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Introduetion

It has often been pointed out that an infinite dimensional Hilbert
space H admits no orthogonal Hamel basis. In fact, H cannot be a
subspace of any inner product space with an orthogonal basis. Less trivial
is that every inner product space of uncountable algebraic dimension
(whether it has an orthogonal basis or not) contains subspaces without
any orthogonal basis [3]. Given thus a space E without an orthogonal
basis there is the question whether it may or may not be embedded iso-
metrically into a space spanned by an orthogonal basis. In the first case
E is much easier to deal with, for then there is a smallest canonical over-
space B spanned by an orthogonal basis;  is uniquely determined up
to isometry and it is the completion of E with respect to a certain linear
topology on E canonically associated with the form [7].

Theorem 3 below will provide an answer to the question raised (corol-
lary 1 in section 3); the topological setting enables us furthermore to
deal adequately with the situation when the field of scalars is extended
(corollaries 6 and 7 in section 5). The proof of theorem 3 is, however, of
independent interest and we shall briefly describe here the information
which can be extracted from it.

Let « be some fized ordinal = 0. On the vector-space E consider a
Hausdorff linear topology =, which admits o family (X)x of linear zero
neighbourhoods with the following two properties:

(I) the intersection Ny X, with NC X and card N =N, form a
basis for =, ,

(II) with every finite dimensional subspace F C E there is a finite
set NC X with FC nX\NXt.

Let (B ,%,) be the completion of (E,»,) and X, the closure of X,
in B . It is not difficult to prove that the family (X)x enjoys the properties
analogous to (I) and (II) in E .

The main result is here: If we have

(III) dim BE/X < N, forall t€X,
then there exist a partitioning of X ,

X=UY,, card ¥, = N,
such thaot
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(*) E =e@H, H =nX, dmH =\,.
X\Y, )

Let then @ be a non degenerate sesquilinear form on (E , x,) for which
orthogonality is symmetric. Assume that @ 1is commected with the topology
%, by

IV) Ny X, L NxnX, for all finite NC X .

We show that if (1), (I11) and (IV) are satisfied then @ has a natural
extension D on (B ,%) with

& (lim 7, lim Q) = limlim &(F , G).
Fg
Furthermore (X )y satisfies (IV) in E with respect to & . Hence, if
(111) is assumed to hold the decomposition (*) is an orthogonal decomposi-
tion for @ .

Questions dealing with orthogonal bases or orthogonal decompositions
into finite dimensional subspaces are related to x, with « = 0. The
authors had found it hard at the beginning to characterize in a non trivial
fashion spaces which are subspaces of spaces spanned by orthogonal bases;
only when they observed that when in search for certain types of bases
one should not study families of lines but watch out for hyperplanes did
matters become easier.

By introducing the boolean algebra of all sets S c X with card S
< N, or card (X \8) <N, some of our results may be translated in
a rather natural fashion into lattice theory. In the light of representation
theorems for certain orthocomplemented lattices [6] it seems worthwhile
to point out that not only the class of hermitean spaces H may be char-
acterized lattice-theoretically but also, say, the subclass of those H spanned
by an orthogonal Hamel basis. We shall treat these matters in another
paper.

We finally remark that as a further corollary we obtain the so called
log-frame?! theorem (corollary 8 in section 5) which has proved to be
very useful for extending results valid in spaces of countable dimension
to orthogonal sums of such spaces ([1], a rather nice example is Korollar 4
zu Satz 3 in [7]). (This theorem bears no relation to the extension principle
by Kaplansky in [4].)

1. The topologies

We consider k-left vectorspaces E equipped with reflexive sesquilinear
forms @: EXE —k. If @ is non degenerate we say that E is semi-
simple (its »radicaly E N E*+ being trivial [2]).

1 In German: Gattersige.
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The base field % is always assumed to carry the discrete topology.
For every ordinal « = 0 we define the linear topology 7,(®) to have
{X'| XCE&dimX =N,} as a basis for the zero-neighbourhood
filter. Besides these topologies we also consider the so called weak linear
topology o(®) with { X* | XC E & dim X < o} as a zero-neighbour-
hood basis. Any of these topologies is hausdorff if and only if @ is non
degenerate. @ is always separately continuous. If F is a subspace of
(E , @) then the weak closure of F is the biorthogonal of F, F = F**.
In the sequel we often make use of the following simple facts:

(i) If the sesquilinear space (H ,¥) is semisimple and E, F are
subspaces with E* = (0) and dim F < oo then (ENF*)" =F.

(i) If (H, V) is semisimple and E , F are subspaces with dim F = N,
and E is 1,(V) -dense in H, then (BN F4Y)* = F*.

Proof. Let x be any one of these topologies: If U is a 0-neighbour-
hood and E dense in H, then clearly EN U = U (closures). Partic-
ularly, if U is of the foorm U = X* then U = U and by the separate
continuity of @:

X' = U = (ENU) = (ENU) = (ENTU)" = (ENXH*.

