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1. Introduection

1. Let R be a Riemann surface and P a density, that is, a (' function
so that the elliptic partial differential equation

(1.1) Au = Pu

is invariantly defined on R. We suppose that P is acceptable which means
that there exists a positive P-superelliptic function « on R. The situ-
ation is introduced in [2]. Especially densities acceptable by the con-
stant one are non-negative densities.

In the theory of harmonic functions there exists the class N(R) of
bounded continuous harmonizable functions. This class is used e.g. in
the Wiener’s compactification of R (Cf. [1] and [6]). Now we intend to
construct a similar class with regard to the equation (1.1) on open Riemann
surfaces. First we define the P-solvability, the counterpart of harmoniza-
bility. Then we present the class N7, R) of w-bounded continuous
P-solvable functions as well as its subclass N%(w, R) and show their
basic properties. Especially we examine their dependence on P in the
case where densities are acceptable by the same function . The depen-
dence appears to be related to the classification of densities made in [3].
In fact, N"(w, R) is equal to N%w , R) if and only if P and @ belong
to the same density class. Finally we present a result concerning the
dependence of the NP(w.R)-compactification of R (Cf. [1]) on the
density P.

2. First we present shortly some terms and results used here. The
Riemann surface R will always be open. A density P is called completely
acceptable if it is acceptable and has the Green’s function GP(R)E of (1.1)
on R. A function wu is said to be a P-solution in aregion K if u € C*K) and
it is a solution of (1.1) in K. By I (f) is meant a P-solution in a region
K, K being compact, with boundary values f. {R,} is the usual exhaustion
of R with regular regions.

A continuous function v is said to be P-subelliptic in a region K if to
any point z, € K there exists a parametric disc (V, z,) , V,c K, such
that in every disc (V ,z),V C V,, the first boundary value problem
has a unique solution and v(z) < I}(v, 7). A function v is said to be
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P-superelliptic if —v is P-subelliptic. A family F of P-superelliptic functions
is called a Perron family if {—wv!» € F} is a Perron family of P-subelliptic
functions (Cf. [2]).

All functions are real valued. A function f is called w-bounded if fi/o
is bounded. By AP, (K) is meant the set of w-bounded P-solutions
in a region K, AP = AP (R). If P is acceptable by o, then wp(K),
the w-measure of the region K, is the greatest P-solution in K which
is not greater than o ,wp = wp(R). A density P is called w-parabolic
on R if wp=0, otherwise w-hyperbolic. According to the usual conven-
tion, the density P = 0 is considered o-parabolic on parabolic surfaces
and o, is then defined to be zero.

A region L is normal if 0L, the relative boundary of L, is either
empty or regular for the Dirichlet problem of (1.1) for every acceptable
density. If L is a normal region, P and @ acceptable densities and
w € C%L) then we define the linear transformation 7T'pu,

(1.2) Thou(zy) = u(z,) + /f Q2)) GolL . 7, z) w(z) dady .

provided that G (L) exists and the integral converges (Cf. [2] and [4]).
Tpou = Theu. If w is a P-solution, then Tpyu is a @-solution in L.

2. P-solvable functions

3. Let f be a real valued function on a Riemann surface R and L
a normal region. We denote by T p(L.f) the class of P-superelliptic
functions s on L for which there exists a compact set A, C L with
s=f on L — K, Similarly. gL .f) is the class of P-subelliptic
funetions s on L for which there exists a compact set K, C L with
s=f on L — K. These classes are either empty or Perron families.
In the latter case the functions

Ap(L . f.2) = inf {~(2) ~€ T pL.f)},
up(L . f.2) = sup is(z) <« € Up(L )},
are P-solutions in L. with

up(l . f) = dp(L . f) .

If these functions coincide. the common function is denoted by up(L . f).

