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Introiluction

It has often been pointed out that an infinite dimensional Hilbert
space f/ admits no orthogonal Hamel basis. In fact, H cannot be a
subspace of any inner product space with an orthogonal basis. Less trivial
is that every inner product space of uncountable algebraic dimension
(rvhether it has an orthogonal basis or not) contains subspaces without
any orthogonal basis [3]. Given thus a space -E without an orthogonal
basis there is the question whether it may or ma,y not be embedded iso-
metrically into a space spanned. by an orthogonal basis. In the first case

,E is much easier to deal with, for then there is a smallest canonical over-
space -E spanned by an orthogonal basis; -E is uniquely determined up
to isometry and it is the completion of Z rvith respect to a certain l,inear
topology on E canonically associated rvith the form l7l.

Theorem 3 belorv u,ill pror-icle an ans\r:er to the question raised (corol-
lalv I in section 5); the topological setting enables us furthermore to
deal adequately rvith the situation ryhen the field of scalars is extended
(corollaries 6 and 7 in section 5). The proof of theorem 3 is, however, of
independent interest and we shall briefly describe here the information
which can be extracted from it.

Let u be some fi,red, ord,i,nal > 0 . On the aeator-space E consi,d,er a
Eausd,orff l,'i,near topologU xo which admi,ts a family (X,)x of linear zero

neighbourhood,s u:i,th the following two progterti,es:
(I) the 'intersecti,on O* X, with -l/ c X and, card Å- ! §o form a

busi,s for xo,
(II) wi,th euery finite di,mens'ional, subspace I c E there ,i,s a fi,nite

set NcX wi,th -Fc1-1^*X,.
Let (fr,n*) be the completion of (E,x*) and, X, the closure ol X,

i,n fr . It is not d,fficult to gtroae that the fami,ty (X,)* enjoys the gtroyterties

analogous to (I) and, (II) i,n fr .

The mai,n result i,s here: If we ltaue

(III) dim EIX < §" "for all t, e X ,

then there eti,st a parti,ti,oni,ng of X ,

such tltat

X : U Y,, g
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(*) fi:gUn, Hn: nX., dimIl,<§,.
x\Yo

Let then @ be a non d,egenerate sesqui,linear lorm on (E , xo) for wlui,ch,

orthogonali,tg 'i,s symmetric. Assume that @ is connectecl zai,th the topology
2ao bA

(ry) f'l*X, I Or\*X, for all fi,ni,te -llcX.
We show that åf (I), (U) and, (IV) are satisJied, then @ has a na,tural

extens,i,on ö on (fr ,n*) wi,th
' 

ö ltim 7 ,lim9) : lim lim @(l , G) .
f9

Iurthermore (X,)* sati,sfies (IV) i,n fr wi,th respect to ö. Hence, ,i,f

(ill) i,s assumeil, to hold, the d,ecomposi,ti,on (*) i,s an orthogonol, d,ecomytos'i-

ti,on for ö .

Questions dealing with orthogonal bases or orthogonal decompositions
tnto fi,nite dimensional subspaces are related to i4d rvith a : 0 . The
authors had found it hard at the beginning to characterize in a rlorr trivia,l
fashion spaces which are subspaces of spaces spannecl by orthogonal bases;

only when they observed that rvhen in search for certain tvpes of bases

one should not study families of lines but rvatch out for h;perplanes dicl
matters become easier.

By introducing the boolean algebra of all sets § c X rvith card. B
< §i or card (X\§) 

= 
t(, some of our results may be translated in

a rather natural fashion into lattice theory. In the light of representation
theorems for certain orthocomplernented lattices [6] it seems worthrvliile
to point out that not only the class of hermitean spaces ä rnal- be char-
acterizedlattice-theoretically but also, say, the subclass ofthose ä spannecl
by an orthogonal Hamel basis. lYe shall treat these matters in another
paper.

We finally remark that as a further corollary t-e obtain the so called
log-frame 1 theorem (corollary 8 in section 5) rvhich has proved to be

very useful for extending results valid in spaces of countable dimension
to orthogonal sums of such spaces ([f], a rather nice example is Korollar 4

zu Satz 3 in [7]). (This theorem bears no relation to the extension principle
by Kaplansky in [a].)

1. The topologies

We consider k-left vectorspaces -E equipped rvith reflexive sesquilinear
forms @: ExE-->k. If @ is non degenerate \\-e say thab E is semi-
simple (its »adical»> E fi,&'r being trivial [2]).

1 fn German: Gattersäge.
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The base field ft is alwa;'s assumed to carry the discrete topology.
Eor everSr orclinal a ) 0 u'e clefine the linear topology r"(@) to have

{X'I XcE &dimX<§*} as a basis for the zero-neighbourhood
filter. Besides these topologies we also consider the so called weak linear
topology o(@) with {X'I XCE &dimX< co} asazero-neighbour-
hood basis. Any of these topologies is hausdorff if and only if @ is non

degenerate. @ is always separately continuous' If -E is a subspace of
(E , @) then the weak closure of -E is the biorthogonal of E , F : E-' .

In the sequel we often make use of the follorving simple facts:
(i) If the sesqu'i,l'i,ruear space (H , Y) is semisi,mple cr,nd, E , F are

subspaaes wi,th EL : (0) and, dim -E I q then (E n XL)L : trt .

(ii) If (H,Y) 'is semi,simTtleuncl, E, n aresubspaceswi,th dim 7 < §o
ctncl, E i,s z*(V) -ilense 'i,n H , then (E n n'')' ': lrl .