2. Euclidean and preeuclidean forms

Definition 1. The sesquilinear space (H ,¥) is called x-euclidean if
it is semisimple, of dimension > N, and an orthogonal swm of subspaces
of dimensions at most N, .

The case « = 0 being the most important one we simply say »euclide-
an» instead of »0-euclideany. Let H = @ H, be the orthogonal decompo-
sition of a euclidean space, dim H, = §N,. If ¥ is not skew, i.e. if not
Yy,v) = — P,y) for all ,y €H (possible only when k is com-
mutative) then a multiple A = ¥ pu (for suitable p €k) is hermitean
with respect to some involution * of k (antiautomorphism of period 2),
Ay ,x) = Aw,y)* for all =,y €H [2]. In this case each H, is
spanned by an orthogonal Hamel basis. If, on the other hand, ¥ is skew,
then each H, is an orthogonal sum of subspaces @, with dim G, =< 2.
It may still happen that all ¢, are l-dimensional, i.e. that there is an
orthogonal basis. This is possible only when ¥ is not alternate ( ¥(x, )
=0 for all x € H); in particular we must have chark = 2 in this
case. If ¥ is alternate, then all @, are hyperbolic planes.

Thus, if we discard characteristic 2 for the moment, we may say that
a euclidean space is an orthogonal sum of hyperbolic planes in case the
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form is skew and spanned by an orthogonal Hamel basis in all other in-
stances.

Definition 2. The sesquilinear space (H , @) s called x-preeuclidean
if it is semisimple, of dimension > N, and if it can be embedded isometrically
into an w-euclidean space (H , V). (An isometry is a vectorspace isomorph-
ssm which respects the forms.)

It has been noted repeatedly that hermitean spaces in uncountable
dimensions fail in general to admit orthogonal bases. The observation
to make, however, is that in the uncountable case subspaces of spaces with
orthogonal bases fail, in general, to have orthogonal bases themselves.
The situation is as follows. First, it is easy to prove that x-euclidean spaces
(H,¥) are t,(¥)-complete. Less trivial are the following facts:

(i) a subspace F (not necessarily semisimple) of a x-euclidean space
(H, W) decomposes orthogonally into subspaces of dimensions at most N,
if and only if the closure F of F with respect to t,(¥) is a subspace of
F+ (F+NF.

iv) If (B, ®) is «-preeuclidean then there exists a smallest x-euclidean
overspace (H , @) , uniquely determined up to isometry: H is the v,(D) -
completion of the space (E ,v,(D)), it admits a natural extension D of
D. Ta((i) coincides with the completion topology 7,(P) .

(v) The properties of being non «-preeuclidean or non x-euclidean are
absolute, i.e. remain unaffected under extension of the basefield.

Proofs are carried out in detail for « = 0 in [7].

3. Dense subspaces of euclidean spaces

Theorem 1. If (E,®) is an «-preeuclidean sesquilinear space,
then there exists a set X with card X = dim E and o family (X)ex of
semasimple proper subspaces with the following properties:

(1) dim E/X, = N -

2) NuX, + NaX, = NuanX, for all M, N c X with card N,
card M = N, .

3) (NuX)" = N uX, Jfor all MC X with card M = N, .

(4) The linear topology p, with the finite intersections [ X, as zero-
neighbourhood basis is finer than the weak topology o(®) .

(5) The intersections (X, with M C X and card M =N, form
o basis for the topology 7. (P) .

Proof. By (iii) of the previous section we may assume (£, @) to be
a 7,(¥)-dense subspace of some «-euclidean space (H,¥), Yip,p=D.
H is 1,(¥)-complete. Let H = @x H, be some fixed decomposition
with dim H, < N,. We set X, =H'NE. Since 7,(P) is finer than
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the weak topology we have E' = (0) in H . Using the decomposition
of H we see by a crude combinatorial argument that therefore dim £ =
dim H . So dim E = card X . Furthermore, by (ii) section 1 we see that
X'NX = H'NHNE = (0), hence X, is semisimple.

(1) If U is a linear neighbourhood in a linearly topologized space,
then every set X-+U in E is both open and closed. In particular E-H;
is both dense and closed in H, hence E+H} = H . Therefore
dim E/X, = dim E/[H* N E = dim (E+H})[H = dim H/H = dim H, .

(2) Since card N,card M = N, thespaces Ny X, = (NNH)NE
and Ny X, are O-neighbourhoods for 7,(®). Consider the closure K in
H of L = N~X,+ NuX,. Since E is 7,(P)-dense in H we have
N H . NvH' €K, so LcNyH + NuH; = NuavH € K. Hence
K = N, B as K is the smallest closed subspace containing L. Further-
more, since U = [y X, is a zero neighbourhood, any linear complement
D of U in E is discrete. As H is the completion of E we have
E=H=U+D. Hence K= U -+ (DN K) since Uc K. Therefore
KNE = (UNE)® (DNK) since DNK c DNE. This shows
that L = KNE. Thus L = KNE = Ny,uX, as asserted.