A function f on R is called P-solvable if UL .f) and Ug(L . f)
are not empty and dp(L ,f) = up(L ,f) for every normal region L.
If especially P == 0, we suppose in addition that L is not parabolic.
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The concept of P-solvability is essential for our purposes. Therefore,
we consider only open Riemann surfaces. In fact, let us suppose that P
is acceptable by o on a closed Riemann surface. The only existing P-
solutions are the constant zero and, if » is a P-solution, the multiples
of o (Cf. [3]). Therefore the P-solvability of a function is either trivial
or not meaningful. That is why the closed Riemann surfaces are not interest-
ing in this connection.

4. We start the examination of P-solvability with a couple of aux-
iliary results.

Proposition 2.1. Let f and g be functions on R and L a normal region.

If the classes Upand Uy in question are not empty,

up(L . g) < @p(L . f +g) — dp(L, f) = ap(L , g)
up(L , g) up(L :f +9) — up(lL, f) = ap(L , g) .

A

lIA

Proof: Let s € Up(L ,f) and s'€U (L, g). Then s + s'€ O (L . f — g).
This implies

(2.1) Tl f = g) = Tpll . f) = dp(L . g) .

If then s€ T H(L.f—yg) and ~€UpL.g), f—s =f—g==s in
L — K, UK, Thus s —s€T4L.f) and

(2.2) ip(le.f) = dp(L . f —g) — up(L . g).

Together (2.1) and (2.2) imply the first statement. The second is proved
similarly.

Proposition 2.2. Let [ be a non-negative continuous function on R
having a P-superelliptic majorant. If @p(R . f) = 0. then f is P-solrable.

Proof: Because f =0, up(l,f) exists and is equal to zero. If P == 0
and R is parabolic, then iip(R . [) is defined to be zero. In this case
every bounded continuous function is harmonizable i.e. 0-solvable (Cf.
[6] p. 224). So we exclude this possibilitv. Let {R,} be an exhaustion of
R and L a normal region. It is sufficient to consider the case where
L UdL is noncompact. Let u, be a continuous P-subelliptic function
on LUJL— (0L)NJR, so that «, is a P-solution im LN R, and

n

| on BNL.
“T)oinlL R,

Then {u,} is a non-decreasing non-negative bounded sequence and there
exists a P-solution u = lim », with u = f on dL.

-
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If now s€UpR,f),s=0, and if K,C R, then u, —s <f on
R,NOL and u,—s=f in L—R,. So u,—s€UyL,f) and

n .

(23) % = lim un_aP(Ryf) éy’P(L’f)

n—oC

On the other hand, s +u > f on dL and s+u=f in L — K. So
s+ u€UpL,f) and

(2.4) w=u+ap(R,f) = apl,f).
Because wup(L,f) = ap(L,f), (2.3) and (2.4) show that wup(L ,f) exists

and is equal to . So we have the statement.

5. Every P-solution u on R is P-solvable and wup(L ,u) = u for
every normal region L. There also exist other naturally P-solvable
functions.

Proposition 2.3. Every P-superelliptic function on R having « P-
subellyptic minorant is P-solvable.

Proof: Let s be P-superelliptic on R, v its P-subelliptic minorant
and L a normal region. Then s € Up(L,s), v € Upy(L,s) and
v=up(l,s) = ap(li,s) =s.

Therefore dp(L ,s) € Up(L,s) and it must be equal to wup(L ,s). The
proposition is proved.

In the same context we see that every P-subelliptic function on R
having a P-superelliptic majorant is P-solvable as well as every -
bounded P-sub- or P-superelliptic function. Especially the accepting
function @ is P-solvable and

(2.5) up(L . ) = mp(l)

for every normal region L.
6. A useful feature is that P-solvable functions form a vector space.