Proof. Let x be any one of these toPologies: If_U is a 0-neighbour-

hoodand -E densein H, thenclearly EnU:U (closures). Partic-
ularly, if I/ is of the form [/ : Xr then U : t ancl by the separate

continuity of @ :

Xaa - A, : lnnUy : (EtU-f : (E n U)' : (E nX')'.

2. Euclidean and preeuelidean forms

Definition l. The sesquilinear space (H , V) is called, a-eu,cl'id'ean if
,tt ,i,s sem,i,si,ruple, of d,'imens'i,on ) §o and, an orth,ogonal sunt of su,bspaces

of d,i,mensi,ons at most §o.
The case a: 0 being the most important one rr'e simply say »euclide-

an» instead of »O-euclidean». Let U : @! H, be the orthogonal decompo-

sition of a euclidean spa,ce, dimä, S §r. If P is not skew, i.e. if not
Y(y,u): -Y(*,g) forall r,y eH (possibleonlywhen & iscom-
mutative) then a multiple A:Vp (for suitable p,e k) is hermitean
with respect to some involution * of lc (antiautomorphism of period 2),

A(y,*) : A(r,a)* for all r,y e H tzl. In this case each H, is

spanned by an orthogonal Hamel basis. If, on the other hand, P is skerv,

tlien each E, isar, orthogoual sum of subspaces G, with dimG, 12.
It may still happen that all G, are l-dirnensional, i.e. that, there is an

orthogonal basis. This is possible only rvhen P is not alternate (V(r , n)
:0 for all reU); in particular rve must have chatlt:2 inthis
case. If P is alternate, then all G, are hyperbolic planes.

Tlrus, if we discard characteristic 2 for the moment, we may say that
a euclidean space is an orthogonal sum of hyperbolic planes in case the
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form is skew and spanned by an orthogonal Hamel basis in all other in-
stances.

Definition 2. The sesqui,linear space (E , O) is called, x-preeucliclean
i,f it i,s semi,s,i,mpl,e, of d,i,mension ) §o and, if i,t can be embeclded, isometrically
,i,nto an a-eucl,'i,il,ean sltace (E ,Y). (An'i,sometry is aaectorspace'isomorph-
i,sm whi,ch respects the forms.)

It has been noted. repeatedly that hermitean spaces in uncountable
dimensions fail in general to admit orthogonal bases. The observation
to make, however, is that in the uncountable case subspaces of spaces w'i,th

orthogonal bases fail, in general, to have orthogonal bases themselves.
The situation is as follows. First, it is easy to prove that a-euclidean spaces

(H ,V) arc zo(F) -complete. Less trivial are the following facts:
(iii) a subspace I (not necessarily semisi,ntple) of a u-eucl'id,ean spaae

(H ,Y) d,ecomposes orthogonally 'tnto subspaces of dim,ens'ions cr,t nr,ost §,
i,f anil only i,f the closure F of X with res'pect to 'r,(V) 'is a su,bspace of
r+@tn.tr,").

(i") If (E , (D) is a-preeucli,ilean then there er'i,sts a smallest r-eucl'id'ean

o1)erspace @,6) , uniguely d,eterm'i,ned, uyt to 'i,scrnetry: H is the q(A) -

comrytleti,on of the space (E , r,((D)) , i,t ad,mits cr, nr,r,tttral ertettsiotr ö of
(D . r*(@) coincides with the complet'ion topology ;"(O) .

(v) Tlre properties of be'ing non a-preeuclidea% or no??, a-eucl'id,ean are

absolute, ,i,.e. remain unaffecteil' und,er ertension of the basefield'.

Proofs are carried out in detail for a,: 0 in [7].

3. Dense subspaces of euclitlean spaces

Theorem I. If (E , @) fs &?L x-preetLcliclec,,rt' sesquilinecr,r spctce,

then there ea'i,sts a set X uith card X : clirn E q,ncl a fanily (X,)ex of
semi,si,mgile proper subspaces with the followi,rtg properties:

(l) dim.ElX, ( §,.
(2) flnX, * I-l*X, : f)nrn,vX" for all, .t1I ,N c X with cardÅr,

card M < §o.
(3) (nrrx,)' : l'lxyazX, fo, all M c X w'ith calcl --l/ < §, .

$) The l'inear topologU tto wi,th the tini,te i,ntersectiorzs n X, fls zero-

ne'i,ghbourhooil basi,s i,s fi,ner than the weak topologA o(@) .

(5) The 'i,ntersections O*X, wi,th M c X ancl carcl jll { §o form
a basi,s for the topology r"(O) .

Proof. By (iii) of the previous section \rre ma)' assume (E , @) to be

a q(Y) -dense subspace of some ry-oucliclean space (fI , Y) , Vlr*a : @ .

H is r,(F)-complete. Let E: @txil, be some fixed decomposition
with dim ä, < §, . \[e set X": E! l1 E . Since %(O) is finer than
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the weak topology we have .At : (0) in H. Using the decomposition
of H we see by a crude combinatorial argument that therefore dim -E :
dim I/. So dim E : card X . Furthermore, by (ii) section I rve see that
X:nX,: HlnH,nE: (0), hence X, is semisimple.

(l) If U is a linear neighbourhood in a linearly topologized space,

then every set Xf U in E is both open and. closed. In particular E+H:
is both dense and closed i\. E , hence E+E: - E . Therefore
dim Elx, : dim EEi n E : dim (E+H:)|H:: dim HIE! : dim ä, .

