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1. Let
so that the

(1.1)

l. Introduction

R be a Riemann surface and P a density,that is, a C'r function
elliptic partial differential equation

Iu-Pu
is invariantly defined on -8. We suppose lhat P is acceptable which means

that there exists a positive P-superelliptic function o on -8. The situ-
ation is introduced in [2]. Especially densities acceptable by the con-

stant one are non-negative densities.
fn the theorr- of harmonic functions there exists the class N(A) of

bounded continuous harmonizable functions. This class is used e.g' in
the Wiener's compactification of .R (Cf. tll and [6]). Norv tve intend to
construct a similar class t-ith regarcl to the equation (1.1) on open Riemann
surfaces. First rye define the P-solvabilitl-, the counterpart of harmoniza-
bility. Then rve present the class fP(r,r , -B) of or-bounded continuous
P-solvable functions as *'ell as its subclass I{lQo , R) and show their
basic properties. Especially we examine their dependence on P in the
case where densities are acceptable by the same function rr-,. The depen-

dence appears to be related to the classification of densities made in [3]'
In fact, NPla-, , ,E; is equal to "tr/o(o , -B) if and only if P and Q belong

to the same density class. Finally we present a result conceming the
dependence of the Ä-P(r,"l , Ä)-compactification of R (Cf [l]) on the
density P.

2. X'irst 'ir-e present shortlr- some terms ancl results used here. The
Riemann surface -B rvill alrravs be open. A densit5- P is called compl,etely

acceptable if it is acceptable ancl has the Green's function G"(Ä)l of (1.1)

on-E.Afunction z issaidtobea P'solu,ti,oninaregion K if u € C2(1() and

it is a solution of (1.1) in 1{. ny fil/) is meant a P-solution in a region

K, R being compact, with boundarv values f . {R"} is the usual exhaustion
of .B with regular regions.

A continuous function o is said tobe P-subelliptic in a region 1{ if to
any point zoe K there exists a parametric disc (Yo,?r),VoC K, such

that in every disc (V , "r) , 
V c Vo, the first boundary value problem

has a unique solution and o(zo) ! I!,(a , zo). A function o is said to be
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P-sugterelli,Ttticif -u is P-subel,l,igtti,c. Afamily.F of P-superelliptic functions
is called a Perron family if {-ol a e I} is a Perron family of P-subelliptic
functions (Cf. l2l).

All functions are real valued. A function / is callecl as-bound,ed, if lfilot
is bounded. By AP,,(K) is meant the set of r,r-bounded P-solutions
in a region K , AP*: AP-(R). If P is acceptable by ,, then r»p(K),
the co-measure of the region J(, is the greatest P-solution in K rvhich
is not greater than a),@p: atr(R). A density P is called a>paraboli,c

on "E if cop: 0, otherwise arhyperbolic. Accor<ling to the usual conven-
tion, the density P: 0 is considered a;-parabolic on parabolic surfaces
and oo is then defined to be zero.

A region L is normal if 0L, the relative boundary of Z, is either
empty or regular for the Dirichlet problern of (1.I) for every acceptable
density. If Z is a normal region. P ancl a acceptable densities and
u e Co(L) then rr'e clefine the linear transformation T"rou,

{I .2) TLpnu(z) - rr,(z) J- cl,tcl y

provided that Go@) exists and the integral converges (Cf. t2l ancl lal).
Tpau: T|ru. If u is a P-solution, llnen TLrou is a Q-solution in Z.

2, P-solvable functions

3. Let, / be a real r-aluecl function on a Rientann surface -B anrt L
a normal region. 1\'e clenote b)- (--p(t' .,f) the class of P-superelliptic
functions s ou I for s'hich there exist-s a coutpact set li" c L u-ith
s ä"f on L - Ii". .Sirnilarl.r', L-"tL ,.f) i-" tlte class oI' P-subelliptic
functions s on 1, for rvhich tliele exists a ('otnpact set .K"c.L l'ith
s §/ on L - Ii,. These rla,*ses are either enrptl ol Perron fanrilies,
In the latt'er case the i\utctions

fi P\L ''/' ':) -
!!t,(1,.,1'.:) _

åre P-solut,iotrs in L u'ith

!!p(J, ..f I

irrf' l,*(:) ,r € [- *1L ,.l)] ,

srtp i.,-(:) i e C o{L,./) },

uPt{' , ,l}

ff these functions coincide. the common function i-q deuotecl by «p(2./).
A fnnetion f on -R is callecl P-solauble if t otl- .I) and t *(L .f)

are not empty an«l ilp!, ,l): UrQ,f) fbr everl' lrottnal regiou L"
If especially P == 0, we suppose in addition that I- is not, parabolic.
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The concept of P-solvability is essential for our purposes. Therefore,
we consider only open Riemann surfaces. In fact, let us suppose lhat P
is acceptable by o on a closed Riemann surface. The only existing P-
solutions are the constant zero and, if ar is a P-solution, the multiples
of ot (Cf. t3l). Therefore the P-solvabilitv of a function is either trivial
or not meaningful. That is why the closed Riemann surfaces are not, interest-
ing in this connection.

