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1. Introduction

Let
(1.1) fz) =2+ i 2"

be a locally univalent analytic function with bounded boundary rotation.
Paatero [9] showed f’(z) has the following integral representation

(1.2) f'z) = exp{ — ;I;flog (1— ze"“’)dv(@)}

where () is a finite, normalized measure

(1.3) p[dv(@)i < w0,
J
2x
(1.4) dv(0) = 27 .
/

Any function f(z) of the form (1.1) having a representation form (1.2)
with any finite non-normalized measure ¢(f) is also a function of bounded
boundary rotation. Denote by V(p, q) the class of functions of bounded
boundary rotation satisfying

27 27

(1.5) [aver=pa, [1200) <oz (p1 <a).

The class V(2,¢q) is the well known class of functions whose boundary
rotation is at most ¢z (see [7] for basic properties of this class).

For p >0 and ¢ > max (p,2) we show that if f(z) =2+ > ax"
n=2
belongs to V(p,q) then

1 — L
(1.6) !anfggbn_l(q p,q‘—p),nzz,3,...

[\
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where

(1.7) M =14 i bu(s , t)z" .

(I —2y
The above inequality (1.6) is sharp.
For p = 2 the inequality (1.6) was an open conjecture for functions
of bounded boundary rotation proved recently in [3] and [1]. For
q¢ — 2> p >0 we obtain an integral representation of the closed convex

2z
hull of V(p, q). Finally we show that the maximal value of f f(re®)%d0
0

for any « > 0 in the class V(p,q) is obtained for the function whose

q—p q-+p
B andtzT.

derivative is of the form (1.7) with s =

2. Preliminary results
Let

(2.1) h(z) =1+ > ha2

be an analytic function in |z] < 1. Suppose that Re {h(z)} > 0 for
lz] < 1.
The classical Herglotz formula states that h(z) has a representation

- 1 L ze™®
(2.2) h(z) = f (1—_—26;_—> du(0) ,
0

where p(f) is an increasing function with u(0) =0 and u(27) = 1.
Recently Brannan, Clunie and Kirwan [3] established the following remark-
able extension of (2.2).

Theorem 1. Let h(z) be of the form (2.1). Asswme furthermore that h(z)

1 +cz
1s subordinate to 1 on the unit disc for ¢! < 1. Then for any given

x> 1 there exists an increasing function u,(0) on [0,2x] with p,(0) =0
and py(2m) = 1 such that

2

1 + 2 —ig|o
(23) per - [ [——C—e—} aus(6)

1 —ze™?
0

The following result follows easily from (2.3) [3]: Let I be the set of
all increasing normalized functions wu(9) on [0, 27], ie., u(0)=0 and
u(27) = 1. Denote



D. Amaroxov and S. FRIEDLAND 5

2z
du(0) }
(2.4) D= {k(z) h(z) = Jm, pelr.
Then
(25) j)/l ?;-z c (7;-1+;-2

for 2, >0 and 2, > 0. Formula (2.5) means thatif %; €°), and &, € T,
then there exists a function hy in ), ., such that hh, = hs.

A function (1.1) is said to be starlike of order « for o« <1 if
(2.6) Re {zf"(2)/f(2)} > o

for all z! < 1. Denote by S, the set of all starlike functions of order «.

By the Herglotz formula we obtain the well known representation of a
starlike function of order « (see for example [10]):

(2.7)  f(z) = zexp {— 2(1 — x) flog (1 — ze“ie)d;t(ﬁ)}, we€l.