(2) Since card -ly' , card Jlf ( ;1o the spaces 1-1, X, : (Orv H:) n E
and fly X, are O-neighbourhoods for z*(@) . Consider the closure K in
H of L: On,X,* fl*X,. Since Z is z*(@) -dense in H we have

On,Hi, f'l-räj cK, so trc O.o Hi + fi*H!: l1m6* H; c K. Hence
K : l-]-rn, H! as 1( is the smallest closed subspace containing -L. X'urther-
more, since U : O,v X, is a zero neighbourhood, any linear complement
D of U in "E is discrete. As ,B is the completion of Z we have
E:H:A+o. Hence K:U +(Dn.I() since UcK. Therefore
KnE: @nE) G)(Dnif) since DnK c DnE. This shows

that L : Kf1.E. Thus L : K(18 : O*n.X, as asserted.

(3) By using (ii) in section I (rvith fl*.,, H! in the role of E,
so -['11 :X) weobtain

Intersection \\'ith E ;.ields ['1r.. p X, : (fl"X,)t n E -
-)*' is the operation of takitrg the orthogona,l in E .

(4) Let E be a finite dimensional subspace of E .

sorne finite QcX. I{ence ItL f neX,.
(5) We quote (ir,) of the previous section.
By (2) and (5) of the previous theorem we have the
Corollary. Let (E , @) be am a-preeuclid,ean sesqui,li,near spa,ce. The

to,pology r,(.(D) ad,mi,ts a zero-ne'i,ghbourhood, basi,s !t(0) ult'i,ch is a sub-

luttice of the lo,ttice of all subspaces of E ancl distribu,ti,ae.
Remark. Since b1' (3) for every finite climensional subspace n c E

wehave -F'r=flnl(, if ancl only if F : ?!r c (flaX,)t: O*..sX,
we see that instead of (.1) l-e rnaS- list

(4') X'or every finite climensional F c.E there is a finite subset Q c X
such that -F c Ox'.o X, . An alternate formulation is

(4") The topology lto of theorem I renders @ separately continuous.
tr'or oi : 0 theorem I describes preeuclidean spaces (E , O) where

(E , O) is conceived as a subspace of some (H , V) rvhich decomposes

orthogonally into summands of countable d.imensions. If @ is not skew
we may, however, assume the space (II , Y) to be spanned by an ortho-
gonal Hamel basis. This case is of particular interest:

(fl"@nH:))'.
(F!o X,)t' where

F c @qH, for
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Theorem 2. Il @ , O) ,i,s a preeuclid,ean sesgu'i,linear space anrl @

not skew, then there eri,sts a set X with card X : dim E and, a fantily
(X,)* of semi,si,mpl,e hyperplanes X,'i,n E wdth properties (2), (3), (4),
(5) of theorem I wi,th a : 0 .

4. The main theorems

In this section we shall prove a strong converse of theorem I (theorem

3 below). It deals with the existence of extensions @: ExE -+Ä. of t'he

separately continuous form @: ilxE -->k where fr is the completion
of E with respect to a certain topology z . The proof makes use of a
function M an .E defined by a subbasis (X,)" of z . fn orcler to settle
the terminology rve state trro rather trivial lemmas.

Lemma I. Let (E , @) be a setnisim,ple sesqu,ilinettr spcr,ce a,nd (f,),
a fami,ly of proper subspaces su,ch that

(i) O*X, I Orl* X, for ull fi,nite .AIc X,
(ii) for euery fini,te d,i,mens'i,onal subspace I c E there is u, finite sullset

-l[ c X such that J'c nx\roX,.
The nxa,p M : E --- S,(X) (the fi,ni,te subsets of X ) whi,ch sends

r,i,ttto trt(r) : { r € X I r Q. X,} has the foll,owi,ng propert'ies:

A. Iorec-ery te X {here'is te E uith te XI@),
B. M(r) : A iff .,.' : 0,
C. M(x) : ,11Q" r) for ). + 0 ,

D. ttl{**y) c M@) u }I(y) ,

E. If lVir) l1 M(Y) : ff then, @(:c , Y) : g .

If we haae furtltermore
(iirB) (f]rX,)t : fl\ pX, for a'll' N with cartl f ( N,;

theru M satisfi,es

Ep. Xor all N c X w,i,th card, -l[ ( §B we haae nI@) c N i,! anrl only
,f (D(a,A):0 for all yeE wi,th XI@)fiN : b.

I{ote that nx X, : (0) since 1'1" X, L n, X, : E by (i) anci E
is semisimple. Lemma I has an oJ.»-ious conyerse:

Lemma 2. Let (E , @) be a sesquilii'el.r s?Gce. IJ ct' tricr.lt

M: E -*$"(I)

(Jor some set X ) satisfies A through E of Lenmta 7 then, (E , @) is senti-

s'i,mple,theset X,: {reEl tQ.}I(r)\ is a fropersu,bspaceof E ancl,

the family (X,), satisJi,es (i,), (i,i) of Lem,mu 1. If XI satisfies 8,1 tlten
(X,)* sati,sfies (ii,i,u) of Lemma 7, and, if, in this case, the correspoililiri.g
X, are all hyperplanes, then, we haae
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X,

§B ) and,

dim .B I (X,,n nX,*) - ??,

for al,l, natural, n . (Cf . theorem 2.)