4. We start, the examination of P-solvabilitv t'ith a couple of aux-
iliary results.

Proposition 2.7, Let f nncl g be functions on R and L
If the classes f. o and Lt , in qttestiort ere not empty,

g) 
= 

ilr(L,f *
s) 4 wp(L ,f +

a normal regdon"

s),
g).

Up(L ,

Up(L ,

Proaf "' Let, s € {.! *(L , f)
'fhis implies

(2.1 ) ili\L . J ;-

l-,_\.'fl'tg S,_* in_

(2,2) fip(L , J) = 
ilr(L ,J = g) Up€, , g)

Together (2.I) and (2.2) imply the first statement. The second is prorer.I
similarly.

Proposition 2.2. Let f be ru non-negatiue continuous functi,on on R
hauing a P-superelli,ptic majoran,t" If ilr(R,f):0, then f is P-soltahle.

Proof: Because I= O ,ur(R,/) exists ancl is equal to zero. If P -.=(.t
and -R is parabolic, then fip(R,.f) is definecl to be zero. fn this ca-*e

every bouncLed continuorrs lunction is harmonizable i.e. 0-solvable (L:f.

i6l p. 22+). So we exclude this possibilit\-. Let {-r?^} be an exhaustion t-rf

R and I a, normal regiou. l.t is sulTicient to consider the case t'here
LU AL is noncornpact. Let, u,, be a continuous P-subelliptic function
on LU 0L - (Al,) f) r).I?, so that un is a P-solution in Ln R,, and

,, : l.f olt r?, n lL '"'4 lo itr [,-R*.
'Ihen {,ru.,} is a non-decreasing non-negative bounded sequence anrl there
exists a P-sohrtiorl ?6 : Iim z, u,ith .a : f on AL.
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If now se Or1R,,f),s*0, and if K"cRo, then %o_ s <"/ on
R,nAL and %o-s <"f in .L--8,. So %o-seUr@,f) and

(2.3) u : lirn u^ - fr,r(R , f) 
= 

ArQ , f) .

Ontheotherhand, §*u>.f on 0L and s*uZf in L-K". So
s+ueUp@,/) and

(2.4) ,tL : Lt. + dp@ , f) 2 dr(L , f) .

Because Ar(L,f) {dr(L,f), (2.3) and (2.4) shorv that ur(L,f) exists
and is equal to z. So we have the statement.

5. Every" P-solution u on R is P-solvable and up(L , u) : u for
every normal region L. There also exist other naturally P-soh'able
functions.

Proposition 2.3. Euery P-superelliptic function on R k«rittg « P-
subelli,Tttic minorant is P-solc^able.

Proof: Let s be P-superelliptic on -8, o its P-subelliptic minorant
and L a normal region. Then setrlL,s), aeUr&,s) ancl

a ! gr(L,s) { d,r(L, s) S s .

Therefore dr(L , s) e !r(L , s) and it must be equal to tlp(L , s). The
proposition is proved.

fn the same context u'e see that everv P-subelliptic function on R
having a P-superelliptic rnajorant is P-solvable as rvell as eyel'\- (,)-

bounded P-sub- or P-superelliptic function. Especialll- the accepting
function ro is P-solvable ancl

(2.5) up(L . r,,,) : r'tp(L)

for every normal region Z.

6. A useful {'eature is that P-solr-able functiou-q fornt a vector space.

Proposition 2.4. Let f ,g b, P-solt'ablefunctiottscrnrl t.l realnumbers.
Then xf * fiS is P-soluable. If L is a normal region. then

up(L,ef + lS): vLp(L,f) + §ur1L,91 .

Proof : From proposition 2.1 we see that f + S is P-solvable and

u,r(L,f + s): up(L,l) + uP(L,g).
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If a ) 0, then rys e1r1f,,u71 for every I eAp(L,/) and vice versa.
So up(L,xf) exists and is equal to ,xur(L,f). Because up(L, -f):
- ur(L , f) the result remains valid for a ( 0 and it is trivially valicl
for x : 0. These two facts give the proposition.