(3) By using (ii) in section 1 (with My« pH; in the role of F,
so F*t = F) we obtain

n.\\PHf = (£N (nX\P Hf);)L = (ENNe H,L)L = (Ne (EnH,l))J'

Intersection with E yields Ny rX, = (NpX)"NE = (Np X )Y where
L’ is the operation of taking the orthogonal in E .

(4) Let F be a finite dimensional subspace of K. F C @, H, for
some finite @ € X. Hence F* DN, X,.

(5) We quote (iv) of the previous section.

By (2) and (5) of the previous theorem we have the

Corollary. Let (E,®) be an c-precuclidean sesquilinear space. The
topology (@) admits a zero-neighbourhood basis A(0) which is a sub-
lattice of the lattice of all subspaces of E and distributive.

Remark. Since by (3) for every finite dimensional subspace FC E
we have F* DNy X, if and only if F = F~* C (NeX)" = Nx o X,
we see that instead of (4) we may list

(4') For every finite dimensional F C E there is a finite subset @ € X
such that F C Nx\ o X, . An alternate formulation is

(4") The topology u, of theorem 1 renders @ separately continuous.

For ~ =0 theorem 1 describes preeuclidean spaces (X, @) where
(B, @) is conceived as a subspace of some (H ,¥) which decomposes
orthogonally into summands of countable dimensions. If @ is not skew
we may, however, assume the space (H ,¥) to be spanned by an ortho-
gonal Hamel basis. This case is of particular interest:
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Theorem 2. If (B, ®) s a preeuclidean sesquilinear space and @
not skew, then there exists a set X with card X = dim B and a family
(X)x of semisimple hyperplanes X, in E with properties (2), (3), (4),
(5) of theorem 1 with o« = 0.

4. The main theorems

In this section we shall prove a strong converse of theorem 1 (theorem
3 below). It deals with the existence of extensions @: ExXE -1 of the

separately continuous form @ : EXE —k where E is the completion
of E with respect to a certain topology x. The proof makes use of a
function M on E defined by a subbasis (X))y of % . In order to settle
the terminology we state two rather trivial lemmas.

Lemma 1. Let (E, D) be a scinisimple sesquilinear space and (X )y
a family of proper subspaces such that

i) NyX, L Nx~X, for all finite NC.X

for every finite dimensional subspace F C E there is o finite subset

Nc X such that FC Ny ~&X,.

The map M : E-— R(X) (the finite subsets of X ) which sends
x dnto M) = {1 €X | x€X,} Las the following properties:
For every 1+ € X there is x € K with « € M(x),
M@)=0 iff »=0,
M(x) = M{sz) for 7
. M@ty € M) U 1 J),
If Max)N My = O then Pw,y) =0.

I f we have furthermore

(iii) (NxX)" = Nx X, for all N with card N < N;
then M satisfies

E;,. Forall NC X with card N <<N; we have }(x) C N if and only
if O@,y)=0 for all y€E with My)NN = 0.

Note that Ny X, = (0) since NxX, L N, X, = £ by (i) and £
is semisimple. Lemma 1 has an obvious converse:

Lemma 2. Let (B, D) be a sesquiliiear space. If @ map

M: E—> R,X)

s

(for some set X ) satisfies A through E of Lemma 1 then (E, @) is sewi-
simple, the set X, = {w € B | ¢ M(x)} is a proper subspace of E and
the family (X )y satisfies (i), (i) of Lemma 1. If M satisfies E,; then
(X)x salisfies (iiig) of Lemma 1, and if, in this case, the corresponding
X, are all hyperplanes, then we have
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nXL+nXL = n‘X(
N L

NOL
(for all. N,L € X with card N ,card L < N;) and
dmE [ (X,Nn...NX, ) =

for all natural n . (Cf. theorem 2.)
We only prove the last assertion as the others are quite obvious. Let
€ Nnar X,, M ——{Ll,...,t}. Since

M) ¢ (M(z)UNULN{y}
there exists by E; a vector y € E with
M) N [(M@)UNULN\{u}] = O

and @P(x,y) =0 and hence M(z)N M(y) =@ . Ergo M(x)N M(y)
={y} and so y¢X, . As we assume that all X, are hyperplanes
there is A €k suchthat « — Ay €X,_, ie. , ¢ M(x — Ay). Since , €9
= M(@) N (NNL) we have, say, ¢, ¢ L. Hence M(y)NL =@ and
y €N X,. Furthermore

M@ — Ay) AN C (M) N N)U (My) N N) C (M@)NN)U{y}c M)

Therefore M(x —Ay) NN € {&,..., 4. If € Mx—Aiy)NN
C M@)N N then (€L and the step may be repeated. We thus find
finitely many y € N, X, and 1 €k such that M (’c — > y) NN =0,
ie. x —> Ay € NyX,. We have shown that

nx c ﬂ X, + ﬂ X, .