We only prove the last assertion as the others are quite obvious. Let
r€flryn1X,, M(r) :{rr,.. .,cn}. Since

ilI(") * (M(r)u lruzl\{r,}
there exists by E, a vector y e E with

M@) nl@@)u Ir u r)\{,,}l : 0

and iD(*,y){0 and hence M@)nM(il+9. Ergo M@)nM(y)
: {rr} and. so A Q Xu. As we assume that all X, are hyperplanes
thereis i€k suchlhat, r- 1g e X,,, i.e. qGM(*-.try). Since qe A
:M(r)n(Nnr) wehave,say, t1C.L. Hence M@)nL:b and

U e (1" X, . X'urthermore

M(* - Liln N c (M(r) n 
^r) 

u Q[@) n N) c (ill(r) n ]r) U {r'} c M(t).

Therefore M(" - )"y) l\.rY c {r, ,. ..,h). If r. e 7I@ - Xy)n N
c J1(r) fl § then t. Q. L and the step may be repeafied. We thus find
finitelynan)'y€flrX, and l,€ä suchfhat M(*->Ly)nN - A,
i.e. r - | ), y e fl.n X, . \Ve havo shown that

^[r'' 
t ['' +q*"

The converse inclusion being trivial 'we have equality. X'inally, consider

the finitely many hyperplanes X,,, .,X,^. If rve had

dimu/ (x,, n ... n X,,) + n

then dim E/(X,,O... f|X,^) < n and" X,.O. ..n X,o a X,, (for

suitable numbering). This contradicts what we just proved:

E : (lX, : ,,, 1,1.:,: *,,.
We now state our main theorem
Tlreorem 3. Let (E , @) be a semisitnple sesqu'i'l'i,near space which

ad,mit.s a fami,ly (X,)* of subspaces X, c E wi,th the followirug proltert'i,es:

(i) O_" I, -L fl,.r* X, for all finite -nf c X,
(ii) Ior each fini,te il,i,mens'i,onal subsytace I c E there eri,sts a fi,ni,te

.l[ c X such, thtr,t .ä'c fl*...* X, .

Then for eaery ord,i,nal u )- 0 the form Q has a na,tural ewtension (D
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on the space (E , n) where E i,s thecompleti,on of E endowed, uith the
l'i,near topology ,ca whi,ch has the i,ntersecti,ons OoX,, AcX, cardA
5 §o, d,s a, zero-nei,ghbourhood, basi,s. The family (fr,)* satisfi,es the ana-

l,ogues of (i,) and, (i,i,) ,i,n 1fr ,61 .

If (X,)" sati,sfies furthermore

tlt ere ,i,s ct, pa,rtiti,oning

f-lr.. onfr, cL?Ld, dimZ*
,f a,rld only ,f (E , A)
r"(O) : %n .

Proof. Step I. We show that the roi,ap M : E --> S,(X) of lemma t
can be extended to a map [[ : E -* B"(X) which satisfies A, B, C, I)
of lemma l. Let 7 be a Cauchy filter on 1E , r,). For each X, there is

l,e7 with -8,-X,CX,. Considertheset l,[ : {r€-XiJ',+X,}.
For all re X, and ,.efi u,e have t,e tI@). Assume no'ry that f[
were infinite. Choose some clenumerably infinite subset X c it. Since

O* X, is a 0-neighbourhood there exists X eV t'ith I - -F c O, X, .

Choose fixed elements f eX and /, en,nP. If ii-e had tL-U(f)
for r €-l[ we should. have t.e Mff,) c M(f,-/) U ]][(f), a contradic-
tion. So .M C ltr(f) which is absurd because l[(f) is finite. This proves

that [[ is finite.
We show next that ,il depends only on limV. Let limrT:\im'q

and F,-E,cX,, G,-G,cX, (1,e3, G,e.q). Forgir-en neigh-
bourhood X" there exists .F € 7 and G e'q nith 7-G c lf, . Picli
f e n,fiP, g e G,nG. The identity g, : (9,-g) + @-f) + (f-f,)
+f, wilh f,e I", g,eG, shows that, f,:9, (mocl-f,). Frorn this
the assertion follows.

We may thus rwite fr : [r(f) rvhere ,f : ]irr J . Since ff (fl :
Utfl when / € ,E rve see that ii : H --- [r"(I) coincides with M on

the d.ense subspace n. it clearly satisfies A, B, C, D of Lemma 1.

Step II: trVe shorv that for I ancl ( Cauch5'filters on E the limits

; : gre such that fr - gt H, usltere 
- 

Ho--

,i,s sem,i,sinxple. If srrch is tlt e c(t se ?0e also haue

lim lim @(E , G) ancl lim
Fef Geg Ge9

exist and are eiqual. 
N

and neC Choose Deg with D-D
lYe shall proYe that

lim @(? , G)
FCF

C e J u-ith C-C c (ln X
c fl',rr-'rr(,) X, and ?/ e D

lim lim @(F , G) - @(x , y) :- lim lirn A@ , G)
E r rg
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X'or arbitrary ze D-D we have M(z)l\M(r):9, so @(r,z):0,
i.e. @(r , D-D) : {0} , in other word.s, @(r , D) is a singleton. @(t , D\
: @(r,y) : lim".n @@,G). Let now r'e C and Goej with
Go-G, c (1*p-o1x,; @(u'-r , Go) is a singleton. Let z € Go .

II@) n LI@'-*) c M(lim9) . O"the otherhand, since il' - n e C-C,
rye have M(x'-r)i M : 0. Thus M@)n M@'-r) - A, so

@(2, r' -u) : 0, hence Limg @(r, G\ : limg @(r', G) : @(r, tl) .

Therefore

lim lim A@ , G) : Iim O(C , G) :- Qlr , Y)
f I I

11

This prorres half of the assertion.
There is C' e 7 with A'-C' C O,rruy(y)

before we obtain
X,. Choose n'e CnC'. As

Iim lim O(I , G) : @(r' , U) .