3. The Banach Iattice "l{P(o; , R)

7. The class of all P-solvable functions is too large for our purpose§.
We introduce a smaller subclass of it which has more regularity properties.
Let B(a , R) be the family of those continuous functions on -B which
are o-bounded. We define

lr"((,), R) : {f e BQ», R) | f P-solvable} .

This class of P-solvable functions is thus a subclass of B(cr.r , .R). It appears
that we can sa). exactly when these classes coincide.

Theorem 3.1. l:P(or , /i) : B('t , R) if and only iJ P i.s to-parabolic
on R.

Proof : Let first P be o-hvperbolic ancl {r?,} an exhaustion of "8"
Let f e BQt,A) ,0 !f !r,t,

If s e f p(R ,f), then s >/ in Rn,n.r^,-, - R^n-, for some n and
evety'm) 0. Since s >f : r» on dR,n--)_: årld ru ) rop(-R),s ] or(-R)
in -8a1,,.1..-2 fot everr m > 0. \Ye conclucle that s ) roo(A) on -rB. For
&n s e f .@ , f) rve similarlv conclucle b'r- considering Rn1^*^y - Rr,
that s{0 on -8. T}rus.

Ap(R ,f) < O <r''p(R) ! tlr(R ,f)
and /4.lfP(tt,R)"

Suppose then that, P is rr;-parabolic and take an f e B@ , R), ifl ! Mo.
We use the standard decomposition f : f* - 1-, 7+,f- }- 0. Then
Ma e L=r(R,f+) and so 0 <t{p(R,f-) { Ma. This implies

O <ilp(R,"f-) < Mar: g,

unless P :0 in which case it is defined ilr(R ,"f*) : 0. Similarly u'e

T

I i:
f oin U (Rn*-z- Rn*--r)

t- | n:L
J)oc

I o in U (Rn* -- En,: ,)
[ , =t
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get that il*(R ,f-) :: 0. Then f+ å,nd
2.2 ancl so f , too" Thus f e 1iP1r,; , .,B).

The theorem is proved.

8. TVe turn to the regularitl" properties of
aluee some notations. Let f and {l he real
P-solutions" Th,en rn-e denote

fUg -mAx(f ,g),f (1 g-
uY u __ inf {s ls P-solution,

are P-solvable by proposition

ÄrP(ru . fr)" First \\'e intro-
valuecl funetions ancl u , t1

min (,f , g) ,

§ZrtU,'),
u /\u : sup {s js P-solution, s { rr O u},

provided that uY a ancl u Au are P-solutions. So tz V u is the least
P-solution rvhich is a majorant of rr U u ancl u A u is the greatest P-
solution rvhich is a minorant of ,ic l'l r..

A vector space is called a r-ector lattice if it is closed under the operation,s
U and n mentioned above. If the space is nloreover complete. it is
called a Banach lattice.

Theorem 3.2. N'1,, , R) is a Banach lattice und,er the a-nor'm

Ii/ii.,,: §.rp fl '
F t!)

if ,f ftnd g ttelong tct Jr'(,:,, , R) iln.d, L i,,-s u nornt(il regirLrt.lI or eouer ,

(3.1)

(3"2)

ttp(I=, ,J U tl) '..r: up(I- ../) V up(L . g)

up(L ,I fi g)- rtr(L."f) A up(L .g)

Proof: Evidently fP1rr.-B; is a rector space. Let f ,gefP(ru,-R)
and. let L be a nounal re-uiou. \\-e sltos- first that f nsel'P1r,r..I?).
Because f n g is or-bouncled anrl a mitrolant of bslh f and g,

dr(L,f O S) < tlp(L,f)1rrtL ,g): up(L .f)O up(L.g).

The function I: up(L ,f) fi u*(L . g) is P-superelliptic ancl has a P-
subelliptic minorant. Thus s is P-soh'able. Accorcling to the definition,
ur(L,s) must be equal to ur(L,f) Aur(L,g). §o rr-e har-e

(3.3) dr(L , f n s) !. tcp(L , f) A up(L , s) .

Let then e ) 0 and zoe. R. \\-e can find an s e l! r(L, /; and an
s'e Qr(L, g) such that

Arrn. Acad. Sci" tr'enniea,
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- e ( s(zo) - ur(L,f , zo) S 0,

- e ( s'(eo) - ur(L, g,z) ! 0 .