Proposition 2.4. Let f.g be P-solvable functions and ~ . 3 real numbers.
Then «f 4 pg s P-solvable. If L is a normal region. then

up(L , &f + pg) = vup(L ,f) - pup(L . g) .
Proof: From proposition 2.1 we see that f -+ ¢ is P-solvable and

up(L, f + g) = up(L, f) + up(L , g) .
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If x>0, then xs € Up(L,nf) for every s € Up(L,f) and vice versa.
So wup(L, af) exists and is equal to ~xup(L,f). Because up(L, — f) =
— up(L ,f) the result remains valid for « < 0 and it is trivially valid
for x = 0. These two facts give the proposition.

3. The Banach lattice N(w, R)
7. The class of all P-solvable functions is too large for our purposes.
We introduce a smaller subclass of it which has more regularity properties.
Let B(w, R) be the family of those continuous functions on R which
are m-bounded. We define

NPw, R) = {f € B(w . R) | f P-solvable} .

This class of P-solvable functions is thus a subclass of B(w . R). It appears
that we can say exactly when these classes coincide.

Theorem 3.1. N"(w , R) = B(w, R) if and only if P is o-parabolic
on R.

Proof: Let first P be o-hvperbolic and {R,} an exhaustion of R.
Let fEBw.R).0=f=o0,

w in U (Ryn s — Ryn )
n=1

f= -
l 0 in Ux(l?h — Ry, ) -

If s€CpR,f), then s=f in Ry,.,. »— R, , for some n and
every m > 0. Since s = f =0 on dR,, ., » and o = op(R),s = wp(R)
in Ry, . » for every m > 0. We conclude that s = wp(R) on R. For
an s € Up(R,f) we similarly conclude by considering R,,(nd_,,,, — R,,
that s < 0 on R. Thus.

yP(R f) g 0 < (')P(R) g ﬁP(R ~f)

and & N, R).

Suppose then that P is w-parabolic and takean f € B(w, R), if| = Mo.
We use the standard decomposition f=f* — f~ f*, f~=0. Then
Mo € Cp(R . f*) and so 0 < dp(R,f") = Mw. This implies

0= apR,f) £ Mop =0,

unless P = 0 in which case it is defined #@p(R ,f*) = 0. Similarly we
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get that @p(R,f-) = 0. Then f* and f- are P-solvable by proposition
2.2 and so f, too. Thus f € N"(w, R).
The theorem is proved.

8. We turn to the regularity properties of NP(w ., R). First we intro-
duce some notations. Let f and ¢ be real valued functions and u , v
P-solutions. Then we denote

JUg=max(f.g). fNg=min(f.g),
u Vv =inf {s|s P-solution, s = u U},

w A v = sup {s s P-solution, s = u N v},

provided that « Ve and wAv are P-solutions. So « V v is the least
P-solution which is a majorant of « U ¢ and « Av is the greatest P-
solution which is a minorant of « N v,

A vector space is called a vector lattice if it is closed under the operations
U and N mentioned above. If the space is moreover complete. it is
called a Banach lattice.

Theorem 3.2. N"(w , R) is a Banach lattice under the wm-norm
'fl,, = sup CAl .
il Ha R (’)

Moreover, if f and g belongto N"(w . R) and L isa normal region.

(3.1) up(L . fUg) = up(L .YV up(L .g).
(3.2) up(L . fNg) = up(L . /YN upL .g).
Proof: Evidently N%( . R) is a vector space. Let f.g € NP, R)

and let L be a normal region. We show first that fngeN” ( . R).
Because fNyg is o-bounded and a minorant of both f and g,

ip(L,fNg) = ap(L . f)N dp(L.g) = up(L.f)Nup(L .g).

The function s = up(L.f) N ug(L.g) is P-superelliptic and has a P-
subelliptic minorant. Thus s is P-solvable. According to the definition,
up(L, s) must be equal to up(L.f) A up(L.g). So we have

(3.3) ap(L, f0 g) = up(L . f) Nup(L . g).