NaL
The converse inclusion being trivial we have equality. Finally, consider
the finitely many hyperplanes X, ,..., X, . If we had

dmE/ (X, N...NX, ) =n

then dim E (X, N NX, ) <mn and X N. NX c X, (for
suitable numberino) ThlS contradicts what we ]ust proved

E=NX =X +0X=X.

tye ety

We now state our main theorem

Theorem 3. Let (E,®) be a semisimple sesquilinear space which
admits a family (X,))y of subspaces X, C E with the following properties:

B NyX, L N nX, for all finite NCX,

(i) For each finite dimensional subspace F C E there exists o finite
Nc X such that F C Ny

Then for every ordinal o > 0 the form @ has a natural extension @
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on the space (E , %) where E s thecompletion of E endowed with the
linear topology =, which has the intersections N4 X,, AC X, card 4
= N., as a zero- nezgkbourkood basis. The family ()2,) x satisfies the ana-
logues of (@) and (i) in (E Q'))

If (X)x satisfies fur the¢nzo7e

0] dlm E/X =N,
there is a partitioning X = Uy, such that E= @LH where H,

n X\, X’.‘ and Elimflg =Ny - Furthermore a(@) <%, -ra(@) = Z,
if and only if (E, D) is semisimple. If such is the case we also have
T, (D) = %, .

Proof. Step I. We show that the map M : E — B.(X) of lemma 1
can be extended to a map M: H-> R(X) which satisfies A, B, C, D
of lemma 1. Let  be a Cauchy filter on (Z,x). For each X, there is
F, €7 with F,— F,C X,. Consider the set 3}/ = {/€X|F ¢ X, }.
For all z€F and . €M we have (€[ (®) . Assume now that M
were infinite. Choose some denumerably infinite subset N C M . Since
Ny X, is a O-neighbourhood there exists F €7 with F — F ¢ N+ X, .
Choose fixed elements f€F and f € F,NF. If we had (¢ J[(f)
for « € N we should have (& M(f) € M(f — f)U M(f), a contradic-
tion. So N < M(f) which is absurd because M(f) is finite. This proves
that J is finite. y

We show next that M depends only on lim /. Let lim 7 = lim ¢
and F—F,cX 6K G—GcCX (F €/, G €). Forgiven neigh-
bourhood X, there exists F € 7 and ¢ € with F Gc X, . Pick
fEFNF, g € GNG. The identity g, = (9,—9) + (9—f) ~ (f—f)
+f with f€F,, g €G shows that f =g¢ (mod A, ). me this
the assertion follows.

We may thus write M= M ( f) where f=1lim 7. Since M(f) =
M(f) when f€LFK we see that M: H-> R,(X) coincides with I/ on
the dense subspace £ . i clearly satisfies A, B, C, D of Lemma 1.

Step II: We show that for 7 and < Cauchy filters on E the limits

limlim @(F ,¢) and limlim @F, G)
FeF ceg GeG FeF
exist and are equal

Let M = M(lim 7)U M (lim <6 7). Choose C € with C—CcCNyX,
and 2 €C. Choose D€ with D—D ¢ Ny X, and y €D
We shall prove that

limlim & F , () = D(z,y) = limlim O(F, G) .
g 7 7 g
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For arbitrary z € D—D we have M(z) N M(z) = G, so P(x,2) =0,
ie. @@, D—D) = {0}, in other words, ®(x, D) is a singleton. D(z, D)
= O ,y) = limge; Px,6F). Let now 2’ €C and G,€ G with
Gy—Go C Nup—w) X¢~. D(a'—x,G,) is a singleton. Let z€G,.
M(z) N M(z'—) € M(lim <G). On the other hand, since »" — 2z € C—C,
we have M@'—a)N M = O. Thus M(E)N M@'—x) = O, so
&(z,2'—x) =0, hence lim; P(z,F) = lim; O, G) = D, y).
Therefore

lim lim @(F , ¢) = lim &(C,G) = D, y).
7 g g

This proves half of the assertion.
There is €’ € 7 with ¢'—C’" € Mawary X, - Choose 27 € CNC". As
before we obtain
limlim &(F ,G) = D' ,y).
g 7
For all ¢t € M (y)\flf (lim 7) we have C’'cC X, and thus M(2') N M(y)
Cc M{im 7). Similarly M(z) N M(y) € Mlim ). M(y) 0 M(z—=z’)
c M N[(M@)U M@')] € M. On the other hand, since z—a'€
C—C we have Mx—a2)NM = O, so My)NMxz—2) = @ and
Dx—a',y) =0, ie. Dx,y) = D@ ,y). Our double limits are therefore
seen to be equal.
Step ITI. We now define ® on K by
&(f, g) = lim lim &(F , G)
FeF GeG
where f=1m 7, g=1m<G. & is well defined. @ is sesquilinear
with respect to the antiautomorphism used in the definition of @ . If
we pass from @ to a suitable multiple @ u then @ u is skew or hermitean.