Because the P-subelliptic function

(s - u*(L,f)) + (s' - ur(L,S» + ur(L,f) Aur(L,g)

is a minorant, of both s and s', it, belongs to Ur@,f nS). At the
point zo is valid

- 2e * ur(L,I) A up(L, g)(zo) I Ar(L, f i g, zo) .

Since e ) 0 and zo were arbitrarv we must have

(3.4) u"(L,f) Aur(L,g) < Ar@,f f,S) .

Together (3.3) and (3.a) imply that /O g e NP(a,-E) and" (3.2) is valid"
Similarly we can prove that fugeNP(ar,-E) and (3.1) is valid.

So -l[P1cu , -B; is a vector lattice" It remains to prove the completeness.
Let {"f,} c rTP(ra . -B) be a C'auchl' se(lllerlce rurcler the ro-norm. Then

thereexistsl11 å:./ such that linr l-1".,:0 atrcl /e BQ't,R).

If now s e (lr(L,/,). tlien .* {,f,, in Z - 1i, ancl

.s- f -f^',,,o{yr(L,f)
in L - -K,, too. Therefore

(3.5) up(L ,f^) -"if - f^11",w swr(L ,f) .

fn the sa,me way we see that

(3.6) ur(L,f^) -1- ii/-"f,1i.,,o,2 dr(L,l).
Together the inequalities (3.5) ancl (3.6) impl1. when re goes to infinit,r
that f is P-solvable ancl

(3.7) ttr(L ./, : :T u,(L . f ̂ ) 
.

So / € ly''(, , ,B) and the theorem is proved.

Corollary 3,3. Let {/"} c Å-P(ru , -R) and Lim f " 
: f with regard to the

(t)-tlorm. Then f€ //P(o , R) and (3.7) is ,ntii"jo, euerA normql regi'on L.

9. Together with iYP(r.o , -B) rve need a subclass of it. \\'e clefine

N'r(, , R) : {f e l[P(o , R)!u*(R,"f) : o] .

This class has similar properties as -AlPlar , .E;. In fact, from proposition
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2.4 and formulas (3.1), (3.2) we see that it is a vector lattice and from (3.7)
that it is complete. So we have the following result,.

Theorem 3.4. Ä'j(ro , R) is a Banach lattice.

An interesting fact is that NPr6 , A1 coincides with -ltrP1ro , -B; if
and only if the Iatter coincides with B(ot , R).

Theorem 3.5. Xj(o , R) : N'(* , R) if and, only if P is arparabolic.

Proof : Let P be ar-parabolic and / € JP(c,r , R) ,lfl { Mot. If
P : 0, then f e N\«D , R) by definition. otherrvise it is seen from the
inequality iur(R ,f)l ! Mar: 0. Because Jj(or ,.8) is a subclass
of i[Plar , ä; thev must, be equal.

Let then P be r,r-h1-perbolic. Theu or, the r,r-measure of -r?, is posi-
tive. So it belongs to JP(r,l , ,B) but not to Jjlr» , r?). Thus these classes

are not equal"

10. Finally v,e remark that -.\'P(r,'l , J?) can be presented as a direct
sum of AP",(R) and -llj(ar ,.8).

Theorem 3.6. -MP(c,-r , R) : AP-(R) + ){\kD , R) .

Proof:Let /€JP(or,.8) and denote S:f -urlR,f). The P-
solution ur(R,f) is r,r-bounded and thus belongs both to AP,,,(R) and
NP(ro , "rB). This implies that g € .}-P(r,r . -rR). Because

up(R . g) : ttp(R .f) - ur(R,"/) : o,

g belongs in fact to l-j(o . J?). So rr-e have a clecornposition

(3. 8) f -- uPlR , J') g

where ur(R,f) eAP",(R) ancl g € Jf1r,l.-B). The onlv common function
of AP,,(R) and NPola , R1 is the collstant zero bv the definition of
I',1(, , A). Thus the decomposition (3.8) is uniclne.

4. The dependence of l{P(r,r , R) on P

11. Let () be the class of densities which are acceptable b;,'the same
function ro. We suppose moreover that J? has a smallest member W
so that r,o is a W-solution. This situation emerges e.g. when o"t e CB in



Åeros Lenrrxnx

which case W : lala. If we especially choose a : l, then W :0
and J2 is the class of non-negative densities.

In O we define a classification of its members by introducing to every
P e Q a lfl-solution rwp, the smallest W-rnajorant of @.(A) and
by defining

-\'(P) : {Q e Qjywe: ywp} .