9r-
For all c € J1(y)\fitpi^21 rve have C'1X, ancL thus M(x')t1M(y)
c [tgi^-t1 . similarly M@) n M@) c Wgim'r]1 . lI@) n M@-r',)
c LI(y)nl(M(r)U M(r'))l c M . On the other hand, since r-n'€
C-C we ha've M(r-a') fi lI : 0 , so JI(y) 11 XI(r-r') : fr and

@(r-t' ,y):0, i.e. @(u,y): @(r' ,y). Ow doublelimitsaretherefore
seen to be equal.

Step III. We now define ,6 on

@(f 
' 
g): lim lim Q(I , G)

Fe7- Ceq

'where f :limV , g:lim'? . @ is well defined. @ is sesquilinear

rvith respect to the antiautomorphism used in the clefinition of @ . If
we pass from @ to a suitable multiple @,a then @ pc is sket' or hermitean.

b p is accorclinglv skery or hermitean (»prolongernent des id.entit6s»). Hence

O is reflexive. (One may also pro\re reflexir.'ity directly by the explicit
construction giveu iu step IL)

Let *., be the completion of X, in E . We show that the family

(f,,)r satisfies the properties analogous to (i) and (ii) of the theorem,
furthermore (iii) provicled it holds for (X,)* . The last assertion follows

from the remark bhab fr: -f, @ L for any linear complement L of X,

in E . The remark also shows that r e fl1r1 if r Q, fr,. The converse

being trivial s'e have fr,: {refrl rei[1r1).'W'e now prorre

Ebv

flrtflnflrd) - fr -> @(f ,s)-_ o
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Indeed, in step II we had XI@) n A c All and M@) n XI@) c .tt@) .

Ilence M@)ntI@) c t[@)n]][nM@) c frttflnU@. Thus, if
6ff,g):@(r,y)+0 then M(r)fiLtr(il + A by(ii) of thetheorem'
Ergo futfln fi(il + a . From this we obtain _ i)".,.rf, c (l-lrf,)'
for all finite .I[ c X. Finally, as *, : { r e E I t, e ilpl} we see

that the analogue of (ii) holds. Notice that if frp1 : A then r : 0 as

Z* is separated.

Step IV. fn order to show thah (fr, 6; ir or-euclidean under the as-

sumption (iii), we consider elements *efr, n+O which are minimal
in the following sense: X'or any decomposition fi : nl+tz with nonzero

r, e fr we have that not hoth fr(rr) , fr@r) are proper subsets of frtg'1 .

These vectors form a set of generators for the .po"" .fr . Let (/,),.1 be

abasisof .fr fromthissetofgenerators. Define Ar: {re 11{,ek,,).
The crucial point in sholving fhat (fr, 6; i. a-euclidean consists in giving
a proof for » card -4,, ( §, » . \Ye give an inclirect, proof.

Assume that we hacl card /,, ) §o for sorne fixecl pl . Hence there
is a natural number n + 0 and. more than §** among the I 'u-ith

cafi. M(f ,) : n . By our assumption we have p e il(f ,) for all these /, .

Passing to a subfamily (f ,)" if necessary, we may &ssume that there is a
finiteset l[cX, with peMcM(f,) (re Q andforevery o'€X\M
rve have f,e*" for at mosf 13o ind.ices te C. We claim that cardll4
!n-1. Ind.eed, since @ ,ö) is Hauscl.orff 'n,e hare fl.*i, : (0) so

Orrri, 
"urr. 

be at most ,.,-* -climensional by (iii) . If rve hacl carclil/
:n, then f, € (lr,.'n i, for all te C. But, carcl0) §,. anclthe .f,

are linearly independent.

We consider the canonical map ,, h -- fr t' fir, *, . dim ä >
§o 2 dim (im z) . We try to find more than ;,*, Inany spa,ces G,C E ,

all of them spanned by vectors /, ancl pairrvise disjoint, such that all
these G, have the same irnage f (0) under the map z. To tliis encl

u'ellorder C . If ro is the first element let ,I(r.o) be the shortest initial
segment of C such that (nf,)rp^1 spans the space h{nf, i r € C }. If
.I(o) is defined for all d < r clefine I(r) to be the shortest initial seg-

ment of C\9,.,11o; such that the family (wf,),, spans the space

lr{rf,l t,eC \ U,../(o) }. Let G, : lc(f),6.\Ye obtain a decreasing
nested system n (l^) w G,,) . . . ) ?v G,),, . rrhich contains more
than §-o spaces G, . Since dim z G," ( §* s'e obtain a family (G,),uo

with {tG,:nG, fot all a,t e D and carcl 22'.r*o. Note that all
spaces nG, are differentfrorn (0) since rf,+ 0 forall t,eC (af,:0
rvould. say that f,entur*, , i.e. M(f,) n nI : A; contracliction).
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Pick some uoe D and some å + O in G,,. For each v €D there

is g,€ Gu, guf 0, with n{1,:zr/r. Set Go : { g,l veD}. As card Go

) No, 'q : {GcGrl card(C\%) < §,} is the basis of a filter
on t . We show that it is Cauchy. To this end let (1o X, be a typical
0-neighbourhood, A c X and card. A ( §o . First we show that

n, X,: (1n *, . One inclusion being trivial let x e fio *, , r :limJ .