@ u is accordingly skew or hermitean (»prolongement des identités»). Hence
@ is reflexive. (One may also prove reflexivity directly by the explicit
construction given in step II.)

Let X, be the completion of X, in E. We show that the family

(A:,) « satisfies the properties analogous to (i) and (ii) of the theorem,
furthermore (iii) provided it holds for (X,)x . The last assertion follows

from the remark that B = X, ® L for any linear complement L of X,
in E . The remark also shows that ¢ € Jl’AI(x) if z¢ Xt. The converse
being trivial we have X, = {z € E | ¢ € M(z) }. We now prove

MfH)NMg) = 0 —- D(f,g) = 0.
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Indeed, in step Il we had M(z)N M C M (f)y and M(x)N M(y) Jl?(g) .
Hence M(z)NM(y) € M@E)NMNOMy) < M(f)NMg). Thus, if
(Z;(f, ) = D@ ,y) =0 then M(z)N M(y) = G by (ii) of the theorem.
Ergo Jl~I(f) n M(g) 4 ©. From this we obtain x\y 55( C (N X)*
for all finite Nc X. Finally, as X, = {z €E| (¢ M (x)} we see
that the analogue of (ii) holds. Notice that if M (x) =@ then 2 =0 as
is separated.

Ko

Step IV. In order to show that (177 , (5) is x-euclidean under the as-

sumption (iii), we consider elements x € E, <0 which are minimal
in the following sense: For any decomposition 2 = 2,42, with nonzero
x, € E we have that not both M(xl) , M (@,) are proper subsets of M () .
These vectors form a set of generators for the space E. Let (f).er be
a basis of 7 from this set of generators. Define 4, = {(€1] f ¢ X, .
The crucial point in showing that (E~ , Q;) is x-euclidean consists in giving
a proof for » card 4, = N,». We give an indirect proof.

Assume that we had card 4, > N, for some fixed u. Hence there
is a natural number % == 0 and more than N, among the f with
card M(f) = n. By our assumption we have u € JI( f,) for all these f .
Passing to a subfamily (f)c if necessary, we may assume that there is a
finite set M < X, with u € M c M(f) (¢t €C) and forevery o € X\ M
we have f ¢ j’n for at most N, indices ¢t € C. We claim that card M
< n—1. Indeed, since (E, Q)~) is Hausdorff we have Ny j’ = (0) so
Nx u 5{, can be at most N, -dimensional by (iii) . If we had card ./

= then f € ﬂX\M:Y, for all (€C . But card ¢ > N, andthe f
are linearly independent.

We consider the canonical map =: E > E /N i dim B >
N, = dim (im x) . We try to find more than N, many spaces G, C E,

o« =
all of them spanned by vectors f and pairwise disjoint, such that all
these ¢, have the same image == (0) under the map z. To this end
wellorder €. If ¢, is the first element let I(;,) be the shortest initial
segment of C such that (zf);,, spans the space k{znf |l (€C}. If
I(c) is defined for all ¢ < v define I(z) to be the shortest initial seg-
ment of C\U,., I(6) such that the family (=f),,, spans the space
kinf | 1€CN U, I(0)}. Let G = k(f)y, . We obtain a decreasing
nested system G, >aG >D...DxnG,>5... which contains more
than §, spaces (,. Since dimaz G, =N, we obtain a family (G,).p
with @G, ==, for all »,7 € D and card D > N,. Note that all

spaces @, are different from (0) since = f =0 forall t€C (af =0
would say that f € Ny ):' , le. M(fyNdM = O; contradiction).
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Pick some v, €D and some f;=+0 in G, . For each » € D there
is g,€6G, g,+=0, with mg,=afy. Set ¢, = {g,| v€D}. As card G,
>N, O = {Gcl,| card ((\Gy) =N, } is the basis of a filter
on E. We show that it is Cauchy. To this end let TX, be a typical
0-neighbourhood, 4 € X and card 4 = N,. First we show that
N.X, = N.X, . One inclusion being trivial let = € (4 X, a=1lim7.
For o€A4 we have o ¢ M (). Thus if we pick F € 7 with F—F C
N.X, c¢ X, we have FcX,. Hence 2 € F C m—X This
shows that N, X, = N. 5(,. To show that (7 is Cauchy we distin-
guish two cases. First, 1 ¢ M : f e~X, for at most N, many ¢ by our
choice of 3 ; sothereisa ¢ € <(/ with G C X: and a fortiori G—G c X, .
Second, TEM’ As nf, =wnf forall v,o ED we have "z(G G)=0,

ie. G—GFC ﬂ“X for all G €<G; in particular G—GC X Sum-
marizing we have shown that for ecach 7€ A there exists G, €< with

