q+0. Since lItQl<1,
we see that l7l'+ lQl2<1. Forming g(z):Q@)'12, we find that:
(i) s*0; (ii) llsll <I/2; (iii) e(6r):o' and(iv) lx(z)l*ls@)l<L-
Write g(z) : (z - zo)* gr(z) with gt@d # 0 and define

h(z) : f @) * Rei" gr(z) .

For -B -> 0 , one readily prorres that h, € € (using the maximum modulus
principle). Therefore Relei' gr(zo)l < 0 and 'we deduce the contradiction
glzo) : 0 . This method of proof is due to S. X'isher l4l.

9. §eneralizations anil open problems

The arguments we have used in previous sections can of course be

generalized considerably. It ma;r be of interest' to mention a few of these

generalizations explicitlv.
We begin by recalling the statement of our problem in section 2. From

this, we see that there are at least six possible directions for generalization:

(a) the restriction lf@)l S t;
(b) the restriction lf(z)-a*l < dr i
(c) the set K;
(d.) the l'i,near fmctiona! I ;

(e) the set .E ;

(f) the domain D.
Regarding direction (a), it is entirel5 possible to replace the (boundary)

condition lf@)l < I by a m.ore general one, such as l"l/l < t , where t
is some harmonic function. See [15].

With regard to (b), it is possible to use conditions of the form

l/ ffi-aol ( dr, ,

where the Z" are linear functionals (e.g. clerivatives). Eurthermore, one

can allow or. and ör. to be functions and can consider other norms (such

as Lo). The articles by Havinson [9] and Gamelin [6] are of particular

interest here.
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The restriction that K be a compact subset of D can be relaxed
somewhat. The important thing is that we ultimately obtain a representa-
tion =t1f1: [urf{")tttz)d,z witln a reasonable kernel /o(z) .

One might also wish to examine non-linear functionals =t . lt would
be interesting to see how dual extremal problems fit into the picture.
However, not too much appears to be known about such problems. See

also [5] and [II].
We now turn to direction (e). We have already given some indication

of what happens when Z O äD is nonvoid, at least for Carleman-Milloux
and Pick-Nevanlinna problems. The main point is that the dual extremal
problem of section 5 becomes singular and one is forced to reason by up-
proximation. It may also be of interest to study the dual function §(z)
more deeply.

Direction (f) is concerned with the domain D itself. One would like
to know what happens to our extremal problems on arbitrary plane domains
D . The situation for ordinary linear extremal problems was investigated
in [5]. Using similar methocls, together r,i'ith those of sections 7 and 8,
rve have developed a reasonabl}, complete theor;, for certain cases, in-
cluding the Carleman-Milloux and Pick-Nevanlinna. In doing so, we use
exhaustions D"I D and E^ t.E, where the D* are smoothly bounded
and E. is a compact subset of D,. (These E" have nothing to do with
the old ,E'r .)

In a slightly different direction, one ma,y wish to replace the domain D
by an open R,iemann surface W . Tf I7 is a smoothly bounded subregion
of a compact surface Wo, there seems to be a reasonable theorv. See

also [1], [12], and [23]. IIou.ever, the question of linear extremal problems
on arbitrary open surfaces W, especially those ofinfinite genus, is rather
poorly understood at present. Compare p5, pp. ll7-lzll.

One obvious problem which has not been mentioned at, all in the pre-
ceding sections concerns the uniqueness of the dual extremal data (r1 , {D) .

Information about this problem can be found in [10].
We mention one last area, which seems to be particularly interesting.

This area concerns explicit formulas. As is well-known [7], the solution
of the Schrvarz lemma problem can be expressed in terms of the Szegö
kernel function (see also [2, pp. 36-89]). One would like to determine
whether a similar interpretation exists for the solutions of Pick-Nevanlinna
problems. The proper context for such questions a,ppears to be in terms
of the compact surface -E formed l:y doubling D . This stems from the
fact that the differential I(k - a)4- (D)d,z and the function .E actually
»live» on ä , by virtue of the Schwarz reflection principle. Such methods
lead one to Jacobi inversion problems for integrals of the third kind on
.B , as observed by Garabedian [7, pp. 30-31]. See also [16].
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The situation for Carleman-Milloux problems is admittedly less hope-
ful. However, in the classical case, Heins [3] proved that the solution
can be expressed as the quotient of two theta functions. It would be ex-
treme y interesting to fit this representation into some sort of larger frame-
work.l

Harvard University
Department of Mathematics
Cambridge, Mass. 02138, USA
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