Let then &> 0 and 2 € R. We can find an s € Up(L,f) and an
s'€ Up(L , g) such that
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=]

— & < 8(20) - uP(L ?fs z0)

A 1A

— & <8'(z) — up(L, g, %)
Because the P-subelliptic function
(s — up(L, f)) + (5" — up(L, g)) + up(L . f) Aup(L , g)

is a minorant of both s and s, it belongs to Up(L,fNg). At the
point z, is valid

— 26 + up(L . f) Nup(L , g)(z0) = up(L . fN g, 2).
Since ¢ > 0 and z, were arbitrary we must have
(3.4) uplL, fy Nup(L . g) = up(L .0 g).

Together (3.3) and (3.4) imply that fNg € N%w, R) and (3.2) is valid.
Similarly we can prove that fUg € N"w,R) and (3.1) is valid.
So NP(w,R) is a vector lattice. It remains to prove the completeness.
Let {f,}© X% .R) be a Cauchy sequence under the o-norm. Then
there exists lim f, = f such that lim f—f, =0 and f€B(w,R).

n—>o n—x

Ifnow s € Up(L ,f,). then s <f in L — KA, and
s— f—=f, o =up(L,f)

in L — A, too. Therefore

(3.5) up(L, fo) — f — fulow = wp(Le, f) -
In the same way we see that

(3.6) up(Lo, f,) + o f = fulloo = @l ) -

Together the inequalities (3.5) and (3.6) imply when # goes to infinity
that f is P-solvable and

(3.7) up(L . f) = lim up(L . f,) .

n— i

So f € N¥(w, R) and the theorem is proved.

Corollary 3.3. Let {f,} € N, R) and lim f, = f with regard to the

FEs

w-norm. Then f€ N"(w, R) and (3.7) is valid for every normal region L.

9. Together with NP(w , R) we need a subclass of it. We define
Vi, B) = {f € X¥o, R) up(R ) = 0}

This class has similar properties as N(w , R). In fact, from proposition
prop prop
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2.4 and formulas (3.1), (3.2) we see that it is a vector lattice and from (3.7)
that it is complete. So we have the following result.

Theorem 3.4. N5(w , R) is a Banach lattice.

An interesting fact is that N%(w, R) coincides with NP(w, R) if
and only if the latter coincides with B(w, R).

Theorem 3.5. N%(w, R) = N¥(w, R) if and only if P is w-parabolic.

Proof: Let P be w-parabolic and f€ N%w,R), |fl = Mo. If
P =0, then f€Nf(w,R) by definition, otherwise it is seen from the
inequality up(R,f)| < Mwp = 0. Because N%(w,R) is a subclass
of NP(w,R) they must be equal.

Let then P be o-hyperbolic. Then ®p, the em-measure of R, is posi-
tive. So it belongs to N”(w, R) but not to N%(w, R). Thus these classes
are not equal.

10. Finally we remark that N"(w, R) can be presented as a direct
sum of AP (R) and N%(w, R).

Theorem 3.6. N"(w, R) = AP (R) + N%(», R) .

Proof: Let f€NFP(w,R) and denote ¢ =f— up(R,f). The P-
solution up(R . f) is o-bounded and thus belongs both to AP, (R) and
NP, R). This implies that g € N¥(w , R). Because

up(R . ) = up(R . f) — uplR .f) =0,
g belongs in fact to N(e . R). So we have a decomposition
(3.8) f=upR.[) =y

where up(R,f) € AP, (R) and g € N7 . R). The only common function
of AP,(R) and N%(w,R) is the constant zero by the definition of
Nf(w, R). Thus the decomposition (3.8) is unique.

4. The dependence of N°(mw, R) on P

11. Let £ be the class of densities which are acceptable by the same
function ®. We suppose moreover that 2 has a smallest member W
so that o is a W-solution. This situation emerges e.g. when o € C® in
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which case W = Aw/w. If we especially choose w =1, then W =0
and £ is the class of non-negative densities.