All o-parabolic densities belong to the same class but ro-hyperbolic may
be divided into several classes. This classification is connected with the
comparison of solution spaces ,4P.,. If P and A belong to 9, then
AP,. and AQ,,, are strongly isometric if and only if P € lt/(Q) (Cf. t3l).

I{ow we examine in () the dependence of Banach lattices NPlco , R1

and .l[j(o , .B) on P. In the class of o-parabolic densities this dependence
is clear, NPr(r,t , A) : Nt(, , R) : B(a , R) for every density P in this
class. Therefore'w.e suppose in the sequel lhat I also contains o-hyperbolic
densities P , P + I{'. This condition implies at the same time that ever"v-

P e Q is completelv acceptable (Cf. lemmas 3.3. and 3.5 in [3]).

12. First we prove some auxiliarr- results inlvhich rre clo not presume
that densities belong to !2.

Proposition 4.7. Let P and Q be acceptable d,ensities with P 3 Q anrl
L a normal regi,on. If f is a non-negati,ae function hauing a P-sulterelliptic
majorant on .L, then

aq(L , f) { ur\ , f) and' fra@ , f) ! ar(L , f) .

Proof : For any s e Qq@,/), s U 0 is P-subelliptic whence it be-

longs to Ur(L,f) and

aa@ ,f) < Yr(L ,f) .

ForanSr seL:-p(L,,/) ,s)0 in Z because f >0. So s isalso Q-super-
elliptie and belongs to (-'q(L./). Thus

ttq(L ,f) { ilr(L ,f) .

In the next result u-e neecl the mappin1 Ttrs and so we suppose that
Q is completely acceptable.

Proposition 4.2. Let P and A be acceptable d,ens'i,ti,es so that P < Q

and, Q is completely acceptable. Let L be a normal region and f ct, 'non-

negatiue function so that Ur(L ,f) is finite. Then the greatest Q-minorant
of ar(L ,f) it

lt
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up(L,f): T?owrL,fl.

Proof : By proposition 4.1 we have

0 { yr(L ,f) 
= 

ap@ ,f) .

This inrplies b5r lemma 3.4 in [3] that the greatest Q-minorant of yp(L , f)
exists and is equal to T'royr@,,f). Because P { Q,

(1.1) v'a@ ,f) < ?""oar@ ,f) < vr(L ,f) .

Letthen e> 0 and zoe L. Thereexistsau s€ _-*(L,f),§ä0, sothat

- e ( s(zo) - Ur(L,/. :o) < 0.

The function

s - Ap(L ,f) . TlsA"(L ,.f)

is a minorant of s and Q-subelliptic. Therefore, it belongs to qa@,f)
and rve have

t * TLpswp(L,f)@o) {wp@,f ,zi .

Since e > 0 and zo were arbitrary,

(1.2) T'*oao\ ,fl 
= 

aa@ ,f) .

Together (4.I) and (4.2) impll'that ya\,f) is equal to T"rsWr(L,f).
This proves the proposition.

The requirement of non-negatir-it1' of the function / can be replacecl

rvith the co-boundness. Then rve also get a similar resr.rlt to the functions
fip(L,f) and d,p(L,f).

Proposition 4.3. Let P and A be densities acce'ptable by o) so that
P < Q ctnd Q 'is completely acceptable. Let L be a normal region and f
«n a-bounded, function. Then

aaL ,f) : Tf;sar? ,f)
unil,

ila& ,l) - TI;auP@ , f) .

Proof : Let ifi { Mot. Br- pr<.,position 2.1 and b1" (2.5)

(4.3) sr(L,f) ! Ma6(L): Uo(L,.f 1-tuIo): D: P .Q .

Because f + A* ) 0 we have b1'proposition -1.2

(4.4) Uo(L ,f l Mor) : ?toyr\ ,f t- llo) .

Ann. Åcacl. Sci" Fennicro
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On the other hand, f'r, is linear and, because P A Q,

(4.5) Tri,q@p(L) : ah(L) .

Therefore we have

(4.6) T'negr@ ,f + Mr,l : TIisWr(L .71 1 Mc»p(L) .

This, togetherr,vith (a.3) and (4.4) implies

%o(L , f) : T'rsar@ , f) .

The first formula is proved. For the second. we notice that, - f ! Mo 2 A.

Therefore we have as above

Uq(L, - f) : T'rsar@, - f) .

However,

ao(L, -f): - ilr\L,f); D: P,Q'
So

ila@ , f) : TLPaIP(L ,l) .

The proposition is proved.