¢ -G, cX . G,=N4C is stil an element of “«j and G,—G,C

N IE so <G is Ca,uchy Let g =lim (7. Clearly g ==0 since there
isno ¢ €G with ¢ C X when ¢ € M . It iseasy to see that Mg)yc M:
For € XN\ M there is G, €(/ such that G, C Y there is G, €
with G, Cg—LY so GNG, € g+ \ and g¢g—g' € X for some
g € G,NG,. I c jf(g—g') uj[(g'), therefore ¢ ¢ M(g). We
shall show that the decomposition f, = ¢ 4 (f,—g) contradicts the
minimality of f, . Since M(g)c M S M(f,) it remains to be shown
that M(f,—g) S M(f,) - M(f,—g) © M(f,)U M(g) € M(f,)U M
= M(f,). To prove inequality pick G3 €< with G; C g+ ﬂu X
Since a(f,—G)=0 for all G €°G we have f, € G-+ NyX, so
fo—9 € Ny X,. Hence M(f,—g)NI = 0. As O =13c WI(fw)
we conclude that J(f, —g) is a proper subset of J/(f,). Thus »card 4,

> N, » leads to a contradiction.

Step V. We are now ready to prove that (E' s <1~3) is a-euclidean. De-
fine a symmetric relation “~ on X as follows: ¢ “N ¢ for all ¢ € X and
1N for 1,0 €X if and only if there exists » € I such that f, ¢ X, &
f. € X . As we have seen that card A, = card{v€IL| f ¢ Xu = N.
we conclude that for all c€X card{:1€X| (Ro} = N,. Let S
be the »transitive closure» of “N (¢S ¢ if and only if there exist a natural
n and ¢ ,...,t, €X such that ¢ =¢ and ¢, =0 and Ny, for
i=1,..., n—1) and X =U,Y, the partitioning of X into the equi-
valence classes of . card ¥, = N,. With every class Y, we associate
the space H, == nx‘\Yo 5{'[ = {w €E~] j[(x) c¥,}. Let (€I
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there is Y, with JVf(f)C Y, so f,€H,. Since (f); spans E we have
E = z H,. Therefore each H, is the span of some f, and hence H, =
E{f | b4 (fyc Y,}. From this follows that dim H, = N,. For ¢ = o
we have H, J_HJ since Y,NY, = @. By the same token H,NH,
= (0) so B = @, H,. Let NgH, be a typical 7,(®) -neighbour-
hood (card R = N,) -

NH: = (S H) o ZHU= (¢€B|M@) c UY,}
R R R CR
={e€B| H@NYY,=0}=nX

where A = Ug Y,. This shows that -c&.(@) <#%. Assume that E is
semisimple: if A c X and card 4 < N, let A’ be the saturation of
A (with respect to &). card 4’ <N, and A’ = Up Y, for some R
with card R =< N, . )

NX, onNX =nnX o ZH:EH»
A A R Y, 0ER 0%’ o'€R
= (S H) = QH,%,.

Therefore Ta(ci) = % in this case. Conversely if the two topologies are
equal then ra(é?) is separated, hence E s semisimple. Furthermore
7,(D) = %, in this case by lemma 5 in [7]. This finishes the proof of theo-
rem 3.

The first three steps of the foregoing proof may actually be carried out
under more general assumptions:

Theorem 4. Let (E,®) be a semisimple sesquilinear space which
admits a family (X)x of subspaces X C E with the following properties.
There is an mdinal f =0 such z‘lmt

A NyX L Ne X, forall NCX with card N < Ng,

(ii) For each subspace F C E of dimension < N there exists N C X
with card N <N; and FC Ny X

Then, for every ordinal x> f the form @ has a natural extension o
on the space (E , 1) where E s the completion of E endowed with the
linear topology w, which has the intersections (NzX,, BcCcX,
card B << N,, as a zero-neighbourhood basis. The family (I;',)X satisfies
the analogues of (i) and (it) in (]Z' , <1~5) .

If we let « = f in the previous theorem its conclusion ceases to be
valid. Although the map a+> M(zx) = {¢€X w¢X } (see step I
in the proof of theorem 3) may still be extended to a map J : (E’ s Ua)
— B(X), we have that »card M(z) < N;» does not imply any more
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that card M( x) < %: for all z € E. However, if we let H be the sub-
space of all} h € (E U,) with card i (h) < N; then @ may still be
extended on all of H . This is of particular interest in the preeuclidean
case (o = 0) where we have the following analogue of theorem 3.