In 0 we define a classification of its members by introducing to every
Pe€Q a W-solution w»yp, the smallest W-majorant of wp(R) and
by defining

N(P) = (Q € 21w = 7

All o-parabolic densities belong to the same class but w-hyperbolic may
be divided into several classes. This classification is connected with the
comparison of solution spaces AP, If P and @ belong to £, then
AP, and AQ, are strongly isometric if and only if P € N(Q) (Cf. [3]).

Now we examine in £ the dependence of Banach lattices N%(w, R)
and N%(w, R) on P. In the class of w-parabolic densities this dependence
is clear, N%w , R) = N%(w, R) = B(w, R) for every density P in this
class. Therefore we suppose in the sequel that 2 also contains w-hyperbolic
densities P, P = . This condition implies at the same time that every
P € O is completely acceptable (Cf. lemmas 3.3. and 3.5 in [3]).

12. First we prove some auxiliary results in which we do not presume
that densities belong to Q.

Propesition 4.1. Let P and ) be acceptable densities with P = @ and
L a normal region. If f is a non-negative function having a P-superelliptic
majorant on L, then

wo(L.f) = uplL . f) and gL, f) = @n(L, f).

Proof: For any s€ Uy(L,f),sU0 is P-subelliptic whence it be-
longs to Up(L,f) and

UL, f) = up(L, f) .

Forany s€ Cp(L.f).s =0 in L because f = 0. Sc s is also Q-super-
elliptic and belongs to T y(L . f). Thus

ﬁQ(L f) § 7-7}3([‘ rf) .

In the next result we need the mapping 7’5, and so we suppose that
@ is completely acceptable.

Proposition 4.2. Let P and @ be acceptable densities so that P = )
and @ 1is completely acceptable. Let L be a normal region and f a non-
negative function so that up(L ,f) is finite. Then the greatest Q-minorant

of up(L,f) s
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yQ(L f) = T[ﬁQ%P(L ) -

Proof: By proposition 4.1 we have

This implies by lemma 3.4 in [3] that the greatest @-minorant of wup(L , f)
exists and is equal to Thoup(L , f). Because P = Q,

(+1) ug(L . f) = Toqup(L . f) = wp(L . f) .
Let then & > 0 and z,€ L. There exists an s € Up(L ,f),s = 0, so that
— & <s(zg) —up(L.f.3) =0.
The function
s — up(L.f) — Thoup(L . f)

is a minorant of s and @-subelliptic. Therefore, it belongs to Uy(L ., f)
and we have

— &+ T%‘QZLP(L ) z) = y’Q(L S z0)
Since ¢ > 0 and z, were arbitrary,

Together (4.1) and (4.2) imply that uy(L .f) is equal to Thoup(L , f).
This proves the proposition.

The requirement of non-negativity of the function f can be replaced
with the -boundness. Then we also get a similar result to the functions

oL , f) and dp(L , f).

Proposition 4.3. Let P and @ be densities acceptable by o so that
P <@ and @ 1is completely acceptable. Let L be a normal region and f
an w-bounded function. Then

ug(l . f) = Troun(L . /)
and
do(L . f) = Tpoip(L, f) .
Proof: Let |fi < Mo. By proposition 2.1 and by (2.5)
+3)  up(L,f) + Mop(L) = up(L [~ Me): D=P.Q.
Because [+ Mo = 0 we have by proposition 4.2

(4.4) oL, f + Mo) = TéQyP(L = Mo) .
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On the other hand, Tf,Q is linear and, because P < @,
(4.5) Thewp(L) = mo(L) .
Therefore we have
(4.6) Trgup(L , f 4 Mo) = Thoup(L . f) 4+ Moy(L) .
This, together with (4.3) and (4.4) implies

ug(L . f) = Trqup(L . f) -

The first formula is proved. For the second we notice that — f + Mo = 0.
Therefore we have as above

yQ(L =)= TIiJQ’L‘P(L Ik
However,
up(L, —f) = —d@p(L.f): D=P,Q.
So
aQ(L af) == TIEQﬂP(L >f) .
The proposition is proved.
13. We are now ready for preliminary comparison results in the class Q.
The first is a direct consequence of proposition 4.3.
Proposition 4.4, Let P and @ belong to Q. If P < ). then
NPw,Ryc N%w , R) and N%(w . R)cC N9%w . R).