The following relations are easily established
(i) S;c S, for o < B,
(ii) if f€.S, then z[f(z)/z]""P~ €8,
(iii) if f; €S, and f, €S, then fif,/z€S8, \ 1

Let S, , denote the class of all functions g¢(z) of the form (2.1)

such that ¢ = f,/f, where f; €S, and f,€S,. We have

Lemma 2.1. If the class S, , s defined as above then:

9(2) Ig(z) = exp {— /log (1 — ze“'e)(l,u(e)} ,
(28) erl,xz = ’ o0

27 2:

() = 203 — ), [ [ du(0)] < 4 — 200 + ay)
|

0 0

Proof. Let ¢(z) = f;/f, where each f; has a representation (2.7) with
o =o; and p =y for j= 1,2 respectively. Let u = 2(1 — x;)u; —
2(1 — «xy)u, then g¢(z) is of the form (2.8). Suppose now that ¢(z) is of
the form (2.8). Decompose u(f) into two non-decreasing functions u,(0)
and u,(0). The we obtain

#(0) = wy(0) — ua(0)
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27 27
of dpuy(0) — f dpia0) = 20y — o)
fﬂdm(e) + fﬂdyz f du(0)] < 4 — 2(x + )
0 0

Let #(0) = mi(0) + cf, where ¢ is a nonnegative constant chosen to
satisfy the equality:

[ ) + [ o) = 4= 20+ ).
0 0

Now #(f) is a non decreasing function on — [0, 27] with

27

dej(6)=2(l—zxj), j=1,2.

Let

Then J”jeSaj for j=1,2 and g=/fi/fs

As a consequence of Lemma 1 we obtain by definition of the class
V(p,q) ((1.2) and (1.5)) that if f€V(p,q) then f’ is a ratio of two
starlike functions of the appropriate orders:

Lemma 2.2. Let V'(p,q) be the set of all functions f'(z) where f(z)
belongs to V(p ,q). Then

(29) (p Q) —(q+p/4:1—(q—p)/t *
For p =2 this was showed in [2].

We now show that any function belonging to the class 1(p,q¢) is a
function of bounded boundary rotation. Indeed, let

f(z) = exp {— 71; flog (1 — ze™®)de(0) }

where v(f) satisfies (1.5). Put
(2.10) w(0) = v(0) — cb.
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Since fe“""e d9 =0 for n=1,2,..., we obviously have
’ 27
1 .
(2.11) f'(2) = exp {— - flog (1 — ze‘“’)du(@)}.
0
Taking ¢ = - we see that f’(z) has the Paatero representation

2
(1.3), (1.4), i.e., f(z) is a function of bounded boundary rotation.

We close this section by another integral representation for a starlike
function of order « which was recently established in [5].

Theorem II. Let f(z) €S,. Then

2z

du(0
(2.12) f(z) = f(*% (x << 1)

1 — ze™

for some p €1l

3. Integral representations

Lemma 3.1. Let fi(z) and fy(z) be two starlike functions (of order 0).
Then the ratio fi(2)/fa(z) is subordinate to ((14-¢2)/(1 — z))* for some |c| = 1.

Proof. Let wv;(0) = lim arg fij(re®), j=1,2. It is well known [11]
r—>1

that the limit exists and ¢;(0) is an increasing function satisfying
vj(27) — 2j(0) = 27. Consider the function

u() = arg [fi(e") fo(e")] = wy(6) — uy(6) .
We claim that there exists a real constant y such that
(3.1) () — | <.
Indeed
w(0y) — u(0y) = uy(0,) — uy(0;) — (ug(0s) — uy(6y)) -

Assume that 0, > 0,. Now as each wu;(f) is an increasing function with
total variation 27 we obtain the inequality

— 27 < u(fy) — u(h) <27 .
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This proves the existence of y. The inequality (3.1) is equivalent to the

following:
fl(ei"))”2 1
JIV /9|
arg <f2(eie) LY 2 l S 3'[/2

1+ evz)\2
which shows that f;(2)/fs(z) is subordinate to _—5)

For the following we need some definitions and notations: Let X be
the torus {(x,y):z = €°,y = ¢“}. Denote by J the set of probability
measures u(f,$) on X. Let co(V(p,q)) and co (S,,;) be the closed
convex hulls of the sets V(p,q) and S,, respectively with respect to
natural topology of the analytic functions on the unit disc. Recall that a
convergence in this topology means the uniform convergence on any compact
subset of the open unit disc.