For AeA v'ehave q€M(r). Thusif wepick Ie7 with -F--E c
l1uX, c Xo we have laXr. Hence r € F c flzXn. This

sholrs that, f1nX, : fioX,. To show that 'q is Cauchy rve distin-

guish two cases. First, rQMi f,qX. for at, most »-, many l by our

clroice of lI; sothereisa G e4 .with Gci., andafortiori G-Gcfr,.
Second, re M: As nf":nf, forall t,o e D wehave n(G-G):0,
i.e. G-Gc(1n i, for all Ge9; in particular G-Gc*.,. Sum-
marizing we have shown that for each re.A lhere exists G,e'{j wrlh
G,-G"ck,. Ge-(1aG, is still an element of 'q and. Go-Gnc
(1ri, so <i is Cauchy. Let g:lim'1 . Clearly g * 0 since there

isno G e'4 wtth Gc*" when o€JI.Itiseasytoseethat 1I(g)cM:
For r € X\Jll there is GLe'(i such that Grc *.,; there is Gze'll
rvitlr Grcga*, so G1nG2 c g + fr, ancl. g- g'efr" for some

g' e GrnG* it1gl c il(g-g')u itqg'1, therefore t.Gfu@l . We
slrall shory that the decomposition /* : g + (f,,-g) contradicts the
minimaiity of f",. Since YI(g) c fr[, l[(f,") it remains to be shorvn
that JI(f,,,-g) E ]W(f,,) tvl(f,,-s) c frt(f,,) u bt{s) c ilI(f,,)u 1I
: M(f,"). To prove inequality pick Gre'1 rvith Gu c g * OitrX,.
Since n(f,"-G1: O for all G e"q 1-e haye 1," Q Gr* flnrf,, so

f,"-g e OrrX,. Hence M(f,,"-g)nil: g. As g+llcll(f,")
rve corrclucle that ll(f,"-g) is a proper suilssl of J1(1.) . Thus »»cardA,,

) §o » leacls to a contracliction.

Step V. \\-e ale norr reaclrr- to prove tha| (fr,6; ir a-euclid.ean. De-
fineasymmetricrelation ()i on X asfollows: a?ir forall l€X and

r'Xo for t,,d eX if anclonlyif thereexists z€l such lhat f"Q.*, &

f,e*,. As we have seen that cardA,": card {ae Il f,Gk,} ( §"
rre conclude that for all oe X card{r€Xlr'Xo} ( l{o. Let 5
be the »transitive closure» of 1\ ( e 5 o if and only ifthere exist a natural
n and rr,,,.rrn e X suchthat ,r:, and- [o:d and r,%r,*r for
,i, : 1,.. ., n-I ) and ; : UrIn the partitioning of X into the equi-
valence classes of 5. catd Yn { **o . With every class Y,, rle associate

tlre space Er: OrlrrX, : {rve EIIUI(*) C }'e}. Let re I;
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there is { with lfr(f,)a % *o f,e Hr. Since (/,), spans ä u'ehave
fr:Zr_Ho. Therefore each än isthe span of some f andhence Hr:
k{f,llyl(f,) c f, }. X'rom this follows that dim IIn ( 5.,-o. X'or Q * Q'

rve have HulHn, since yonYa, - O. By the same token Hrnila,
: (0) so h : @; H,. Let Oo äJ be a typical rS61-neighbour-
hood ( cardÄ < §" ).

nH! : (>11.)' ) 2H,: {nefr1fit1r1 c !l Y.}
R ' '^' g- = 

Ca

: {xe frl fup1 n

where A: l)aYo. This shows that r*161 <n. Assume that E
semisimple: if AC X and card:4 { §" let ,4' be the saturation
A (with respect to 5 ) . card A' ( §o and A' : Ua I., for sorne
with card.P < §* .

p,€R q+g' e'eR

nH:,.
.R

Therefore ,-(6) ? i in this case. Conversely if the two topologies are

equal then ,*(6) is separatecL, hence fr is semisimple. X'urthermore
q(@) : zo in this case by lemma 5 in l7l. This finishes the proof of theo-
rem 3.

The first three steps of the foregoing proof may actually be carried out
under more general assumptions:

Theorem 4. Let (E , O) be a semi,simple sesquilinear sp«ce ultich
ad,mi,ts o Jami,ly (X,)x of subsltaces X,c E with thefollouirtg,propert'ies.
There i,s an ordlinal fr >'- 0 such, thq,t

(i) flrX, -L flx... t X, for all -N c X u,itlt, carcl rY ( §B,
(ii) ?or each, su,bsltace I c E of di,nrcnsion, .--§B there erists N c X

with card,rY <-§B and -E'c fl,r,.-, f, .

Then, for euery ord'innl x ) p the form @ has a natural ertensiort, O

on the space (fr , it,) u,L,ere fr is the aomytleti,on of E enclou'ecl trith tlrc
linear topology fl, u,hich ltas the i,ntersections f]u X, , B c X ,

card B ( §o , as a zero-neighbourhoocl basds. The fanily (X,)* sati,sfi,es

the analogues of (i) and, (i,i,) i,n 1fr ,61 .

If we let a - p in the previous theorem its conclusion ceases to be

valid. Although the map rr-> M(r) : { r € Xi rGX,) (see step I
in the proof of theorem 3) may still be extenclecl to a map fl , 1fr ,;t-1
-r S(X) , we have that » card .'I1(r) < §; » does not imply a,rly more

: nx
A

UY
l?

is

of
R

n*, = nx,- nn *,:)
AAtRYn

- (> H,,,)'-
JI

L4
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that card lyl(*) < §B for all r€.8. However, if we let H be the sub-

space of ailj h e (fr , fi*\ with carcl -iltr1ä1 < g, then @ may still be
extended on all of II . This is of particular interest in the preeuclidean
case ( x :0 ) where we ha're the following analogue of theorem 3.