1f moreover f € N¥(w , R) and L is a normal region.

uo(L, f) = TfJQuP(L )

Then we suppose in the same setting that the function f in question
is in the class N%w , R) and ask the P-solvability. This point of view
is clearly more difficult and it is necessary to require some additional
properties. By taking advantage of the classification of densities and the
results of [3] we are able to prove the next proposition. It concerns only
functions in the subclass N9%w , R) but is quite sufficient to us as a
preparatory result.

Proposition 4.5. Let P and @ belong to the same density class N
in 2. If P<Q, then

N¥o, R) = N%o . R).
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Proof: By proposition 4.4, N%(w, R) C N%w , R). Let us then take
an f€ N%w, R). Because N%w, R) is a vector lattice we may suppose
that f = 0. Now we use the results of [3]. By theorem 4.9 in [3], P € N(Q)
implies that the solution spaces AP, and AQ, are strongly isometric.
By theorem 4.10 in [3] and the definition of strong isometry, 7Tpp is
an isomorphism from AP, onto AQ, and T, is its inverse mapping.
On the other hand, f is w-bounded and so @p(R ,f) exists and belongs
to AP,. Together with proposition 4.3 all this gives

TQPdQ(R f) = TQPTPQ?ZP(R f) = @p(R )

Because y(R ,f) == 0 this implies that @,(R,f) = 0. Then we see from
proposition 2.2 that [ is P-solvable. Because f=0, up(R,f) =0
and so f belongs to N%(w . R). This gives N9%w, R)c Ni(w, R) and
so the proposition.

14. The class £ has an interesting property. If P € Q, then all o-
bounded P-solutions are @-solvable for every @ € Q.

Theorem 4.6. Let P € Q. Then
AP,(R)c N%w , R)
for every Q € Q. If w€ AP _(R) and L 1is a normal region,
uo(L , u) = T%Qu .
Proof: If P is o-parabolic, then AP _(R) = {0} and the result is
obvious. So we suppose that P is o-hyperbolic. Let u € AP, (R) and let
L be a normal region. Suppose first that « = 0. Then u is W-subelliptic

and belongs to Uy (L, «). On the other hand, Thyu exists and belongs
to U (L, u). So

(4.7) w =< up(L . u) < dg(L.u) = Thyu.

Because 7Tppu is the smallest 11 -majorant of « in L (Cf. lemma 4.1 in

(3],
Theu = up(L . u).
Therefore u is W-solvable and
(4.8) (L, u) = Thyu .
If u has also negative values, we see from the decomposition

w = |u| wp— (u op— u)
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that (4.8) is still valid. So in every case u € N”(w, R). This fact together
with proposition 4.4 gives

(4.9) AP, (Ryc N¥(w, R)c N%w , R)

for every @ € 2. This shows the first part of the theorem.

For the second part, let u € AP, (R) and let L be a normal region.
By (4.9), u is W-solvable. Because W =< @, this implies by proposi-
tion 4.4

(4.10) ug(L, u) = Thouw(L , u).
Furthermore by (4.8)
(4.11) Theuw(L , u) = Tho Thpu .
Finally, according to lemma 4.8 in [3],

Tho Tiwu = Thyu .
This, together with (4.10) and (4.11) gives

gL . u) = Thu .

15. Let P and @ be densities in the class 2. Our main object is to
clear up when the Banach lattices NP(w,R) and N9%w, R) are equal.
We have already had some results of this kind. It can be seen that the
problem has something to do with the classification of densities in 0.
Now it appears that the answer lies wholly on the classification of densities
and so on the strong isometry of the corresponding solution spaces AP,
and A4Q,.

Theorem 4.7. Let P and @ belong to Q. Then the following state-
ments are equivalent.