13. We are no\1'ready for preliminary comparison results in the class g.
The {'irst is a clirect consequence of proposition 4.3.

Proposition 4,4, Let P «nd Q belong to Q. If P !- Q, then

,YP(ro , -B) c Ia(ru , R) attd Ij(r,", , fi) c l'!(r, . -B) .

If moreoaer / € JP(ro , R) and, L is a normctl region.

up(L , f) : TLrnur(L , f) .

Then we suppose in the same setting that the function f in question
is in the class lfo(o, -E) and ask the P-solvability. This point of vierv
is clearly more difficult and it is necessary to require some additional
properties. By taking advantage of the classification of densities and the
results of [3] we are able to prove the next proposition. It concerns onll'
functions in the subclass Njlilo , R) but is quite sufficient to us as a

preparatory result.

Proposition 4.5. Let P and, A bebng to the same d,ensity cl,a.ss -\-
in Q. If P 

= 
Q, then

Nl(co , -B) : .lfj(«l , .E) .

r3
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Proof : By proposition 4.4, 1{'r(* , A) c Ng(co ,.8). Let us then take
an / € tlfl1to , R\. Because I{9@ , -B) is a vector lattice we may suppose
thaf f > 0. Now we use the results of [3]. By theorem 4.9 in [3], P € Är(0)
implies that the solution spaces AP- and AQ", are strongly isometric.
By theorem 4.10 in [3] and the definition of strong isometry, l4 is
an isomorphism from AP* onto AQ,,, and Tqp is its inverse mapping.
On the other hand, / is ro-bounded and so fr.r(R , f) exists and belongs
lo 4P,,,. Together with proposition 4.3 all this gives

IoPil'o(R ,f) : TprTeqilp(R ,f) : dr(R ,f) .

Because da(R,f) == 0 this implies that tlp@,f):0. Then we see from
proposition 2.2 lhat f is P-soh,able. Because f >- 0 , up(R ,f) : O

and so .f belongs to l-f(ru , -B). This gives f,'9(, , R) c Nl(,t , R) and
so the proposition.

14" The class A
trounded P-sotutions

(1.7)

has
are

an interesting property. If P e 9. then all o)

Q-solvable for ever)- A € Q,

Theorem 4.6. Let P e 9. Then

AP,,,(R) c §01«; ,.8;

foreuery Qe9. If ueAP,,(R) and, L isanormulregion,

uq(L , u) : Tlrnu .

Proof : If P is r,-,-parabolic, then AP",(R): {0} and the result is
obvious. So rre suppose that P is o-hvperbolic. Let u e AP,,,(R) and let
L be a normal region. Suppose first that, zr ) 0. Then zr is I4r-subelliptic
and belongs to L-n(L,u). On the other hancl, TLrnu exists and belongs
to U*1L, z). So

Because ?Lr*u is the smallest Il'-majorant cf u in L (Cf.lemma 4.1 in
[3]),

T'ryrt : ttn.(L . u) .

Therefore rz is tr/-solvable and

(1.8) uw(L , u) : Tl*ntt .

If z has also negative values, we see from the decomposition

u *- lj u\,t,,,top - (,iuii,*(op - u)
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that (a.8) is still ralid. So in every c&se ?, eNvfut,,E). This fact, together
with proposition 4.4 gives

AP,,(A) c Äro(ro, A) c Å.0(a; , -^B)

15

(4.e)

tion 4.4

(4.1 0)

for every Q e O. This shows the first part of the theorem.
For the sesond part, let u e AP-(R) and let L be a normal region"

By (a.9), u is l/-solvable. Because W < Q, this implies by proposi-

Furthermore by (a.8)

(4.1I ) TL*nu*(L , u) -- ?fu, TLr*u .

Firially, according to lemma 4.8 in [3],

rL"n TLr*u : T'"ou .

This, together rvith (4.10) ancl (4.11)gives

ttp(L , u) : T'rsu .

15. Let P ancl Q be densities in the class J2. Our main object is to
clear up r,vhen the Banach lattices NPla , R7 and No(* ,.I?) are equal"
We have already had some results of this kind. It can be seen that the
problem has something to do with the classification of densities in 9.
Norv it appears that the &nswer lies wholly on the classification of densities
and so on the strong isometry of the corresponding solution spaces ,4P,,
and 4Q,,.

Theorem 4.7. Let P and A belong to 9. Then the following state-
ments ure equiaalent.