Theorem 5. Let (E , @) be a semi,si,mple sesqu,ilinear space and, let
(X,)* sati,sfy (i,) and, (i,i,) of theorem 3; assume furthermore

(iii') dim ElX, ( §o ( r € X) .

If E i,s the completi,on of (E , p0) where po has the fi,nite i,ntersections

n X, &s o, zero-%ei,ghbourhood, basi,s we let H be the subsytace of all h e fr)

wi,thfi,ni,te fr(to): {r€Xlhe*,}. @ hasanaturaleutensi,on 6 on
H . There is a partit,i,oni,ng X: U yn, card Yn { §, suchthat II : @i H,
where H, : f)*yrn (X,n H) and, dim"t/n < lto.

Theorem 6. Assume that i,n theoreru, 3 [theorem 5] the fumi,l,y (X,)*
has the followi,ng add,i,tional progterty

(iv) il: X,*fl.rX, for all r€X and NcX\{r} with
card Är ( ;qo I card trfl < sol .

Then the classes Yn ,intltegtartitiottirtg of X in, theorem, S [tlreoremS] are

si,ngletons and,for all A € X wehaue H, : Q,*n i, , 4, : @l*nt,,
fr: ir@ä, : @t*H, [Hn: (1,*n(H ni,) , Hn*.r: @:+rH,,
II - @ n X") @ H_n : @t" H,, furthermore fim f/o < §s and,

fro > o(@) . io : o(@) if anil onlv i,f H 'i's sem'i,si,nr,plel.

Proof. We restrict ourselves to the case of theorem 3. Let a € X be

fixed.. We show that -f, po*.".*"s a linear complement L, in (fr ,6)
wft,h fr|1l,) : {r} . Choose some fixed. basis (cr)c of a linear complement
of X, in E . As the sum E : X,6 k(ar)c is topological v'ith k(ar)c

discrete we have E : X, a lt@r)c. Now for every Ä'c X\{e} with
carcl .ly' < §o rye may, by (iv) of the theorem, pick some fixed linear
complenrent D(lY) C O,r X, of X, in Z ancl decoml:ose å^, : cr(N) *
du(N) rv-ith c.,(-l ) € X, , d/(l/) € r(f,t) . tr'or each y Lhe slrstem (dr(I[)hr
is a Cauchy net. Set ä, : lim d (rY) . M(A) : {r} is obvious from the
construction of the net. \Ye claim thab lc(or)c is the required. complement

L,. fndeed, let n : n,*/)".,c, be a typical vector of fr 1*,e*.,1 .

._-21r1r: *,*Zt,r(a.,-ir) : il,*)),rtimcr(N) e *.,. Hence

E : *,1k(Zr)c. Thesumisdirect: It >1yä, : limf 4a,1w1 e fr,
then ) ),.,d,,(N) e -f,n E : X, forsuitable -trf sothat )XrdrlM1 : o

for this Ä' and therefore 2 X, ", 
: 2 X, o?(trf) e X. which entails

Li: o for all y and hence fr : 0: Y" have thus shown that each

X, admits a complement L, in (E , @) with M(L,): {r} . Since

XI(*,)\M(L,) : A wehave E: i, Gl'L,. Let *efr and, r,e M@).

15
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*: frt*nz with nLeX, ancl frze L,. Since ll(xr): {t}c nI@) \ve

seethat fr(rr) isåpropersubset of 1frp1. Thisshol's thab * e @lrrr.) tr,

and. E : @* L,. We see in particular that the »minimal» elements J
introduced in step IV in the proof of theorem 3 ha're se* [[1f,1 which
are singletons in this case. Hence the partition constructed there has

here but one-element classes fo: {O} and Hn : flr..r,,, *, : L,,,

q.e.d.

Finally a worcl on the semisimplicity of the space (E , O) constructed

in the proof of theorem 3. Since 6 i. *"pu"ately continuous and. -E a

dense subspace with respect to fi* tle radical fr nht of ä reduces

to Er . EL need not be trivial. E is semisimple if and only if for
every Cauchy filter '1 on .U with lim'4 f 0 u-e hare '/1 $ "fj where

''Ll is the zero-neighbourhood filternith respect, to the l-eali topology
o(@) . It is simpler to discuss matters if rve are in the situal,ion rrhere

(iii) in theorem 3 can be assumed. Then we have that .fr is semisimple

if and only if fr* : r*(ö). Now it is an immediate corollar5' of theorem 3
tinab (8, @) is *-preeucliclean (cf. corollary I in the next section). Thus

by (iv) of section 2 we also see that E is semisimple if ancl onl;' if
no: ro(@). We shall obtain an independent proof of this result (cf. corol-

lary 3 in the next section).

5. Corollaries of theorem 3

In this section (E , O) invariablv is a semisimple sesquilinear space.

Coroilary l. (E , O) is x-preeuclidean if ancl, only if it aclnzits a fami,ly
(X,)* of subqtaces satisfyi'ng (i), (ii,), (iii,) of tlteorent 3 [or (i,)' (i,i,),
(iti,') of theorem 5 when a : 0 J .

The next corollary gives an alternate proof for (iv) of section 2.

Corollary 2. If (E , O) 'i,s a-preeuclirl,ean then there etists a tmcilest

a-eu.clid,ean oaerspace, uni,quely d,etermi,ned, ugt to'i,sometrg. It is tlte t,(@)'
oomftleti,on E of E ; theform @ hasanaturalertension @ on E. Tltecom'

gtleti,on toytology 7*(@) coincid,es furthermore with r,(O) .