(a) P and @ belong to the same density class N.
(b) N%w,R)=NYw,R).
(¢) NP(w,R)= N%w,R).

Proof: If either P or  is w-parabolic, then result follows from
theorems 3.1 and 3.5. So we can suppose that densities are ®-hyperbolic.

(a) = (b): If P and @ belong to the same class N, then the density
D =P + @ — W belongs, too, by theorem 5.4 in [3]. Because D is a ma-
jorant of both P and ¢ we have by proposition 4.5

Ni(@,R) = N, R) = N, R) .
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(b) = (¢): Let N¥w,R)= NYw,R) and take an f€ N"w.R).
By theorem 3.6

f:uP(R’f)+vr
uhere up(R ,f) € AP, € N%w , R) by theorem 4.6 and v € N'(v . R) =

N%w , R). So f belongs to N%w, R), too. By changing the roles of P
and Q we see that if g € N%w , R) then g € N¥(o, R), too. Thus

NP, R) = N%w . R) .

(¢) = (b): Let NP, R) = N%»,R) andlet f€ Nf(w, R). Suppose
that f& N%w . R). Because N'(w,R) is a vector lattice we may
suppose that f = 0. We form a function ¢ € B(o, R), 0 =g = f.

f 11 L;J 4n—2 R4n—3)

0 in U (R4n - -R4n~1) .

Let us take an s € Uy(R,g),s =g in R — K  and an '€ Uy(R . f).
s=f in R— K. If KUK, CR, , then s =f=g=s on
OR,, 5.1 i_ n,. By the maximum principle of P-subelliptic functions
(Cf.[2]). " =s in Ry, _,. n =mn, Therefore the same inequality is valid
on R and we have

(4.12) Tg(R . g) =Z up(R, f) = wo( . f) > 0
because it was supposed that f€ N9%wm.R).f€N%w.R) and f = 0.

However, every s € Uy(R,g) is by the construction of g mnon-positive
whence

up(R ., g) = 0.

This, together with (4.12) shows that g € N¢ (m , R).
On the other hand. 0 = ¢ = f and f € N (w, R) imply
(4.13) 0= dpR.g) = dpR.f)=0.
So @p(R.g) =0 and by proposition 2.2, g€ N . R) = N%w . R).
This is a contradiction and we must have f€ NG . R) ie.
XNo, Ryc N(o , R).

By changing the roles of P and ¢ we get the inclusion into opposite
direction. So

N . R) = N%w . R).
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(b) = (a): Let N%(w,R)= NY%w,R) and let u€ AP, , v € AQ, .
By theorem 4.6

wg(R ,u) = Tpou . up(R,v) = Topv .

Because Tpou € AQ,,, Topv € AP,. we have

Top Tpout = up(R , up(R . u)) .

Now
up(R , u) — u € N, R)=N(w.R).

This implies that
up(R , ug(R , u)) = up(R ,u) = u

and so

TopTpou =u.
Similarly we see that

TpoTopv =v.

This means that 7'p, is an isomorphism from AP onto AQ, and T,
is its inverse mapping. The spaces AP, and AQ, are thenstrongly isomet-
ric which implies that P € N(Q).

The proof of the theorem is now complete.

Let especially 2 be the class of densities acceptable by the constant
one i.e. the class of non-negative densities. Let moreover N°(R) be the
Wiener's algebra of bounded continuous harmonizable functions (Cf. [6]).
If R is parabolic, then trivially

NP(1,R) = B(1,R) = NR)
for every density P = 0. If R is hyperbolic then according to theorem 4.7
NP1, R) = NY(R)

if and only if the smallest harmonic majorant of the I-measure 1,(R) is
equal to one. This happens e.g. when.

(4.14) f/ P(z) (= . z) dedy < x
R

at some point z,€ B (Cf. lemma 3.4.3. in [2]).