Theorem 5. Let (B, D) be a semisimple sesquilinear space and let
(X,)x satisfy (i) and (ii) of theorem 3; assume furthermore

({ii") dimE/X, < N, (t€X).

If E is the completion of (E , u,) where uy has the finite intersections
N X, as a zero- neaghbourkood basis we let H be the subspace of all h € E

with finite M@) = = {1€EX| h¢ X }. @ has a natural extension D on
H . There is o partztzonmg X=UY, o card Y, =N such that H = @U H,
where H, = Nx\yv, (XL NH) and dim H, =N, .

Theorem 6. Assume that in theorem 3 [theorem 5] the family (X)x
has the following additional property

iv) E = X +NvX, for all (€X and NcX\{} with
card N =N, [card N << N,/ -

Then the classes Y, inthe partitioning of X in theorem 3 [theorem 5] are
smgletons and for all ¢ € X we have H, = N, j;' , 5&' = @.,H,

E=X,@H, — @%+H [H =N, HNX), HNX, = o H,
H = (HN Y) &) H = @t H,, furthermore dim H, <N, oand
o = o(D) . o= o(®) if and only if H is semisimple].

Proof. We restrict ourselves to the case of theorem 3. Let (€ X be
fixed. We show that )El possesses a linear complement L in (177 , 5)

with M (L) = {¢} . Choose some fixed basis (c,)c of a linear complement

of X, in E. Asthesum E = X @ k(c,)c is topological with k(c,)c
discrete we have E = X + k(c,)c - Now for every N C X\{¢} with
card V = N, we may, by (iv) of the theorem, pick some fixed linear
complement D(N)c Ny X, of X, in E and decompose ¢, = ¢,(N) +
d(N) with c¢(N)€X,, d(N)€D(N). Foreach y the system (d,(N))y
is a Cauchy net. Set ¢, =limd (N). J(c,) = {i} is obvious from the
construction of the net. We claim that k(c,)c is the required complement
L, . Indeed, let z = a, + > A ¢, be a typical vector of E (2, € X ).

w—2>A¢ = x+>7%(c—c) = x+ > Alimc(N) € X . Hence
E =f+70(~) The sum is direct: If > 2,¢, = lim > A d (N) GX
then > 4 d.(N) € X NE = X, forsuitable N so that 2 A d(N) =

for this N and therefore Z 2c, = 2 2 ¢/(N) € X, which entalls
A,=0 for all y and hence z=0. We have thus shown that each

)ZL admits a complement L, in ( ) with I (L) ={¢}. Since

M(X)NM(L) = @ we have B = X, @lL Let € E and L€ M(z) .
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x = x;+2, with =z € )yQ and z, € L . Since M(x,) == {¢} C M(z) we
see that M (%) is a proper subset of ﬂ(w) . This shows that @ € @y, L,
and £ = ®%L, . We see in particular that the »minimal» elements f
introduced in step IV in the proof of theorem 3 have sets M( f) which
are singletons in this case. Hence the partition constructed there has
here but one-element classes Y, = {o} and H, = Nx_ v, X’ = L,
q.ed.

Finally a word on the semisimplicity of the space (E’ , é) constructed
in the proof of theorem 3. Since ? is separately continuous and K a
dense subspace with respect to %, the radical ENE* of E reduces
to B-. E' need not be trivial. E is semisimple if and only if for
every Cauchy filter <7 on E with lim 7 =0 we have “U/ ¢ “( where
U is the zero-neighbourhood filter with respect to the weak topology
o(®) . Tt is simpler to discuss matters if we are in the situation where
(iii) in theorem 3 can be assumed. Then we have that E is semisimple
if and only if #, = ra(@) . Now it is an immediate corollary of theorem 3
that (B, ®) is x-preeuclidean (cf. corollary 1 in the next section). Thus
by (iv) of section 2 we also see that E s semisimple if and only if
%, = 7,(®) . We shall obtain an independent proof of this result (cf. corol-
lary 3 in the next section).

5. Corollaries of theorem 3

In this section (E, @) invariably is a semisimple sesquilinear space.

Corollary 1. (E, @) is a-preeuclidean if and only if it admits a family
(X)x of subspaces satisfying (i), (i), (iii) of theorem 3 [or (%), (i),
(its’) of theorem &5 when « =0 ].

The next corollary gives an alternate proof for (iv) of section 2.

Corollary 2. If (E,®) is w-preeuclidean then there exists a smallest
a-euclidean overspace, uniquely determined wp to isometry. It is the 7.(P) -
completion E of E ; the form @ has a natural extension @ on E. The com-
pletion topology T,(P) coincides furthermore with 7.(P).