Theorem 3.1. Let S, ; be the set of the ratio of two starlike functions of
order « and B respectively. Then for x < f <% co (S, ,) is evactly the
set

27 2z
(1 — ze—i4)20-9)
(3.2) ff ) 2= (1 _ o—i0)21—0) du( ,0), n€J.
Proof. Let f, €S and f, €S. Then

(1-a) 1-8)
g1 9o
=87 ae )
2 z

where ¢,,9, €8S, So

A=) (5 \G-2)
e F=l) e

(8—)
For B > « the function z(—;l) is a starlike function of order 1 4 x — .
Thus by (2.12) there exists » € I such that

9

-7

(fﬂ)(ﬁ—a) _ f dv(y)
z - J (1= ze " H)HA=)

Combining (3.3) with the equality above we obtain

(1-p) ch( )
(3'4) f(‘]) (1 — —iy )2(/3 @) *
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for

A —B) 1 + cz 2(1-p)
By Lemma 3.1 (g—) is subordinate to the function T
X —
some |c| = 1. The inequality § <1 implies that 2(1 — ) > 1. Thus by

the generalized Herglotz formula:

2z
(1-p) 1 —ig \ 2(1-p)
' + cze
( ) = /(1——26_"1’) do(d), o €1.
Up v

(1-8)
Replacing (Z—l) by its integral representation in (3.4) we obtain
2

2= 21

1 4 cze™#)21-F) 1
(3.5 / (1 — ze"*" 2(1-p) (1 — ze —iz,u)2(/3—cx) dv(y)do($) .

The relation (2.5) implies

2

1 1 daoy, 0
B-6) i (1 e = ) (1= ey G €1
0

for any pair (4, ). Introducing (3.6) into the equality (3.5) we deduce
that any function which belongs to the class S, p is of the form (3.2) for
o < < 1/2. As the probability measures set J is convex and closed
in the w* topology we obtain that co (S, ,) is contained in the integrals
1 — ze—i¢)2(1—ﬁ)
(1 — ze=i@)21=)
clearly belongs to the set S, ;. This shows that the set (3.2) is exactly
co (S, for « < B < 3. This completes our proof.

(3.2). On the other hand any function of the form

Let K, ,; be

! 1 — ze—ié)Q(l—ﬂ)
(37) Kx,5= gég:a_—wm, OS(]S, 0S27‘6

Clearly K, , is a compact set. Furthermore Theorem 3.1 states that
co (K, 5) = co (8,,) for « <p <3%. By the Milman theorem [6, p. 440]
the extreme points of co (S, ,) are contained in K,, (x <p<1). In
what follows we partially characterize the extreme points of the compact
convex set co (K, ;) for « <f < 1. We note first that the functions
(1—;2617)2(’3—;) (0 <60 < 27) are not extreme points. Indeed, the equ-

ation
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— pe—i#\21-8) dqb
1 —
f 1 — ze 27

2z

1 (1 — ze™i4)21=F) dé
(1 — 2e= 226G~ = ] (1 — 2e7#)X1=9) (1 — z¢= )20~ 25 °
0

implies

Using the relations (3.6) we obtain an integral representation for the
function in question:
27 27

— emibyHi=p)
(1 — ze—@)2F—2) = /f (1 — ze~w)20=2) . ¥)

where u € J and u is not a unit point mass. This shows that W

is not an extreme point. The following theorem characterizes some extreme
points of the set co (K, ;):

Theorem 3.2. Let co (K, ;) be the closed convex hull of the set K, ;
defined by (3.7). Let « < B < 1. If B > L then all extreme points of co (K, ;)
are exactly the functions

1 — Zl‘)z(l_ﬂ)
(3.8) (1 — 2= l=lyl =1
for x #y. If B <1 then the functions above are extreme points at least if
27

328"

(3.9) larg (— a7)| <

Proof. Assume that

(1 — 2a)* =P f (1 — zx)*=7) Ju( 2|

e = | T ey AL Y) s X F Y, [Tl = Y =1

1— Zy0)2(1 ) P (1 — 20— Y o 7 Yo ol Yo
where X is a torus I'x I’ and I is the unit circle. Decompose the in-
tegration over I'X I into the integration over the set I'{y,} and
I'x I'\{y,}:

(1 — ZxO)Z(l—ﬁ) /‘ (1 _ Zx)z(l_ﬂ)
1 — @ = ) (1 gy - 9)
I'x{yo}

(1 — za)?=7)

i 1 — zy)*t—»
PXF\{%}( 2

du(x ,y) .
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Now multiply this equality by (1 — 2y)*"™® and let z approach 7,
radially from the unit disc. Then we get

(1 — oxe) = = f (1 — §o2)* =" du(x , y)

(3.10) gl i
(1 — z2)
+ lim [(1 )2(1—3‘) f 1 — 220 du(x , y)
z—>yo I'XIN\{Yo} ( Zy)

We claim that the limit in question exists and equals to zero. Indeed,
let ¢ be an arbitrary positive number and let N be a corresponding
neighbourhood of y, in I' such that u(I'XN\{#}) <e. Then

(1 — zx)2@-H)

lim | (1 — zyo)* = () W@ 9)
=% X\
| (1 — 20
ST (-t [ T e )
z—)y“ l I'<xI'N\NN - ‘

_ =p)2=h) !
+ lim I (1 — zy,)*0—™ (1~ 22)

n (1= 209 du(x , y)
P I NX\{y0} i
[(1 — za)*0=P
AS T 31-o | 18 uniorm ounde on e Se X or
As | i is uniformly bounded on the set I'XI\N f

L1 — 2y
z=rj, (0 <r < 1) we deduce that the limit on this set is zero. On the
[(1 — za)=P)

set I'x N the function [(I——WE) |1 — 27,

220-8) for z = rj,. Thus the limit on I'x N\ {y,} is less than 2°¢~P.

This proves that the limit on the set I'xI"\{y,} is zero. The equation
(3.10) reduces to

2(1—a)

is bounded by

(3.11) (1 — Fzg)=") = f (1 — 7)™ Pdo()

where u,(z) is an increasing function with total variation not greater

than 1. In fact wo(S) = u(Sx{y,}) for any measurable set in I'. The
1 — Zx0)2(1—/3)

function m@ is a fortiori an extreme point of the set co (K, )
— %Yo

if and only if a unit point mass concentrated at z, satisfies the equation

(3.11).

(i) Suppose that 3 < p < 1. Then (1 + 2)**~# is a convex function
which maps the unit disc onto the convex domain D;. Note that w = 0
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lies on the boundary of D;. For fixed ¢,0 <¢ <1 consider the following

set
2=

(3.12) w = f(l — e®)0=Pdu6), pel.
0

Clearly this is the domain tD,. Thus if w is a boundary point of the
domain D; and w 7 0 then this point has a unique representation (3.12)
with the corresponding unit point mass measure u(f) and ¢ = 1. This
shows that if 7, = 1 then (3.11) implies that g(x) is a unit point mass

(1 — zxp)*—P
0 . .
(1 29 is an extreme point.
0
(ii) Suppose that § < 4. Then the domain D, is not convex anymore.

Consider the curve (1 -+ ¢®)!=F) = y(6) + iv(f) for —zn <0 <=

measure which proves that

2(1-p)

u(f) = 221-9 {cos ;} cos (1 — )6,

(3.13) -
0 120-5)

() = 2°0—F) [cos EJ sin (1 — B)f .
Clearly this curve is symmetric with respect to the real axis. Let ¢ be
the first positive 6 which satisfies u'(¢) = 0. A straightforward calculation
shows that ¢ = 2z/(3 — 2f). Now it is easy to see that the convex hull of
D is bounded by the curves:

w(®) + iv() for 0] <é,
v(g) + iy for y| < wv().

Therefore if |arg (— 7or,)| < ¢ then the point (1 — Fz,)*'~® is an
extreme point of the convex hull of D,. In that case the equality (3.11)
holds only if py(x) is a unit mass point concentrated at wz,, i.e.