5. Wiener’s P-compactification

16. Let R be an open Riemann surface and P a density acceptable
by @ on R. We call a topological space R* ., a Wiener's P-compactification
with regard to o if
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(a) R p is a compact Hausdorff space,

(b) R is an open dense subspace of R¥ p,

(¢c) every function in N"(w,R) can be continuously extended to

(d) N®(w, R) separates points in R* , .

The compact set I, p(R) = R* , — R is called the P-ideal boundary of R
with regard to w.

It is well-known that R¥ , exists but is unique only up to a homeo-
morphism (Cf. [1] pp. 96—98). Therefore Wiener’s compactifications
R¥p and R¥, are said to be equivalent if there exists a homeomorphism
h: RY,— R¥, sothat h/R is anidentity mapping. So, if P isacceptable
by ®, all Wiener’s P-compactifications with regard to o are equivalent.

Let ©Q be the same family of densities acceptable by w as in the prece-
ding chapter. Theorem 4.6 gives us immediately the following result.

Theorem 5.1. Let P and @ belong to Q. Then every P-solution
in AP_(R) is continuously extendable to RY .

Another immediate result concerning the equivalence of Wiener’s com-
pactifications is given by theorem 4.7.

Theorem 5.2. Let P and @ belong to Q. If they are in the same density
class N, then R*p and R, are equivalent.

Let especially © be the family of densities acceptable by the constant
one i.e. the family of non-negative densities. Then R, is the harmonic
Wiener’'s compactification of R (Cf. [6] p. 228). Now, if P = 0, then
every bounded P-solution is continuously extendable to Ry, If R is
parabolic, then Rfp and RY, are equivalent for every density P =0
because in this case Q consists only of parabolic densities. If R is hyper-
bolic, then R, and R}, are equivalent for every density P which
belongs to the same class N as the density zero. This happens e.g. when
the condition (4.14) is fulfilled.

17. The condition that densities belong to the same density class .V
was both necessary and sufficient in theorem 4.7. Now we saw that it was
sufficient for the equivalency of Wiener's compactifications. It is natural
to ask whether it is also necessary. We intend to show that this is not the
case. In this purpose we present a situation where the family 2 generates
only one equivalence class of Wiener's compactifications.

Thoerem 5.3. Let o be an accepting function with limw = 0 and
IR
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let Q be the corresponding family of densities. If P and @ are any densities
of 2, then RYp and R}, are equivalent.

Proof: The accepting function o has always a continuous extension
o* on R¥*,. By supposition w*/I’, p(R) = 0. This implies that I, p(R)
consists of only one point. Moreover, every function v € B(w , R) is con-
tinuously extendable to R*, by defining v/l p(R) = 0. Especially
this is true for every function in N%w, R). So R*, is a Wiener’s Q-
compactification, too. Because all Wiener’s @-compactifications with
regard to o are equivalent we have the statement.

18. Finally we show that theorem 5.3 is not a consequence of theorem 5.2

i.e. there may exist different density classes N in £ evenif lim o = 0.
R
As an example we take (Cf. [2], Ex. 6.1.7)

R=1{z| 2| <1}, o) =1— "
and
W) = 1(1z2 — 4)(1 — z?)2.

Then w € C3 andisa W-solution with lim w(z) = 0. Moreover W is

3 —1
completely acceptable and negative on R. We also take a positive density
-PW" )

Py(z) = (1 + [z)~.

Now we consider the density P = W + Py. Because clearly [P — Ww?
is integrable on R, P belongs to N(W) and is thus o-hyperbolic (Cf. [3],
Corollary 5.2). So the family 2,

Q ={Q| Q a density, Q = W}

is of the right type. Because W < 0, every non-negative density ¢ belongs
to 2 and is w-parabolic by the usual maximum principle. Therefore such
densities do not belong to N (17').

19. We have thus found a situation where Wiener’s P- and @-com-
pactifications with regard to o are equivalent even if densities P and
@ belong to different classes N in 2. Therefore the condition of theorem
5.2 is not a necessary one.
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