Proofs. Let (8,@) bea-preeuclidean. Ec(H,Y), H:@!8,,
with dim.E,(§o, H semisimple, V)r:@' Set X,:EiHl
(r€X). (If X,:E wedelete a in X.) (I,).* satisfies(i),(ii),(iii)
of theorem 3. Let (fr ,6) be the space of theorem 3. By the separate

continuity of 6 we have fi'nfr - Er. EtnZ:(0) so there

is a linear complement E of frL in ,ä rvhich contains E . The pro-

Ann. AcacL. Sci. Fennicitt
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jection from E : EL 61 E on -E preserves the forms, so .E is at once
semisimple ancl an orthogonal sum of subspaces of dimensions at most

§o. LeL O:616. A is i,-dense hr E, hence z*(@)-clensein E
(i,\u >,: r*(ö)le> r*(A)) . As an a-euclid.ean space E is z*(@) -com-

plete. X'urthermore, by lemma 5 of [7] ,*(@)lr: t*(<Dld : %(@) as

E n Et: (0) . Hence 1E , r,1@11 is a roalization of the zo(@) -comple-
tion of E and cr-euclidean. It is »contained» in every a-euclidean over-
space of (E , O) since all these spaces are zd -complete. (The assertions
relating to theorem 5 follow in the same manner.)

Corollary 3. Let (X,)* on (E , @) satisfy (i), (ii,), (iii,) of theorenu 3

and, let (fr,6 be the x,-comqtletion of (8,@) of theorem 3. (h,6)
is sem,i,*ittt,ple i,! and, only i,f xo: to(@) .

Proof. If xo: %(D) then rve have for the completion topologies
i*: i,(@) : %(6) by corollary 2. We quote theorem B.

Corollary 4. If (E ,@) ad,mi,ts a fami,ly (Y,), sati,sfyi,ng (i,), (i,i,),
(iii) of theorem 3 then (E , O) also ad,mi,ts a fami,ly (X,)* sati,sfgi,ng
propert,ies (1) through (S) ol theorem 1.

Proof. Corollary I and theorem 1.

Corollary 5. (E , @) ,i,s x-euclidectn if ancl only iJ E afunits a fam,ily
(X,)" of subspaces X,c E satisfying (i), (ii), (iii,) of theorem 3 suck
that E is complete u'it.h respect to the topologA xo .

Proof. Corollary t and Corollary 2.

\\'e now discuss extending the base field. Assume that the division
ring k' contains fr and admits an extension (antiautomorphism) of the
involution @ : k ---> k responsible for the sesquilinearity of O . The
group E' : k' @1"8 may be regarded. as a vectorspace or.er A ancl as
a vectorspace orrer k' . Tn the latter case we talk about the k'-ification
E' of Z . The form @' : E' x E' -> k' defined bv

@'(Z i, a r,,Z ti
for )'i , p, e k' is sesquilinear. Since a suitable multiple @ p of @ is
skew or hermitean (rrith respect to a suitable involution which can be
extended. to a involution on tr;') the form @' p, is accordingly skew or
hermitean, hence @' is reflexive. If 'Ll: (U) is a O-neighbourhood filter
for some linear topology r on E, then 'lt' : (k' @ U) defines a linear
topology r' on E' . Since (lc' 6 7t1L' - k' 8 -X'1 for all subspaces
I C E it is clear that ro(@)' : r*(@') .

It is tlivial that the ft'-ifications (E' , @') are a-euclidean or or-pre-
euclidean if (E , @) has the corresponding properties. Much less trivial
is the fact that the properties »non a-euclidean» and »non or-preeuclidean» are
absolute as is shown by the next two collaries.

17
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Corollary 6. If (E' , @') 'i,s u-preeucl,'id,eam, then so is (E , Q) .

Proof. By theorem 1 there is a family (X,)* on E' satisfying (i),

(ii), (iii) of theorem 3 such that ro(@') has the intersections fl7 X, ,

A c X and card. A ( No , as 0-neighbourhood basis. Since to(O)' :
r.(@') the spaces k' I (X,n E) are 'Eo(@') neighbourhoods. (We

identify -E' with its image under 'i, : r r-> I I r e E' .) So

N* > dim1", E' l(k' & (X,n E» - dimo D I (X,n E) .

This shows that the family (2,)* of subspaces z": x"n E satisfies

(iii); (i) and (ii) are trivially inherited. By corollary t (E , @) is therefore

a-preeuclidean.
Corollary 7. If (E' , O') i,s a-eucli,il,ean, thert, so is (E , @) .

Proof. If (E' , O') is a-euclidean, then (E , @) is a-preeuclid'ean by
corollary 6. As Z' is complete r'vith respect to r,(@') it is easily seen

thab E is complete rvibh respect to %(@) (cf. lemma 3 in [7]). Hence

(E , @) is ry-euclidean by corollary I.
X'inally we state
Corollary s (Log frame theorem). Let (II , @) be s'eualid'ean and'

H : @*H, some fi,red, d,ecomltosi,t'i,on, dimä, ( §" . If E isa t*(@) -

closed, subspace of H then there erists a partiti,otr,i,ng X : U tsn tcith'

card Y, ( §, such tha,t H : @t Go, Go : @voU, and, E -
@n(Enc"l .

Proof. (E , @) is complete rvith respect to to(D)ls : xo and the

family of all X,: H: i E qualifies for theorem 3' (Cf' theorem 3 in

t7l.)
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