(1 — zy)" P : .
(1—;———?/)2(1_(,)15 an extreme point of the set co (K, ;). This completes the
- 0

proof of Theorem 3.2.

The case = 1/2 was proved in [4] and our proof actually extends
the proof given there. Returning to the class of functions of bounded
boundary rotation V(p,q) we obtain

Theorem 3.3. Suppose that 0 < p < q — 2. Then the closed convex hull
of the set V(p , q) of functions of bounded boundary rotation is exactly the set

M 3

(3.14) /dw (j’ju_—mzp du(¢,6))
0 0 1 — we

0 ( —ie) 2
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where u ranges over all probability measures in J. Furthermore if 0 and
¢ satisfy the conditions

TT
3.15 H — < -
(3.15) 0 —¢+al <5 Ep—
and €® # e then the function
q-p
A (1 — we™®) ?
(3.16) f — = dw

(1 — we=") *

is an extreme point tn co (V(p , q)).
. q+p

Proof. By Lemma 22 V'(p,q)=S,; where a=1— 3
f=1— q—z—— Using Theorem 3.1 we obtain the integral representation
(3.14). Noting that the linear transformation f —f" of co (V(p,q)) onto
co (V'(p,q)) is one to one we realize that the set of the extreme points of
co (V(p,q)) is transformed one to one on the set of extreme points of
co (V'(p,q). Using now Theorem 3.2 we have that the function (3.16)
which satisfies condition (3.15) is an extreme point of co (V(p, q)).

In [3] the theorem was established for the special case p = 2.

4. Coefficient estimates

Let h(z Eoc,,z" and H(z Zﬁnz be analytic in |z] < 1. By
n=0
h(z) <€ H(z) we mean |x.| < ]ﬁ,.[ for n=0,1,... In what follows we

need the following [1]:
Theorem III. Let !¢ =1 and a >1. Then
1+ cz)\® 1+ z\®
(4.1) (1—z)<<(l—z>'

Theorem 4.1. Let « < pf <1 and x + f < 1. Then any g(z) belonging
to the set co (S,,,) satisfies sharp inequalities:

(1 + 2)*=A)
(4.2) 9(z) < (1= %= -

Proof. Clearly it is enough to show (4.2) for g(z) belonging to S, .
As o« < B by (3.4) g(?) has the representation
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2=
1-8) d
Y1 ()
g(z) = f (‘g—z) (—'—“1 — Ze_iw)z(ﬂ_a') , V€I,
0

where ¢, , g, €8S,. Thus the theorem follows if (4.2) holds for

g_l 1-5) 1
A (1 — Ze-—iw)z(ﬁ—a) .

Introducing a new variable & = ze™"¥ we reduce the inequality (4.2) to
the inequality

(1-8) 2(1-8)

g 1 (I +2)

(4.3) 'l) =) K 2(1—a)
2 (1 —z2) (1 —2)

2
nd o belong to

z
(1 — 2= (1 47

S. s—a we see that the functions

1- )
1 9.\ 2
w1 b))

1 g 1-p 2
helz) = 7 [z (Z) 1+ z)‘ﬂ-”}

belong to S o Therefore the inequality (4.3) is equivalent to

for g¢,,9, €8S, Noting that

2

Iy 1 (1 + 2)=A)
h—z (1 — 22)Ff=9 < (1 — z)—9 "
As the function ——————= has nonnegative coefficients in its expansion
1 — 22)(ﬁ x) > p

about the origin the inequality above is certainly true if we show the
inequality

ia hy (1 - ;)2—(1+ﬁ

(4:4) hy <\1—: '

By Lemma (3.1) it follows that A,/h, is subordinate to the function
1 + ¢z\*~@+h
I —2 for some |¢| = 1. Now the assumption v — g < 1 enables

us to use the generalized Herglotz formula

2

h 1 -+ cze™®\2~@+A)
iz/(w) du(@), nwel.
0
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Finally the inequality (4.1) implies (4.4). This proves (4.2). To show that

2
this inequality is sharp we simply note that (T——_W €S, and
(1+ 2

2
si=p €9 and thus —_;)2(?;) €8, This concludes the proof

1+ 2)"" (1
of the theorem.