Proofs. Let (E,®) be x-preeuclidean. EC(H,¥). H= ®xH,,
with dimH, <W,, H semisimple, ¥ ,=®. Set X,=ENH
(t€X). (If X,=FE wedelete ¢ in X.) (X)y satisfies (i), (ii), (iii)
of theorem 3. Let (E~’ , qf)') be the space of theorem 3. By the separate
continuity of & we have E'NE = E*. E*NE=(0) so there
is a linear complement £ of E* in E which contains E . The pro-
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jection from B = E* ®*E on E preserves the forms, so £ is at once
semisimple and an orthogonal sum of subspaces of dimensions at most
N, . Let ® = Q;}E E is z,-dense in E, hence 7,(®)-dense in E
(%7 = 1.(D)5 = (D)) . As an wa-euclidean space B is 7,(®)-com-
plete. Furthermore, by lemma 5 of [7] 7(P)|r = 7(Plz) = 7(DP) as
ENE*=(0). Hence (H,7,(®)) is a realization of the 7,(®) -comple-
tion of E and «-euclidean. It is »contained» in every wa-euclidean over-
space of (E, @) since all these spaces are 7, -complete. (The assertions
relating to theorem 5 follow in the same manner.)

Corollary 3. Let (X )x on (B, ®) satisfy (i), (i), (iit) of theorem 3
and let (19:, Q;) be the x,-completion of (E, @) of theorem 3. (E, @)
is semisimple if and only if x, = 1,(D).

Proof. If x, = 7,(®) then we have for the completion topologies
% = 7(D) = 7,(P) by corollary 2. We quote theorem 3.

Corollary 4. If (E,®) admits o family (Y,)y satisfying (i), (ii),
(tii) of theorem 3 then (E ,®) also admits a family (X)x satisfying
properties (1) through (5) of theorem 1.

Proof. Corollary 1 and theorem 1.

Corollary 5. (E, @) is x-euclidean if and only if E admits a family
(X)x of subspaces X C E satisfying (i), (it), (i) of theorem 3 such
that E is complete with respect to the topology =, .

Proof. Corollary 1 and Corollary 2.

We now discuss extending the base field. Assume that the division
ring k' contains k£ and admits an extension (antiautomorphism) of the
involution @: k—k responsible for the sesquilinearity of @ . The
group K’ = k' @, may be regarded as a vectorspace over %k and as
a vectorspace over k’. In the latter case we talk about the %’ -ification
E" of E. The form @' : E' x E'— k' defined by

@,(z VA Z w < Z/j) = S 2 Py, ) 1
! J J

for 2;,u; €K' is sesquilinear. Since a suitable multiple @ pu of @ is
skew or hermitean (with respect to a suitable involution which can be
extended to a involution on %’) the form @’ u is accordingly skew or
hermitean, hence @’ is reflexive. If “U = (U) is a 0-neighbourhood filter
for some linear topology v on E, then U = (k' ® U) defines a linear
topology 7' on E’. Since (k'@ F)Y = k' @ F* for all subspaces
FcCFE it is clear that 7,(®D) = 7,(9').

It is trivial that the k'-ifications (E’, @) are x-euclidean or x-pre-
euclidean if (£, @) has the corresponding properties. Much less trivial
is the fact that the properties mon a-euclideans and »non x-preeuclideany are
absolute as is shown by the next two collaries.
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Corollary 6. If (E', @) is a-preeuclidean, then so is (E , D) .

Proof. By theorem 1 there is a family (X,)x on E’ satisfying (i),
(i), (iii) of theorem 3 such that 7,(®’') has the intersections [, X,
Ac X and card A < §N,, as O-neighbourhood basis. Since 7,(P) =
7,(®') the spaces k' @ (X,NE) are 7,(P') neighbourhoods. (We
identify E with its image under i: x+—1®@ x €E".) So

N, = dim, B[ (K @ (X,NE) = dim, B/ (X,NE).

This shows that the family (Z)x of subspaces Z, = X N E satisfies
(iii); (i) and (ii) are trivially inherited. By corollary 1 (£, @) is therefore
a-preeuclidean.

Corollary 7. If (E', @) is w-euclidean, then so is (B, D).

Proof. If (B', ®') is x-euclidean, then (E, @) is x-preeuclidean by
corollary 6. As E’ is complete with respect to 7,(®’) it is easily seen
that E is complete with respect to 7v,(®) (cf. lemma 3 in [7]). Hence
(E , @) is x-euclidean by corollary 1.

Finally we state

Corollary 8 (Log frame theorem). Let (H , @) be «-euclidean and
H = @®%H, some fived decomposition, dim H, =N, . If E isa 7,(P) -

closed subspace of H then there exists a partitioning X = U Y, with
card Y, = Ny such that H = @r6¢,, G, = @y, H, and E =
®,ENG,) . ‘

"Proof. (E,®) is complete with respect to 7,(®P)lp = %, and the
family of all X, = H-N E qualifies for theorem 3. (Cf. theorem 3 in

[71,)
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