(a) P and A bebng to
(b) i/f1c,,r , R) : Ä'9(, ,

(c) JfP(a; , R) - -ö/Q(a; ,

Proof: If either P or A is or-parabolic, then result follorvs from
theorems 3.1 and 3.5. So we can suppose that densities are co-hyperbolic.

(a) > (b): If P and Q belong to the same class -l[, then the densitv
D: P + Q - 17 belongs,too,bytheoremS.ain [3]. Because D isa ma-
jorant of both P and Q we have by proposition 4.5

the stme clensity cluss 
^A)

A).

l(L(*, ,R) - t{f;Q,t , R) -- Ä.f (o , J?)
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(b) >(c): Let, Nllat,A1 :Ufl6,A1 and take an /€lfP(r,r'J?).
By theorem 3.6

f : ur(R,f) *',
where u"(R , f) e AP- c .l[41<o , A) by theorem 4.6 and a e N!@t, A) :
N9@ , -B). So / belongs to l{a\a , R1, too. By changing the roles of P
and Q we see that if g e Na@, "B) then g e )iP(to, -B), too. Thus

-l[P(r,r , A) : lto(r,r , A) .

(c) + (b): Let .llP(rrr, A) : l[0(r,.,, .rB) ancl let / € N,'.t(.,i?). Suppose

that f Q. Nt@ , R). Because J{(r,r , -B) is a vector lattice \ve ma\r

supposethat f20. Weformafunction ge BQo,A) ,0lg{f,
't

f in U (Rn,_, - Rn^_r)
n:1g:=

00

o in U (Rn* - Rn,_r)
n,:1

Let us take an se Ap(R,g),s2g in fr-li, and an s'€ !'q(4,,f)"
s'{f in R-K",. If K"UK",cR4no-2, then s'{l:g!.c o1}

lBn*-, , n Z no" By the maximum principle of P-subelliptic functions
(Cf. t2l), s' S s in -Rr,-, , n Zno. Therefore the same inequality is valid
on -B arrcl s-e Jrave

(4.12)

hecause it \\-as

Hou'ever: ('Yer\-

rvhence

supposeaL that f e fQ(r,, , fi) ,.f e ^Y!1r,r , R) at1cl .t' = 
{},

s € *'q(R , g) is br- the construction of {l noll-positive

aq(R,s) <0'

This, together u'itli (4.12) shou's that g 4 Na(a: , R)"
On the other hanrl. r) { 9 {./ and / € Å'j(or , .H) imply

(4.13) 0 {= t1p(R , g) ; t1o(R,/) .-- tl .

So ilr(R,s) -:o ancl bv plopositiotr !.9. y€fP1,',,4t :-\'0(.,',,'B;.
lllhis is a contradiction aucl §-e mu,st have / € -Yj1o ,3; i.e.

Ji(, , A; c J-ltru ,,8) .

By changing the roles of P and a u-e get the inclusion into opposite
direetion, So

-\ j( u) . R) ,: l'?(o , fl)
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(b) +(a): Let 1$@,J?) :f,,j1r,.,,-E) and let ue AP,,, ue AQ,,,.
By theorem 4.6

uq(R,u): ?pqu, up(R,o): ?reu.

Because T rru e AQ,, , Trpu e AP.,, rve have

Tq, T equ : up(R, uq(R, u)) .

Now
'up(R, u) - u€ l-j(ro, A) : §11«.,, r8; .

This implies that

ur(R, uq(R, u)) : up(R, u) : u

and so

TqeTequ: u -

Similarlv we see that

5. Wiener's P-compactifieation

16. f,et -R be an open Riemann surface and P a tlensit"y acceptable
by ro on "8. lVe call a topological space AI.r a Wiener's P-cotnpacti/icatiotr
wi,th regard, to r-,t if

TpqTpeu : lJ .

This means thal Trn is anisomorphism from AP,,, onto ,-/,.Q,,, and Tpr
is its inverse mapping. The spaces AP,,, and JQ,,, are then strongll isomet-
ric which implies that P € If(Q)

The proof of the theorem is nou- corlplete.
Let especiall5' -r2 be the class of cletnities acceptable bv the constant

one i.e. the class of non-negatire clensities, Let, moreover Xo(A) he the
Wiener's algebra of boundecl continuous harmonizable functions (Cf. |-6-]).
If rB is parabolic, then trivially

Jy''(t , R): B(t , R) : Jfo(A)

for everv density P > 0. If -B is hyperbolic then according to theorem 4.7

-trfo(l ,-B) :tr-o(,a)

if and onl1" if the srnallest harmonic maiorant of the .l-measure Ir,(11) is
equal to one, This hal.rpens e.g-. 's1ren.