Let

_ (14 2) N @
(4.5) Ty = 1 +n§1bn(s

Combining Lemma 2.2 with Theorem 4.1 we obtain

Theorem 4.2. Let f(z) =2z + z a.2" be a function of bounded boundary
rotation belonging to the set V(p ,q). If p >0 and q¢ > max (p,2) then

X o1 q—p q9+p
(4.6) a,,‘_é;bn_l(——z—,—;— s, m=2,....

Equality holds in (4.6) for the function

z -

| (14w *
(4.7) Sp.q(?) -——f——-%dw

o (1—w)

=

and its rotations.

For p = 2 the class V(2,q) is the well known class Vg of locally
univalent analytic functions that map |z/ < 1 conformally onto a domain
whose boundary rotation is at most ¢z. In that case the inequalities (4.6)
were established recently in [3] and [1].

5. Inequalities for integral mean values
Theorem 5.1. Let g(z) belong to S, ;. Then
5 . 1 L pei®20—B)
(5.1) f g(re™) 1 a9 < f L+ w:m_a) a0
for any t >0 and 0 <r <1. This inequality is best possible.

To prove this theorem we need the following lemma:

Lemma 5.1. Let u,(0), ..., ud(0) be n periodic non-negative functions
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on [— z,n]. Assume furthermore that each wi(0) is symmetric on [— m , 7]
and decreases on [0, x]. Then

(5.2) f TT w6 — 0:)d6 < / TT =i(6)d6
i=1 i=1
for any 6,,..., 0
Proof. Clearly w0 — 0;) is equimeasurable to w;(0). Furthermore

() , . .., us(0) arranged in the same order. It now follows from a result
of Lorentz [8] that

f@('ul(e —0)), .. w0 — 0,)d0 < f@(ul(ﬂ) e Ua(0))d0 .
2P

0u;0u;

If

>0, j=2,...,n, i=1,...,j—1

Obviously the function @(uy, ..., u.) = '|_|' u; satisfies these con-
ditions. This proves (5.2) i=1

Proof of Theorem 5.1. Let g €S, ;. Then g = fi/f, where f, €S, and
fo €8, (x=0o,x,=pf). The functions f; and f, have an integral
representation:

27

fi(z) = zexp {—— 2(1 — &) flog (1 — ze“i")d,uj((?)} , €I
0

Each p; can be approximated by step functions from the set I. Therefore
g(z) can be approximated by the functions of the form

(5.3) g(2) = TT (1= ze™®)% TT (1 — ze=™s)~"%
j=1 k=1
where
a4 >0, > a;=2(1 — )
j=1

So

1 4 refle™ |9 1 — rePe™ e |~ d0
j=1 ! k=1
j= =
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fTT wl® — ) TT o0 — p)as,
j=1 k=1
where

wi(0) = |1+ re® ™, vi(0) = |1 — re®| 7%,
By Lemma 5.1 we obtain the inequality (5.1) for g(z) of the form (5.3).
As any function in S8, , can be approximated by functions of the form

(5.3) we deduce the inequality (5.1). The sign of equality holds for the

(1 + 20"
function R which belongs to 8, ;.

(I —2)
Noting that for ¢ > 1 the functional

(5.4) ( f |g(¢ei9);‘de)’

is convex on the set co (S, ;) we geb

Corollary 5.1. Let t > 1. Then any function g(z) from the set co (S, ;)
satisfies the inequalities (5.1).

Using the connection between F(p,q) and S, ; we easily obtain
from Theorem 5.1

Theorem 5.2. Let f belong to the set V(p,q). Then

t{g—p)

LA !1_}—76!9'
(5.5) f |f'(re™)|'d0 <f_—~t(q . 40

11 :

for any t >0 and 0 <<r <<1l. The equality sign holds for the function
(4.7) and its rotations.
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