(4.r4) 
[ [ eelr'.J,,(: . :,,) rl.rrty "< x

n

at some point zr€ /f (Cf.lemma 8,a.3. in [2]).
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(a) rBj." is a compact Hausdorff space,

(b) -E is an open dense subspace of Rf;,r,
(c) every function in -l[P(ar , -B) can be continuously extended to

RT,,, ,

(d) "lt'(, , R) separates points in
The compact set T-.p(A) - R:,,p - R

RT,,O "

is called the P -i,deal boundary of R
with regard, to at.

It is well-known that -8j,. exists but is unique only up to a homeo-

morphism (Cf. tll pp. 96-93). Therefore Wiener's compactifications
.8j," and -Blo are said to be equivalent if there exists a homeomorphism
h. : R!* --, Rf.o so that hl& is an identity mapping. So, if P is acceptable

by al, all W'iener's P-compactifications with regard to a; are equivalent.
Let, Q be the same family of densities acceptable by ar as in the prece-

ding chapter. Theorem 4.6 gives us immecliatel5- the following result.

Theorem 5.7. Let P and A bebng to 9. Then eaery P-solution
in AP-(R) is conti,nuously ertendable to ALo

Another immediate result concerning the equivalence of lViener's com-

pactifications is given by theorem 4.7.

Theorem 5.2. Let P and, Q belong to Q. If they are in the same d,ensity

class N, then R!,., and, R[,p areequiaalent.

Let especialll' O be the famil5, of densities acceptable by the constant
one i.e. the famill' of uon-negatir-e densities. Then r?fl, is the harmonic
lMiener's compactification of .B (Cf. i6l p. 228). Norv, if P > 0' then
everv bouncled P-solution is coutinuousll- extenclable to -8fl0. If "E is
parabolic, then äfl anct -Bf.o are eclui\-alent for er.ery density P > 0

because in this case 0 consists onll- of parabolic clensities. If .R is hyper-
bolic, then AI" and AIo are equiraleut for everl- density P rvhich
belongs to the same class J as the clensit-'- zero. This happens e.g. u'hen

the condition (4.14) is fulfilled.

17. The condition that densities belong to the same clensity class N
was both necessary and sufficient in theorem 4.7. Non' rve saw that it was

sufficient for the equivalency of \Yiener's compactifications. It is natural
to ask whether it is also necessary. lYe intend to shorv that this is not the
case. In this purpose we present a situatiott rrhere the familS- J) generates

only one equivalence class of Wiener's compactifications.

Thoerem 5.3. Let @ be an accepting function with lim- ro : 0 and,
OR
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l,et Q be the corresponil,ing famil,y of d,ensiti,es. If P and' Q o,re anu il'ensities

of Q, then Rf;* and, R!,,q are equiualent.

Proof : The accepting function ar has always a continuous extension
@* on RL.r. By supposition a*ll-*(R):0. This implies that [,p(,8)
consists of only one point. Moreover, every function o e B@, -B) is con-
tinuously extendable to R!",, by defining af f,,,p(R):0. Especially
this is true for every function in lfolar ,,8;. So ,8j,, is a Wiener's Q-
compactification, too. Because all Wiener's Q-compactifications with
regard to ro are equivalent we have the statement.

18. Finally we show that theorem 5.3 is not a consequence of theorem 5.2

i.e. there may exist different density classes .l[ in .f) even if Iiil a; : 0.

As an example we take (Cf. [2], Ex. 6.f .7)

R : {zl lzl < 1} , a(z) : (t - lzflt4

and

W(z) : L(l"t' - 4Xl - ztz)-z .

Then a e Cs and is a l7-solution u'ith lim to(z) : 0. Iloreover W is

completely acceptable and uegative on .8. \['e also take a positive density
P,,

P*(z) : (1 * lzl2)-1 .

Now we consider the density P: W * Pw. Because clearly lP - Wlaz
is integrable on -E , P belongs fo N(W) and is thus o-hyperbolic (Cf. [3],
Corollary 5.2). So the family g,

0:{QlQ adensity, Q>W}
isof therightt5'pe. Because llt < 0, evervnon-negative density Q belongs
to O and is c,r-parabolic b;'the usual maximum principle. Therefore such
densities do not belong to i-(II').

19. We have thus found a situation u'here Wiener's P- and Q-com-
pactifications with regard to cr.» are equivalent even if densities P and

Q belong to different classes N in O. Therefore the condition of theorem
5.2 is not a necessary one.
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